Skip to main content
Erschienen in:

24.11.2022 | Research Article

Multiscale information interaction at local frequency band in functional corticomuscular coupling

verfasst von: Shengcui Cheng, Xiaoling Chen, Yuanyuan Zhang, Ying Wang, Xin Li, Xiaoli Li, Ping Xie

Erschienen in: Cognitive Neurodynamics | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The multiscale information interaction between the cortex and the corresponding muscles is of great significance for understanding the functional corticomuscular coupling (FCMC) in the sensory-motor systems. Though the multiscale transfer entropy (MSTE) method can effectively detect the multiscale characteristics between two signals, it lacks in describing the local frequency-band characteristics. Therefore, to quantify the multiscale interaction at local-frequency bands between the cortex and the muscles, we proposed a novel method, named bivariate empirical mode decomposition—MSTE (BMSTE), by combining the bivariate empirical mode decomposition (BEMD) with MSTE. To verify this, we introduced two simulation models and then applied it to explore the FCMC by analyzing the EEG over brain scalp and surface EMG signals from the effector muscles during steady-state force output. The simulation results showed that the BMSTE method could describe the multiscale time–frequency characteristics compared with the MSTE method, and was sensitive to the coupling strength but not to the data length. The experiment results showed that the coupling at beta1 (15–25 Hz), beta2 (25–35 Hz) and gamma (35–60 Hz) bands in the descending direction was higher than that in the opposition, and at beta2 band was higher than that at beta1 band. Furthermore, there were significant differences at the low scales in beta1 band, almost all scales in beta2 band, and high scales in gamma band. These results suggest the effectiveness of the BMSTE method in describing the interaction between two signals at different time–frequency scales, and further provide a novel approach to understand the motor control.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amoud H, Snoussi H, Hewson D, Duchêne J (2008) Univariate and bivariate empirical mode decomposition for postural stability analysis. Eurasip J Adv Signal Process 2008:1–11CrossRef Amoud H, Snoussi H, Hewson D, Duchêne J (2008) Univariate and bivariate empirical mode decomposition for postural stability analysis. Eurasip J Adv Signal Process 2008:1–11CrossRef
Zurück zum Zitat Arunganesh K, Sivakumaran N, Kumaravel S, Karthick P (2021) Analysis of EEG-EMG coherence in low frequency bands. Stud Health Technol Inf 281:520–521 Arunganesh K, Sivakumaran N, Kumaravel S, Karthick P (2021) Analysis of EEG-EMG coherence in low frequency bands. Stud Health Technol Inf 281:520–521
Zurück zum Zitat Aydın S, Demirtaş S, Yetkin S (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neural Comput Appl 30:1085–1094CrossRef Aydın S, Demirtaş S, Yetkin S (2018) Cortical correlations in wavelet domain for estimation of emotional dysfunctions. Neural Comput Appl 30:1085–1094CrossRef
Zurück zum Zitat Budini F, Mcmanus LM, Berchicci M, Menotti F, Macaluso A, Russo FD, Lowery MM, Vito GD (2014) Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor. PLoS ONE 9:1–15CrossRef Budini F, Mcmanus LM, Berchicci M, Menotti F, Macaluso A, Russo FD, Lowery MM, Vito GD (2014) Alpha band cortico-muscular coherence occurs in healthy individuals during mechanically-induced tremor. PLoS ONE 9:1–15CrossRef
