Skip to main content
Erschienen in:

2024 | OriginalPaper | Buchkapitel

Multiscale Feature Pyramid Network-Enabled Deep Learning and IoT-Based Pest Detection System Using Sound Analytics in Large Agricultural Field

verfasst von : Md. Akkas Ali, Anupam Kumar Sharma, Rajesh Kumar Dhanaraj

Erschienen in: Proceedings of Third International Conference on Computing and Communication Networks

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Modern farming techniques can now be implemented globally and at a reasonable cost. In the annals of agriculture, this is a significant turning point moment. The widespread dissemination of information and the advent of cutting-edge technologies have facilitated this revolution. However, pests cause substantial harm to farmland, which has economic, ecological, and societal consequences. As a result, there is a need to employ sophisticated computational methods to eradicate pests before they cause irreparable harm. Recently, ML-based studies have focused on agricultural issues. The study's primary objective is to develop a workable method for identifying pests in big agricultural fields using dependable pest analytics made possible by the Internet of Things. The proposed method incorporates several different sound pre-processing techniques drawn from the field of sound analytics. BPF, Triangular window, Kaiser window, FFT method, DFT, and PLP are all examples. A Multiscale Feature Pyramid Network (MFP-Net) model was trained, tested, and validated using data from an analysis of 650 pest sounds. Compared to the existing MS-ALN, YOLOv5, Faster RCNN, and ResNet-50 models, the recommended MFP-Net model correctly identified the pest with a 99.76% accuracy, 99.03% recall, and 99.06% F1-score. The capability of this research to detect pests in large agricultural fields early on is the primary reason for its significance. As a direct result, the number of crops produced will increase, improving the economic growth of the farmers, the nation, and the world.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kong, J.L., Wang, H.X., Yang, C.C., Jin, X.B., Zuo, M., Zhang, X.: Fine-grained pests & diseases recognition via Spatial Feature-enhanced attention architecture with high-order pooling representation for precision agriculture practice. Agriculture, 1592804 (2022) Kong, J.L., Wang, H.X., Yang, C.C., Jin, X.B., Zuo, M., Zhang, X.: Fine-grained pests & diseases recognition via Spatial Feature-enhanced attention architecture with high-order pooling representation for precision agriculture practice. Agriculture, 1592804 (2022)
2.
Zurück zum Zitat Deng, F., Mao, W., Zeng, Z., Zeng, H., Wei, B.: Multiple diseases and pest detection based on federated learning and improved faster R-CNN. IEEE Trans. Instrum. Meas. 71, 1–11 (2022) Deng, F., Mao, W., Zeng, Z., Zeng, H., Wei, B.: Multiple diseases and pest detection based on federated learning and improved faster R-CNN. IEEE Trans. Instrum. Meas. 71, 1–11 (2022)
3.
Zurück zum Zitat Chen, C.-J., Huang, Y.-Y., Li, Y.-S., Chen, Y.-C., Chang, C.-Y., Huang, Y.-M.: Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access 9, 21986–21997 (2021)CrossRef Chen, C.-J., Huang, Y.-Y., Li, Y.-S., Chen, Y.-C., Chang, C.-Y., Huang, Y.-M.: Identification of fruit tree pests with deep learning on embedded drone to achieve accurate pesticide spraying. IEEE Access 9, 21986–21997 (2021)CrossRef
4.
Zurück zum Zitat Hadi, M.K., Kassim, M.S.M., Wayayok, A.: Development of an automated multidirectional pest sampling detection system using motorized sticky traps. IEEE Access 9, 67391–67404 (2021)CrossRef Hadi, M.K., Kassim, M.S.M., Wayayok, A.: Development of an automated multidirectional pest sampling detection system using motorized sticky traps. IEEE Access 9, 67391–67404 (2021)CrossRef
5.
Zurück zum Zitat Martin, J., Ansuategi, A., Maurtua, I., Gutierrez, A., Obregón, D., Casquero, O., Marcos, M.: Using a mobile manipulator, a generic ROS-based control architecture for pest inspection and treatment in greenhouses. IEEE Access 9, 94981–94995 (2021)CrossRef Martin, J., Ansuategi, A., Maurtua, I., Gutierrez, A., Obregón, D., Casquero, O., Marcos, M.: Using a mobile manipulator, a generic ROS-based control architecture for pest inspection and treatment in greenhouses. IEEE Access 9, 94981–94995 (2021)CrossRef
