Skip to main content
Erschienen in: Quantum Information Processing 11/2020

01.11.2020

Multiple-pulse phase-matching quantum key distribution

verfasst von: Gang Chen, Le Wang, Wei Li, Yang Zhao, Shengmei Zhao, Jozef Gruska

Erschienen in: Quantum Information Processing | Ausgabe 11/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a multiple-pulse phase-matching quantum key distribution protocol to exceed the linear key rate bound and to achieve higher error tolerance. In our protocol, Alice and Bob generate at first their own pulse train (each train should contain L pulses) as well as random bit sequences and also encode each pulse of their train with a randomized phase and a modulation phase. As the next step, both encoded trains are simultaneously sent to Charlie, who performs an interference detection and may be also an eavesdropper. After a successful detection is announced by Charlie, Alice and Bob open the randomized phase of each pulse and keep only communications when the summation of the difference randomized phases at two success detections’ time stamps for Alice and Bob is equal to 0 or \(\pi \). Thereafter, Alice and Bob compute the sifted key with the time stamps. The above procedure is repeated until both Alice and Bob achieve sufficiently long sifted keys. We can also show that the secret key rate of the proposed QKD protocol can beat the rate-loss limit of so far known QKD protocols when the transmission distance is greater than 150–175 km. Moreover, the proposed protocol has a higher error tolerance, approximately 22.5%, when the transmission distance is 50 km and \(L = 128\). The secret key rate and the transmission distance of our protocol are superior to that of the round-robin differential phase shift quantum key distribution protocol Sasaki et al. (Nature 509:475–480, 2014) and the measurement-device-independent quantum key distribution protocol Lo et al. (Phys Rev Lett 108:130503, 2012), and the secret key rate performance is better in both cases than that of phase-matching quantum key distribution when bit train length is greater than 16.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175–179 (1984) Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. Proc. IEEE Int. Conf. Comput. Syst. Signal Process. 175–179 (1984)
2.
Zurück zum Zitat Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRef Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)ADSCrossRef
3.
Zurück zum Zitat Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)ADSCrossRef
4.
Zurück zum Zitat Wang, X.-B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRef Wang, X.-B.: Three-intensity decoy-state method for device-independent quantum key distribution with basis-dependent errors. Phys. Rev. A 87, 012320 (2013)ADSCrossRef
5.
Zurück zum Zitat Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRef Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)ADSCrossRef
6.
Zurück zum Zitat Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)ADSCrossRef Braunstein, S.L., Pirandola, S.: Side-channel-free quantum key distribution. Phys. Rev. Lett. 108, 130502 (2012)ADSCrossRef
7.
Zurück zum Zitat Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014)ADSCrossRef Sasaki, T., Yamamoto, Y., Koashi, M.: Practical quantum key distribution protocol without monitoring signal disturbance. Nature 509, 475–478 (2014)ADSCrossRef
8.
Zurück zum Zitat Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)ADSCrossRef Ma, X., Qi, B., Zhao, Y., Lo, H.K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)ADSCrossRef
9.
Zurück zum Zitat Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)ADSCrossRef
10.
Zurück zum Zitat Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters. Nature 557, 400–403 (2018)ADSCrossRef Lucamarini, M., Yuan, Z.L., Dynes, J.F., Shields, A.J.: Overcoming the rate-distance barrier of quantum key distribution without using quantum repeaters. Nature 557, 400–403 (2018)ADSCrossRef
11.
Zurück zum Zitat Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599 (2007)ADSCrossRef Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599 (2007)ADSCrossRef
12.
Zurück zum Zitat Wang, L., Zhao, S.-M., Gong, L.-Y., Cheng, W.-W.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24, 120307 (2015)ADSCrossRef Wang, L., Zhao, S.-M., Gong, L.-Y., Cheng, W.-W.: Free-space measurement-device-independent quantum-key-distribution protocol using decoy states with orbital angular momentum. Chin. Phys. B 24, 120307 (2015)ADSCrossRef
13.
Zurück zum Zitat Wang, S., Yin, Z.-Q., Chen, W.: Experimental demonstration of quantum key distribution without monitoring of the signal disturbance. Nat. Photonics 9, 832–836 (2015)ADSCrossRef Wang, S., Yin, Z.-Q., Chen, W.: Experimental demonstration of quantum key distribution without monitoring of the signal disturbance. Nat. Photonics 9, 832–836 (2015)ADSCrossRef