Zurück zum Zitat Chen X, Xie P, Zhang Y, Chen Y, Yang F, Zhang L, Li X (2018) Multiscale information transfer in functional corticomuscular coupling estimation following stroke: a pilot study. Front Neurol 9:287–297PubMedPubMedCentralCrossRef Chen X, Xie P, Zhang Y, Chen Y, Yang F, Zhang L, Li X (2018) Multiscale information transfer in functional corticomuscular coupling estimation following stroke: a pilot study. Front Neurol 9:287–297PubMedPubMedCentralCrossRef
Zurück zum Zitat Chen X, Zhang Y, Cheng S, Xie P (2019) Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 27:1092–1102PubMedCrossRef Chen X, Zhang Y, Cheng S, Xie P (2019) Transfer spectral entropy and application to functional corticomuscular coupling. IEEE Trans Neural Syst Rehabil Eng 27:1092–1102PubMedCrossRef
Zurück zum Zitat Chen X, Zhang Y, Yang Y, Li X, Xie P (2020) Beta-range corticomuscular coupling reflects asymmetries in hand movement. IEEE Trans Neural Syst Rehabil Eng 28:2575–2585PubMedCrossRef Chen X, Zhang Y, Yang Y, Li X, Xie P (2020) Beta-range corticomuscular coupling reflects asymmetries in hand movement. IEEE Trans Neural Syst Rehabil Eng 28:2575–2585PubMedCrossRef
Zurück zum Zitat Choi W, Lee JW, Huh M-H, Kang S-H (2003) An algorithm for computing the exact distribution of the Kruskal–Wallis test. Commun Stat Simul Comput 32:1029–1040CrossRef Choi W, Lee JW, Huh M-H, Kang S-H (2003) An algorithm for computing the exact distribution of the Kruskal–Wallis test. Commun Stat Simul Comput 32:1029–1040CrossRef
Zurück zum Zitat Conway B, Halliday D, Farmer S, Shahani U, Maas P, Weir A, Rosenberg J (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489:917–924PubMedPubMedCentralCrossRef Conway B, Halliday D, Farmer S, Shahani U, Maas P, Weir A, Rosenberg J (1995) Synchronization between motor cortex and spinal motoneuronal pool during the performance of a maintained motor task in man. J Physiol 489:917–924PubMedPubMedCentralCrossRef
Zurück zum Zitat Corder GW, Foreman DI (2009) Comparing more than two unrelated samples: the Kruskal–Wallis H-test. In: Nonparametric statistics for non-statisticians: a step-by-step approach, pp 99–121 Corder GW, Foreman DI (2009) Comparing more than two unrelated samples: the Kruskal–Wallis H-test. In: Nonparametric statistics for non-statisticians: a step-by-step approach, pp 99–121
Zurück zum Zitat Costa M, Goldberger AL, Peng C-K (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068102-068101–068102-068104CrossRef Costa M, Goldberger AL, Peng C-K (2002) Multiscale entropy analysis of complex physiologic time series. Phys Rev Lett 89:068102-068101–068102-068104CrossRef
Zurück zum Zitat Dimigen O (2020) Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage 207:116117–116165PubMedCrossRef Dimigen O (2020) Optimizing the ICA-based removal of ocular EEG artifacts from free viewing experiments. Neuroimage 207:116117–116165PubMedCrossRef
Zurück zum Zitat Dooley EE, Golaszewski NM, Bartholomew JB (2017) Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth 5:e7043CrossRef Dooley EE, Golaszewski NM, Bartholomew JB (2017) Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth 5:e7043CrossRef
Zurück zum Zitat Faes L, Montalto A, Stramaglia S, Nollo G, Marinazzo D (2016) Multiscale analysis of information dynamics for linear multivariate processes. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5489–5492 Faes L, Montalto A, Stramaglia S, Nollo G, Marinazzo D (2016) Multiscale analysis of information dynamics for linear multivariate processes. In: 2016 38th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5489–5492