6.
Zurück zum Zitat Li, S., Wang, H., Zhang, C., Liu, J.: A self-attention feature fusion model for rice pest detection. IEEE Access 10, 84063–84077 (2022)CrossRef Li, S., Wang, H., Zhang, C., Liu, J.: A self-attention feature fusion model for rice pest detection. IEEE Access 10, 84063–84077 (2022)CrossRef
7.
Zurück zum Zitat Albanese, A., Nardello, M., Brunelli, D.: Automated pest detection with DNN on edge for precision agriculture. IEEE J. Emerg. Sel. Top. Circ. Syst. 11(3), 458–467 (2021)CrossRef Albanese, A., Nardello, M., Brunelli, D.: Automated pest detection with DNN on edge for precision agriculture. IEEE J. Emerg. Sel. Top. Circ. Syst. 11(3), 458–467 (2021)CrossRef
8.
Zurück zum Zitat George Cosmin, S., Anghelescu, P., Mazăre, A.G., Ionescu, L.M., Şerban, G.: Complex electronic system for monitoring, warning, and preventing water stress and pest detection in crops. In: 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–4. IEEE (2022) George Cosmin, S., Anghelescu, P., Mazăre, A.G., Ionescu, L.M., Şerban, G.: Complex electronic system for monitoring, warning, and preventing water stress and pest detection in crops. In: 2022 14th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), pp. 1–4. IEEE (2022)
9.
Zurück zum Zitat Chen, C.J., Huang, Y.Y., Li, Y.S., Chen, Y.C., Chang, C.Y., Huang, Y.M.: Identifying fruit tree pests with deep learning on embedded drones to achieve accurate pesticide spraying. IEEE Access 9, 21986–21997 (2021)CrossRef Chen, C.J., Huang, Y.Y., Li, Y.S., Chen, Y.C., Chang, C.Y., Huang, Y.M.: Identifying fruit tree pests with deep learning on embedded drones to achieve accurate pesticide spraying. IEEE Access 9, 21986–21997 (2021)CrossRef
10.
Zurück zum Zitat Lyu, Z., Jin, H., Zhen, T., Sun, F., Xu, H.: Small object recognition algorithm of grain pests based on SSD feature fusion. IEEE Access 9, 43202–43213 (2021)CrossRef Lyu, Z., Jin, H., Zhen, T., Sun, F., Xu, H.: Small object recognition algorithm of grain pests based on SSD feature fusion. IEEE Access 9, 43202–43213 (2021)CrossRef
11.
Zurück zum Zitat Mamdouh, N., Khattab, A.: YOLO-based deep learning framework for olive fruit fly detection and counting. IEEE Access 9, 84252–84262 (2021)CrossRef Mamdouh, N., Khattab, A.: YOLO-based deep learning framework for olive fruit fly detection and counting. IEEE Access 9, 84252–84262 (2021)CrossRef
12.
Zurück zum Zitat Qian, S., Du, J., Zhou, J., Xie, C., Jiao, L., Li, R.: An effective pest detection method with automatic data augmentation strategy in the agricultural field. SIViP 17(2), 563–571 (2023)CrossRef Qian, S., Du, J., Zhou, J., Xie, C., Jiao, L., Li, R.: An effective pest detection method with automatic data augmentation strategy in the agricultural field. SIViP 17(2), 563–571 (2023)CrossRef
13.
Zurück zum Zitat Chu, J., Li, Y., Feng, H., Weng, X., Ruan, Y.: Research on multiscale pest detection and identification method in granary based on improved YOLOv5. Agriculture 13(2), 364 (2023)CrossRef Chu, J., Li, Y., Feng, H., Weng, X., Ruan, Y.: Research on multiscale pest detection and identification method in granary based on improved YOLOv5. Agriculture 13(2), 364 (2023)CrossRef
14.
Zurück zum Zitat Anwar, Z., Masood, S.: Exploring deep ensemble model for insect and pest detection from images. Procedia Comput. Sci. 218, 2328–2337 (2023)CrossRef Anwar, Z., Masood, S.: Exploring deep ensemble model for insect and pest detection from images. Procedia Comput. Sci. 218, 2328–2337 (2023)CrossRef
15.
Zurück zum Zitat Chithambarathanu, M., Jeyakumar, M.K.: Survey on crop pest detection using deep learning and machine learning approaches. Multimedia Tools Appl. 1–34 (2023) Chithambarathanu, M., Jeyakumar, M.K.: Survey on crop pest detection using deep learning and machine learning approaches. Multimedia Tools Appl. 1–34 (2023)
16.