14.
Zurück zum Zitat Wang, L., Zhao, S.-M.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf. Process. 16, 100 (2017)ADSCrossRef Wang, L., Zhao, S.-M.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf. Process. 16, 100 (2017)ADSCrossRef
15.
Zurück zum Zitat Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93, 032320 (2016)ADSCrossRef Chen, D., Zhao, S.H., Shi, L., Liu, Y.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93, 032320 (2016)ADSCrossRef
16.
Zurück zum Zitat Wang, X.Y., Zhao, S.H., Dong, C., Zhu, Z.D., Gu, W.Y.: Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf. Process. 18, 304 (2019)ADSCrossRef Wang, X.Y., Zhao, S.H., Dong, C., Zhu, Z.D., Gu, W.Y.: Orbital angular momentum-encoded measurement device independent quantum key distribution under atmospheric turbulence. Quantum Inf. Process. 18, 304 (2019)ADSCrossRef
17.
Zurück zum Zitat Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRef Zhou, Y.-H., Yu, Z.-W., Wang, X.-B.: Making the decoy-state measurement-device-independent quantum key distribution practically useful. Phys. Rev. A 93, 042324 (2016)ADSCrossRef
18.
Zurück zum Zitat Yin, H.-L., Chen, T.-Y., Yu, Z.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)ADSCrossRef Yin, H.-L., Chen, T.-Y., Yu, Z.-W.: Measurement-device-independent quantum key distribution over a 404 km optical fiber. Phys. Rev. Lett. 117, 190501 (2016)ADSCrossRef
19.
Zurück zum Zitat Curty, M., Lewenstein, M., Lütkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92, 217903 (2004)ADSCrossRef Curty, M., Lewenstein, M., Lütkenhaus, N.: Entanglement as a precondition for secure quantum key distribution. Phys. Rev. Lett. 92, 217903 (2004)ADSCrossRef
20.
Zurück zum Zitat Azuma, K., Mizutani, A., Lo, H.K.: Fundamental rate-loss trade-off for the optical quantum key distribution. Nat. Commun. 7, 13523 (2016)ADSCrossRef Azuma, K., Mizutani, A., Lo, H.K.: Fundamental rate-loss trade-off for the optical quantum key distribution. Nat. Commun. 7, 13523 (2016)ADSCrossRef
21.
Zurück zum Zitat Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)ADSCrossRef Pirandola, S., Laurenza, R., Ottaviani, C., Banchi, L.: Fundamental limits of repeaterless quantum communications. Nat. Commun. 8, 15043 (2017)ADSCrossRef
22.
Zurück zum Zitat Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRef Sangouard, N., Simon, C., De Riedmatten, H., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)ADSCrossRef
23.
Zurück zum Zitat Tamaki, K., Lo, H.K., Wang, W., Lucamarini, M.: Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. arxiv:1805.05511 (2018) Tamaki, K., Lo, H.K., Wang, W., Lucamarini, M.: Information theoretic security of quantum key distribution overcoming the repeaterless secret key capacity bound. arxiv:​1805.​05511 (2018)
24.
Zurück zum Zitat Ma, X.-F., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018) Ma, X.-F., Zeng, P., Zhou, H.: Phase-matching quantum key distribution. Phys. Rev. X 8, 031043 (2018)
25.
Zurück zum Zitat Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Sending or not sending: twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)ADSCrossRef Wang, X.-B., Yu, Z.-W., Hu, X.-L.: Sending or not sending: twin-field quantum key distribution with large misalignment error. Phys. Rev. A 98, 062323 (2018)ADSCrossRef
26.
Zurück zum Zitat Cui, C., Yin, Z.-Q., Wang, R.: Twin-field quantum key distribution without phase postselection. Phys. Rev. A 11, 034053 (2018)CrossRef Cui, C., Yin, Z.-Q., Wang, R.: Twin-field quantum key distribution without phase postselection. Phys. Rev. A 11, 034053 (2018)CrossRef
27.
Zurück zum Zitat Mao, Q.-P., Wang, L., Zhao, S.-M.: Plug-and-play round-robin differential phase-shift quantum key distribution. Sci. Rep. 7, 15435 (2017)ADSCrossRef Mao, Q.-P., Wang, L., Zhao, S.-M.: Plug-and-play round-robin differential phase-shift quantum key distribution. Sci. Rep. 7, 15435 (2017)ADSCrossRef
28.
Zurück zum Zitat Guan, J.-Y., Can, Z., Liu, Y.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015) ADSCrossRef Guan, J.-Y., Can, Z., Liu, Y.: Experimental passive round-robin differential phase-shift quantum key distribution. Phys. Rev. Lett. 114, 180502 (2015) ADSCrossRef
29.
Zurück zum Zitat Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH Gottesman, D., Lo, H.K., Lütkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)MathSciNetMATH
Metadaten
Titel
Multiple-pulse phase-matching quantum key distribution
verfasst von
Gang Chen
Le Wang
Wei Li
Yang Zhao
Shengmei Zhao
Jozef Gruska
Publikationsdatum
01.11.2020
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 11/2020
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-020-02920-1

Weitere Artikel der Ausgabe 11/2020

Quantum Information Processing 11/2020 Zur Ausgabe

Neuer Inhalt