Skip to main content

2017 | OriginalPaper | Buchkapitel

5. Multiscale Modeling of Solvation

verfasst von : Andriy Kovalenko

Erschienen in: Springer Handbook of Electrochemical Energy

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Statistical-mechanical, reference interaction site model (RISM) molecular theory of solvation is promising as an essential part of multiscale methodology for chemical and biomolecular nanosystems in solution. Beginning with a force field of site interaction potentials between solution species, it uses a diagrammatic analysis of the solvation free energy to construct integral equations for 3-D spatial correlation functions of molecular interaction sites in the statistical–mechanical ensemble. With the solvation structure so obtained at the level of molecular simulation, 3D-RISM-KH further yields the solvation thermodynamics at once as a simple integral of the correlation functions which is obtained by performing thermodynamic integration analytically. The latter allows analytical differentiation of the free energy functional and thus self-consistent coupling in various multiscale approaches. 3D-RISM-KH has been coupled with the KS-DFT and CASSCF quantum chemistry methods in a self-consistent field description of electronic structure, geometry optimization, nanochemistry, and photochemistry in solution. The multiple time step molecular dynamics of biomolecules steered by effective solvation forces obtained from the 3D-RISM-KH theory, accelerated by the generalized solvation force extrapolation, and stabilized by the optimized isokinetic Nosé–Hoover chain (OIN) thermostat, enables gigantic outer time steps up to tens picoseconds to accurately calculate equilibrium properties.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat J.-P. Hansen, I. McDonald: Theory of Simple Liquids, 3rd edn. (Elsevier, Amsterdam 2006)MATH J.-P. Hansen, I. McDonald: Theory of Simple Liquids, 3rd edn. (Elsevier, Amsterdam 2006)MATH
[2]
Zurück zum Zitat F. Hirata (Ed.): Molecular Theory of Solvation, Understanding Chemical Reactivity (Kluwer, Dordrecht 2003) F. Hirata (Ed.): Molecular Theory of Solvation, Understanding Chemical Reactivity (Kluwer, Dordrecht 2003)
[3]
Zurück zum Zitat D. Chandler, J.D. McCoy, S.J. Singer: Density functional theory of nonuniform polyatomic systems. I. General formulation, J. Chem. Phys. 85, 5971–5976 (1986)CrossRef D. Chandler, J.D. McCoy, S.J. Singer: Density functional theory of nonuniform polyatomic systems. I. General formulation, J. Chem. Phys. 85, 5971–5976 (1986)CrossRef
[4]
Zurück zum Zitat D. Chandler, J.D. McCoy, S.J. Singer: Density functional theory of nonuniform polyatomic systems. II. Rational closures for integral equations, J. Chem. Phys. 85, 5977–5982 (1986)CrossRef D. Chandler, J.D. McCoy, S.J. Singer: Density functional theory of nonuniform polyatomic systems. II. Rational closures for integral equations, J. Chem. Phys. 85, 5977–5982 (1986)CrossRef
[5]
Zurück zum Zitat D. Beglov, B. Roux: Numerical solution of the HNC equation for solute of arbitrary geometry in three-dimensions, J. Chem. Phys. 103, 360–364 (1995)CrossRef D. Beglov, B. Roux: Numerical solution of the HNC equation for solute of arbitrary geometry in three-dimensions, J. Chem. