Skip to main content
Erschienen in: Journal of Electronic Testing 6/2018

20.11.2018

Multiple Missing Cell Defect Modeling for QCA Devices

verfasst von: Vaishali H. Dhare, Usha S. Mehta

Erschienen in: Journal of Electronic Testing | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Considering the limitations of CMOS technology, the Quantum-dot Cellular Automata (QCA) is emerging as one of the alternatives for Integrated Circuit (IC) Technology. A lot of work is being carried out for design, fabrication and testing of QCA circuits. In this paper, we have worked on defect analysis, fault models development and deriving various properties for QCA Majority Voter (MV) to effectively generate the test patterns for QCA circuits. It has been shown that unlike CMOS technology, single missing cell consideration is not enough for QCA technology. We have presented that the Multiple Missing Cell (MMC) defect, which is very natural at nanoscale, causes the sizable difference in functionality compared to Single Missing Cell consideration described in literature, and hence, must be considered while test generation. The proposed MMC is supported by exhaustive simulation results as well as kink energy based mathematical analysis. Further, Verilog fault models are proposed which can be used for the functional, timing verification and activation of faults caused by MMC defect. The effect of MMC on output is analyzed in stand-alone MV as well as when MV is a part of circuit. At the end, we have proposed the test properties of MV when being used as MV itself, as AND gate or OR gate. These properties may be further helpful in development of test generation algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Amlani I, Orlov AO, Kummamuru RK, Bernstein GH, Lent CS, Snider GL (2000) Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl Phys Lett 77(5):738–740CrossRef Amlani I, Orlov AO, Kummamuru RK, Bernstein GH, Lent CS, Snider GL (2000) Experimental demonstration of a leadless quantum-dot cellular automata cell. Appl Phys Lett 77(5):738–740CrossRef
2.
Zurück zum Zitat Chen K, Maezawa K, Yamamoto M (1996) Inp-based high-performance monostable-bistable transition logic elements (MOBILE’s) using integrated multiple input resonant-tunneling devices. IEEE Electron Dev Lett 17 (3):127–129CrossRef Chen K, Maezawa K, Yamamoto M (1996) Inp-based high-performance monostable-bistable transition logic elements (MOBILE’s) using integrated multiple input resonant-tunneling devices. IEEE Electron Dev Lett 17 (3):127–129CrossRef
3.
Zurück zum Zitat Dhare V, Mehta U (2015) Defect characterization and testing of QCA devices and circuits: a survey. In: Proc of 19th international symposium on VLSI design and test, pp 1–2 Dhare V, Mehta U (2015) Defect characterization and testing of QCA devices and circuits: a survey. In: Proc of 19th international symposium on VLSI design and test, pp 1–2
4.
Zurück zum Zitat Dhare V, Mehta U (2015) Fault analysis of QCA combinational circuit at layout & logic level. In: Proc of IEEE International WIE conference on electrical and computer engineering, WIECON, pp 22–26 Dhare V, Mehta U (2015) Fault analysis of QCA combinational circuit at layout & logic level. In: Proc of IEEE International WIE conference on electrical and computer engineering, WIECON, pp 22–26
5.
Zurück zum Zitat Dhare V, Mehta U (2016) Development of basic fault model and corresponding ATPG for single input missing cell deposition defects in majority voter of QCA. In: Proc of IEEE region 10 conference, TENCON, pp 2354–2359 Dhare V, Mehta U (2016) Development of basic fault model and corresponding ATPG for single input missing cell deposition defects in majority voter of QCA. In: Proc of IEEE region 10 conference, TENCON, pp 2354–2359