Zurück zum Zitat Gao Y, Ren L, Zhou X, Zhang Q, Zhang Y (2018) Multichannel EEG-EMG coupling analysis using a variable scale symbolic transfer entropy approach. Chin J Biomed Eng 37:8–16 Gao Y, Ren L, Zhou X, Zhang Q, Zhang Y (2018) Multichannel EEG-EMG coupling analysis using a variable scale symbolic transfer entropy approach. Chin J Biomed Eng 37:8–16
Zurück zum Zitat Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95:349–369PubMedCrossRef Gourévitch B, Bouquin-Jeannès RL, Faucon G (2006) Linear and nonlinear causality between signals: methods, examples and neurophysiological applications. Biol Cybern 95:349–369PubMedCrossRef
Zurück zum Zitat Guo Z, McClelland VM, Simeone O, Mills KR, Cvetkovic Z (2021) Multiscale wavelet transfer entropy with application to corticomuscular coupling analysis. IEEE Trans Biomed Eng 69:771–782CrossRef Guo Z, McClelland VM, Simeone O, Mills KR, Cvetkovic Z (2021) Multiscale wavelet transfer entropy with application to corticomuscular coupling analysis. IEEE Trans Biomed Eng 69:771–782CrossRef
Zurück zum Zitat Hadoush H, Alafeef M, Abdulhay E (2019) Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG. Brain Topogr 32:914–921PubMedCrossRef Hadoush H, Alafeef M, Abdulhay E (2019) Brain complexity in children with mild and severe autism spectrum disorders: analysis of multiscale entropy in EEG. Brain Topogr 32:914–921PubMedCrossRef
Zurück zum Zitat Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8PubMedCrossRef Halliday DM, Conway BA, Farmer SF, Rosenberg JR (1998) Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neurosci Lett 241:5–8PubMedCrossRef
Zurück zum Zitat Hu M, Liang H (2017) Multiscale entropy: recent advances. In: Complexity and nonlinearity in cardiovascular signals, pp 115–138 Hu M, Liang H (2017) Multiscale entropy: recent advances. In: Complexity and nonlinearity in cardiovascular signals, pp 115–138
Zurück zum Zitat Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond Ser A Math Phys Eng Sci 454:903–995CrossRef Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen N-C, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc Roy Soc Lond Ser A Math Phys Eng Sci 454:903–995CrossRef
Zurück zum Zitat Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan IA, Abbas A, Majid A, Kazmi SZH (2017) Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 28:7104–7111 Hussain L, Aziz W, Saeed S, Shah SA, Nadeem MSA, Awan IA, Abbas A, Majid A, Kazmi SZH (2017) Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique. Biomed Res 28:7104–7111
Zurück zum Zitat Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473PubMedCrossRef Izvekov S, Voth GA (2005) A multiscale coarse-graining method for biomolecular systems. J Phys Chem B 109:2469–2473PubMedCrossRef
Zurück zum Zitat Kandel E (1995) Essentials of neural science and behavior. Appleton Lange Norwalk CT 6:425–451 Kandel E (1995) Essentials of neural science and behavior. Appleton Lange Norwalk CT 6:425–451
Zurück zum Zitat Kayama Y (1985) Ascending, descending and local control of neuronal activity in the rat lateral geniculate nucleus. Vis Res 25:339–347PubMedCrossRef Kayama Y (1985) Ascending, descending and local control of neuronal activity in the rat lateral geniculate nucleus. Vis Res 25:339–347PubMedCrossRef
Zurück zum Zitat Kılıç B, Aydın S (2022) Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures. Neuroinformatics 1–15 Kılıç B, Aydın S (2022) Classification of contrasting discrete emotional states indicated by EEG based graph theoretical network measures. Neuroinformatics 1–15