Zurück zum Zitat Umamaheswari, S., Vishal, N.R., Pragadesh, N.R., Lavanya, S.: Performance analysis of resnet50 architecture-based pest detection system. In: 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1, pp. 578–583. IEEE (2023) Umamaheswari, S., Vishal, N.R., Pragadesh, N.R., Lavanya, S.: Performance analysis of resnet50 architecture-based pest detection system. In: 2023 9th International Conference on Advanced Computing and Communication Systems (ICACCS), vol. 1, pp. 578–583. IEEE (2023)
17.
Zurück zum Zitat Albattah, W., Masood, M., Javed, A., Nawaz, M., Albahli, S.: Custom CornerNet: a drone-based improved deep learning technique for large-scale multiclass pest localization and classification. Comp. Intell. Syst. 9(2), 1299–1316 (2023)CrossRef Albattah, W., Masood, M., Javed, A., Nawaz, M., Albahli, S.: Custom CornerNet: a drone-based improved deep learning technique for large-scale multiclass pest localization and classification. Comp. Intell. Syst. 9(2), 1299–1316 (2023)CrossRef
18.
Zurück zum Zitat Dai, M., Dorjoy, M.M.H., Miao, H., Zhang, S.: A new pest detection method based on improved YOLOv5m. Insects 14(1), 54 (2023)CrossRef Dai, M., Dorjoy, M.M.H., Miao, H., Zhang, S.: A new pest detection method based on improved YOLOv5m. Insects 14(1), 54 (2023)CrossRef
19.
Zurück zum Zitat Mallick, M.T., Biswas, S., Das, A.K., Saha, H.N., Chakrabarti, A., Deb, N.: Deep learning-based automated disease detection and pest classification in Indian mung bean. Multimedia Tools Appl. 82(8), 12017–12041 (2023)CrossRef Mallick, M.T., Biswas, S., Das, A.K., Saha, H.N., Chakrabarti, A., Deb, N.: Deep learning-based automated disease detection and pest classification in Indian mung bean. Multimedia Tools Appl. 82(8), 12017–12041 (2023)CrossRef
20.
Zurück zum Zitat Yang, S., Xing, Z., Wang, H., Dong, X., Gao, X., Liu, Z., ... Zhao, Y.: Maize-YOLO: a new high-precision and real-time method for maize pest detection. Insects 14(3), 278 (2023) Yang, S., Xing, Z., Wang, H., Dong, X., Gao, X., Liu, Z., ... Zhao, Y.: Maize-YOLO: a new high-precision and real-time method for maize pest detection. Insects 14(3), 278 (2023)
21.
Zurück zum Zitat Zhu, D., Xie, L., Chen, B., Tan, J., Deng, R., Zheng, Y., ... Andrew, W.H.: Knowledge graph and deep learning-based pest detection and identification system for fruit quality. Internet of Things 21, 100649 (2023) Zhu, D., Xie, L., Chen, B., Tan, J., Deng, R., Zheng, Y., ... Andrew, W.H.: Knowledge graph and deep learning-based pest detection and identification system for fruit quality. Internet of Things 21, 100649 (2023)
23.
Zurück zum Zitat Feng, F., Dong, H., Zhang, Y., Zhang, Y., Li, B.: MS-ALN: multiscale attention learning network for pest recognition. IEEE Access 10, 40888–40898 (2022)CrossRef Feng, F., Dong, H., Zhang, Y., Zhang, Y., Li, B.: MS-ALN: multiscale attention learning network for pest recognition. IEEE Access 10, 40888–40898 (2022)CrossRef
24.
Zurück zum Zitat Butera, L., Ferrante, A., Jermini, M., Prevostini, M., Alippi, C.: Precise agriculture: effective deep learning strategies to detect pest insects. IEEE/CAA J. Automatica Sinica 9(2), 246–258 (2021)CrossRef Butera, L., Ferrante, A., Jermini, M., Prevostini, M., Alippi, C.: Precise agriculture: effective deep learning strategies to detect pest insects. IEEE/CAA J. Automatica Sinica 9(2), 246–258 (2021)CrossRef
25.
Zurück zum Zitat Hadipour-Rokni, R., Asli-Ardeh, E.A., Jahanbakhshi, A., Sabzi, S.: Intelligent detection of citrus fruit pests using a machine vision system and convolutional neural network through transfer learning technique. Comput. Biol. Med. 155, 106611 (2023)CrossRef Hadipour-Rokni, R., Asli-Ardeh, E.A., Jahanbakhshi, A., Sabzi, S.: Intelligent detection of citrus fruit pests using a machine vision system and convolutional neural network through transfer learning technique. Comput. Biol. Med. 155, 106611 (2023)CrossRef
Metadaten
Titel
Multiscale Feature Pyramid Network-Enabled Deep Learning and IoT-Based Pest Detection System Using Sound Analytics in Large Agricultural Field
verfasst von
Md. Akkas Ali
Anupam Kumar Sharma
Rajesh Kumar Dhanaraj
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-97-0892-5_1