6.
Zurück zum Zitat Dysart TJ, Kogge PM, Lent CS, Liu M (2005) An analysis of missing cell defects in quantum-dot cellular automata. In: Proc. of IEEE international workshop on design and test of defect-tolerant nanoscale architectures, NANOARCH pp 1–8 Dysart TJ, Kogge PM, Lent CS, Liu M (2005) An analysis of missing cell defects in quantum-dot cellular automata. In: Proc. of IEEE international workshop on design and test of defect-tolerant nanoscale architectures, NANOARCH pp 1–8
7.
Zurück zum Zitat Huang M, Momenzadeh FL (2007) Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integr VLSI J 40(1):503–515CrossRef Huang M, Momenzadeh FL (2007) Analysis of missing and additional cell defects in sequential quantum-dot cellular automata. Integr VLSI J 40(1):503–515CrossRef
8.
Zurück zum Zitat Jing Huang M, Momenzadeh MB, Tahoori F (2004) Lombardi: defect characterization for scaling of QCA devices. In: Proc of 19th IEEE international symposium on defect and fault tolerance in VLSI systems, pp 30–38 Jing Huang M, Momenzadeh MB, Tahoori F (2004) Lombardi: defect characterization for scaling of QCA devices. In: Proc of 19th IEEE international symposium on defect and fault tolerance in VLSI systems, pp 30–38
9.
Zurück zum Zitat Lent CS, Snider GL (2014) The development of quantum-dot cellular automata. Field coupled nanocomputing, LNCS. Springer, pp 3–20 Lent CS, Snider GL (2014) The development of quantum-dot cellular automata. Field coupled nanocomputing, LNCS. Springer, pp 3–20
10.
Zurück zum Zitat Lent CS, Taugaw PD (1993) Lines of interacting quantum-dot cells: a binary wire. J Appl Phys 74:6227–6233CrossRef Lent CS, Taugaw PD (1993) Lines of interacting quantum-dot cells: a binary wire. J Appl Phys 74:6227–6233CrossRef
11.
Zurück zum Zitat Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 84(4):541–557CrossRef Lent CS, Tougaw PD (1997) A device architecture for computing with quantum dots. Proc IEEE 84(4):541–557CrossRef
12.
Zurück zum Zitat Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57CrossRef Lent CS, Tougaw PD, Porod W, Bernstein GH (1993) Quantum cellular automata. Nanotechnology 4(1):49–57CrossRef
13.
Zurück zum Zitat Lent CS, Taugaw PD, Porod W (1994) Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proc of workshop on physics and computing, pp 5–13 Lent CS, Taugaw PD, Porod W (1994) Quantum cellular automata: the physics of computing with arrays of quantum dot molecules. In: Proc of workshop on physics and computing, pp 5–13
14.
Zurück zum Zitat Likharev K (1999) Single electron devices and their applications. Proc IEEE 87(4):606–632CrossRef Likharev K (1999) Single electron devices and their applications. Proc IEEE 87(4):606–632CrossRef
15.
Zurück zum Zitat Liu M, Lent C (2007) Reliability and defect tolerance in metallic quantum-dot cellular automata. J Electron Test 23(3):211–218CrossRef Liu M, Lent C (2007) Reliability and defect tolerance in metallic quantum-dot cellular automata. J Electron Test 23(3):211–218CrossRef
16.
Zurück zum Zitat Meindl J (2003) Beyond Moore’s law: the interconnect era. Comput Sci Eng 5(1):20–24CrossRef Meindl J (2003) Beyond Moore’s law: the interconnect era. Comput Sci Eng 5(1):20–24CrossRef
17.
Zurück zum Zitat Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling qca defects at molecular-level in combinational circuits. In: Proc of 20th IEEE design for test, DFT, pp 208–216 Momenzadeh M, Ottavi M, Lombardi F (2005) Modeling qca defects at molecular-level in combinational circuits. In: Proc of 20th IEEE design for test, DFT, pp 208–216