Zurück zum Zitat Kumar JS, Bhuvaneswari P (2012) Analysis of electroencephalography (EEG) signals and its categorization—a study. Proc Eng 38:2525–2536CrossRef Kumar JS, Bhuvaneswari P (2012) Analysis of electroencephalography (EEG) signals and its categorization—a study. Proc Eng 38:2525–2536CrossRef
Zurück zum Zitat Li D, Li X, Liang Z, Voss LJ, Sleigh JW (2010) Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng 7:046010–046014PubMedCrossRef Li D, Li X, Liang Z, Voss LJ, Sleigh JW (2010) Multiscale permutation entropy analysis of EEG recordings during sevoflurane anesthesia. J Neural Eng 7:046010–046014PubMedCrossRef
Zurück zum Zitat Li K, Hogrel J-Y, Duchêne J, Hewson DJ (2012) Analysis of fatigue and tremor during sustained maximal grip contractions using Hilbert–Huang transformation. Med Eng Phys 34:832–840PubMedCrossRef Li K, Hogrel J-Y, Duchêne J, Hewson DJ (2012) Analysis of fatigue and tremor during sustained maximal grip contractions using Hilbert–Huang transformation. Med Eng Phys 34:832–840PubMedCrossRef
Zurück zum Zitat Liang Z, Cheng L, Shao S, Jin X, Yu T, Sleigh JW, Li X (2020) Information integration and mesoscopic cortical connectivity during propofol anesthesia. Anesthesiology 132:504–524PubMedCrossRef Liang Z, Cheng L, Shao S, Jin X, Yu T, Sleigh JW, Li X (2020) Information integration and mesoscopic cortical connectivity during propofol anesthesia. Anesthesiology 132:504–524PubMedCrossRef
Zurück zum Zitat Liu J, Tan G, Sheng Y, Liu H (2020) Multiscale transfer spectral entropy for quantifying corticomuscular interaction. IEEE J Biomed Health Inform 25:2281–2292CrossRef Liu J, Tan G, Sheng Y, Liu H (2020) Multiscale transfer spectral entropy for quantifying corticomuscular interaction. IEEE J Biomed Health Inform 25:2281–2292CrossRef
Zurück zum Zitat Liu J, Wang J, Tan G, Sheng Y, Chang H, Xie Q, Liu H (2021) Correlation evaluation of functional corticomuscular coupling with abnormal muscle synergy after stroke. IEEE Trans Biomed Eng 68:3261–3272PubMedCrossRef Liu J, Wang J, Tan G, Sheng Y, Chang H, Xie Q, Liu H (2021) Correlation evaluation of functional corticomuscular coupling with abnormal muscle synergy after stroke. IEEE Trans Biomed Eng 68:3261–3272PubMedCrossRef
Zurück zum Zitat Looney D, Park C, Kidmose P, Ungstrup M, Mandic D (2009) Measuring phase synchrony using complex extensions of EMD. In: 2009 IEEE/SP 15th workshop on statistical signal processing. IEEE, pp 49–52 Looney D, Park C, Kidmose P, Ungstrup M, Mandic D (2009) Measuring phase synchrony using complex extensions of EMD. In: 2009 IEEE/SP 15th workshop on statistical signal processing. IEEE, pp 49–52
Zurück zum Zitat Looney D, Mandic DP (2009) Multiscale image fusion using complex extensions of EMD. IEEE Trans Signal Process 57:1626–1630CrossRef Looney D, Mandic DP (2009) Multiscale image fusion using complex extensions of EMD. IEEE Trans Signal Process 57:1626–1630CrossRef
Zurück zum Zitat Lungarella M, Pitti A, Kuniyoshi Y (2007) Information transfer at multiple scales. Phys Rev E 76:1–10CrossRef Lungarella M, Pitti A, Kuniyoshi Y (2007) Information transfer at multiple scales. Phys Rev E 76:1–10CrossRef
Zurück zum Zitat Mehrkanoon S, Breakspear M, Boonstra TW (2014) The reorganization of corticomuscular coherence during a transition between sensorimotor states. Neuroimage 100:692–702PubMedCrossRef Mehrkanoon S, Breakspear M, Boonstra TW (2014) The reorganization of corticomuscular coherence during a transition between sensorimotor states. Neuroimage 100:692–702PubMedCrossRef