18.
Zurück zum Zitat Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Sci Mag 227:928–930 Orlov AO, Amlani I, Bernstein GH, Lent CS, Snider GL (1997) Realization of a functional cell for quantum-dot cellular automata. Sci Mag 227:928–930
19.
Zurück zum Zitat Peercy P (2000) The drive to miniaturization. Nature 406(6799):1023–1026CrossRef Peercy P (2000) The drive to miniaturization. Nature 406(6799):1023–1026CrossRef
20.
Zurück zum Zitat Porod W, Lent CS, Bernstein GH, Orlov AO, Amlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86(5):549–590CrossRef Porod W, Lent CS, Bernstein GH, Orlov AO, Amlani I, Snider GL, Merz JL (1999) Quantum-dot cellular automata: computing with coupled quantum dots. Int J Electron 86(5):549–590CrossRef
21.
Zurück zum Zitat Schulhof G, Jullien WK (2007) Simulation of random cell displacement in QCA. ACM J Emerg Technol Comput Syst (JETC) 3(1):1–14CrossRef Schulhof G, Jullien WK (2007) Simulation of random cell displacement in QCA. ACM J Emerg Technol Comput Syst (JETC) 3(1):1–14CrossRef
22.
Zurück zum Zitat Tahoori M, Momenzadeh M, Huang J, Lombardi F (2004) Testing of quantum cellular automata. IEEE Trans Nanotechnol 3(4):432–442CrossRef Tahoori M, Momenzadeh M, Huang J, Lombardi F (2004) Testing of quantum cellular automata. IEEE Trans Nanotechnol 3(4):432–442CrossRef
23.
Zurück zum Zitat Tahoori MB, Momenzadeh M, Huang J, Lombardi F (2004) Defects and faults in quantum cellular automata at nano scale. In: Proc of 22nd IEEE VLSI test symposium, VTS, pp 291–296 Tahoori MB, Momenzadeh M, Huang J, Lombardi F (2004) Defects and faults in quantum cellular automata at nano scale. In: Proc of 22nd IEEE VLSI test symposium, VTS, pp 291–296
24.
Zurück zum Zitat Toth G, Lent CS (1999) Quasiadiabatic switching for metal-island quantum-dot cellular automata. Appl Phys Lett 85(5):2977–2984 Toth G, Lent CS (1999) Quasiadiabatic switching for metal-island quantum-dot cellular automata. Appl Phys Lett 85(5):2977–2984
25.
Zurück zum Zitat Tougaw P, Douglas CS (1994) Lent: logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825CrossRef Tougaw P, Douglas CS (1994) Lent: logical devices implemented using quantum cellular automata. J Appl Phys 75(3):1818–1825CrossRef
26.
Zurück zum Zitat Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRef Walus K, Dysart TJ, Jullien GA, Budiman RA (2004) Qcadesigner: a rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans Nanotechnol 3(1):26–31CrossRef
27.
Zurück zum Zitat Yang XK, Cai L, Wang SZ, Wang Z, Feng C (2012) Reliability and performance evaluation of QCA devices with rotation cell defect. IEEE Trans Nanotechnol 11(5):1009–1018CrossRef Yang XK, Cai L, Wang SZ, Wang Z, Feng C (2012) Reliability and performance evaluation of QCA devices with rotation cell defect. IEEE Trans Nanotechnol 11(5):1009–1018CrossRef
28.
Zurück zum Zitat Zhang Y, Lv H, Liu S, Xiang Y, Xie G (2015) Defect-tolerance analysis of fundamental quantum-dot cellular automata devices. Article in The Journal of Engineering, 1–6 Zhang Y, Lv H, Liu S, Xiang Y, Xie G (2015) Defect-tolerance analysis of fundamental quantum-dot cellular automata devices. Article in The Journal of Engineering, 1–6
Metadaten
Titel
Multiple Missing Cell Defect Modeling for QCA Devices
verfasst von
Vaishali H. Dhare
Usha S. Mehta
Publikationsdatum
20.11.2018
Verlag
Springer US
Erschienen in
Journal of Electronic Testing / Ausgabe 6/2018
Print ISSN: 0923-8174
Elektronische ISSN: 1573-0727
DOI
https://doi.org/10.1007/s10836-018-5766-1

Weitere Artikel der Ausgabe 6/2018

Journal of Electronic Testing 6/2018 Zur Ausgabe

Neuer Inhalt