Zurück zum Zitat Mima T, Hallett M (1999) Corticomuscular coherence: a review. J Clin Neurophysiol 16:501–511PubMedCrossRef Mima T, Hallett M (1999) Corticomuscular coherence: a review. J Clin Neurophysiol 16:501–511PubMedCrossRef
Zurück zum Zitat Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111:326–337PubMedCrossRef Mima T, Steger J, Schulman AE, Gerloff C, Hallett M (2000) Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clin Neurophysiol 111:326–337PubMedCrossRef
Zurück zum Zitat Mima T, Matsuoka T, Hallett M (2001) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112:122–126PubMedCrossRef Mima T, Matsuoka T, Hallett M (2001) Information flow from the sensorimotor cortex to muscle in humans. Clin Neurophysiol 112:122–126PubMedCrossRef
Zurück zum Zitat Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113PubMedCrossRef
Zurück zum Zitat Pal S, Mitra M (2012) Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 42:83–92PubMedCrossRef Pal S, Mitra M (2012) Empirical mode decomposition based ECG enhancement and QRS detection. Comput Biol Med 42:83–92PubMedCrossRef
Zurück zum Zitat Park C, Looney D, Kidmose P, Ungstrup M, Mandic DP (2011) Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 19:366–373PubMedCrossRef Park C, Looney D, Kidmose P, Ungstrup M, Mandic DP (2011) Time-frequency analysis of EEG asymmetry using bivariate empirical mode decomposition. IEEE Trans Neural Syst Rehabil Eng 19:366–373PubMedCrossRef
Zurück zum Zitat Ping X, Yang F, Chen X, Du Y, Wu X (2015) Functional coupling analyses of electroencephalogram and electromyogram based on multiscale transfer entropy. Acta Physica Sinica 64:1–10 Ping X, Yang F, Chen X, Du Y, Wu X (2015) Functional coupling analyses of electroencephalogram and electromyogram based on multiscale transfer entropy. Acta Physica Sinica 64:1–10
Zurück zum Zitat Ping X, Yang F, Chen X, Wu X (2017) EEG-EMG synchronization analysis based on gabor wavelet transform-granger causality. Chin J Biomed Eng 36:28–38 Ping X, Yang F, Chen X, Wu X (2017) EEG-EMG synchronization analysis based on gabor wavelet transform-granger causality. Chin J Biomed Eng 36:28–38
Zurück zum Zitat Pool E-M, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76PubMedCrossRef Pool E-M, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2013) Network dynamics engaged in the modulation of motor behavior in healthy subjects. Neuroimage 82:68–76PubMedCrossRef
Zurück zum Zitat Raethjen J, Lindemann M, Dümpelmann M, Wenzelburger R, Stolze H, Pfister G, Elger CE, Timmer J, Deuschl G (2002) Corticomuscular coherence in the 6–15 Hz band: is the cortex involved in the generation of physiologic tremor? Exp Brain Res 142:32–40PubMedCrossRef Raethjen J, Lindemann M, Dümpelmann M, Wenzelburger R, Stolze H, Pfister G, Elger CE, Timmer J, Deuschl G (2002) Corticomuscular coherence in the 6–15 Hz band: is the cortex involved in the generation of physiologic tremor? Exp Brain Res 142:32–40PubMedCrossRef
Zurück zum Zitat Rilling G, Flandrin P, Gonçalves P, Lilly JM (2007) Bivariate empirical mode decomposition. IEEE Signal Process Lett 14:936–939CrossRef Rilling G, Flandrin P, Gonçalves P, Lilly JM (2007) Bivariate empirical mode decomposition. IEEE Signal Process Lett 14:936–939CrossRef
Zurück zum Zitat Salankar N, Mishra P, Garg L (2021) Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed Signal Process Control 65:1–13CrossRef Salankar N, Mishra P, Garg L (2021) Emotion recognition from EEG signals using empirical mode decomposition and second-order difference plot. Biomed Signal Process Control 65:1–13CrossRef
Zurück zum Zitat Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142:346–382CrossRef Schreiber T, Schmitz A (2000) Surrogate time series. Physica D 142:346–382CrossRef
Zurück zum Zitat Surendran A, Jacob JE, Gopakumar K (2020) Analysis of EEG using variational mode decomposition method for diagnosis of epilepsy. In: AIP conference proceedings. AIP Publishing LLC, pp 1–6 Surendran A, Jacob JE, Gopakumar K (2020) Analysis of EEG using variational mode decomposition method for diagnosis of epilepsy. In: AIP conference proceedings. AIP Publishing LLC, pp 1–6
Zurück zum Zitat Tavakoli Najafabadi M, Abootalebi V, Shayegh F (2016) A new hybrid method for EOG artifact rejection from EEG signal using CCA and RLS. Iran J Biomed Eng 10:1–10 Tavakoli Najafabadi M, Abootalebi V, Shayegh F (2016) A new hybrid method for EOG artifact rejection from EEG signal using CCA and RLS. Iran J Biomed Eng 10:1–10
Zurück zum Zitat Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRef Varela F, Lachaux J-P, Rodriguez E, Martinerie J (2001) The brainweb: phase synchronization and large-scale integration. Nat Rev Neurosci 2:229–239PubMedCrossRef
Zurück zum Zitat Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:45–67PubMedCrossRef Vicente R, Wibral M, Lindner M, Pipa G (2011) Transfer entropy—a model-free measure of effective connectivity for the neurosciences. J Comput Neurosci 30:45–67PubMedCrossRef
Zurück zum Zitat Wang D, Shuai W, Luo H, Yue C, Grunder O (2017) A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci Total Environ 580:719–733PubMedCrossRef Wang D, Shuai W, Luo H, Yue C, Grunder O (2017) A novel hybrid model for air quality index forecasting based on two-phase decomposition technique and modified extreme learning machine. Sci Total Environ 580:719–733PubMedCrossRef
Zurück zum Zitat Xie P, Cheng S, Zhang Y, Liu Z, Liu H, Chen X, Li X (2019) Direct interaction on specific frequency bands in functional corticomuscular coupling. IEEE Trans Biomed Eng 67:762–772PubMedCrossRef Xie P, Cheng S, Zhang Y, Liu Z, Liu H, Chen X, Li X (2019) Direct interaction on specific frequency bands in functional corticomuscular coupling. IEEE Trans Biomed Eng 67:762–772PubMedCrossRef
Zurück zum Zitat Xie P, Pang X, Cheng S, Zhang Y, Yang Y, Li X, Chen X (2021) Cross-frequency and iso-frequency estimation of functional corticomuscular coupling after stroke. Cogn Neurodyn 15:439–451PubMedCrossRef Xie P, Pang X, Cheng S, Zhang Y, Yang Y, Li X, Chen X (2021) Cross-frequency and iso-frequency estimation of functional corticomuscular coupling after stroke. Cogn Neurodyn 15:439–451PubMedCrossRef
Zurück zum Zitat Zhao X, Sun Y, Li X, Shang P (2018) Multiscale transfer entropy: measuring information transfer on multiple time scales. Commun Nonlinear Sci Numer Simul 62:202–212CrossRef Zhao X, Sun Y, Li X, Shang P (2018) Multiscale transfer entropy: measuring information transfer on multiple time scales. Commun Nonlinear Sci Numer Simul 62:202–212CrossRef
Metadaten
Titel
Multiscale information interaction at local frequency band in functional corticomuscular coupling
verfasst von
Shengcui Cheng
Xiaoling Chen
Yuanyuan Zhang
Ying Wang
Xin Li
Xiaoli Li
Ping Xie
Publikationsdatum
24.11.2022
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 6/2023
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-022-09895-y

Weitere Artikel der Ausgabe 6/2023

Cognitive Neurodynamics 6/2023 Zur Ausgabe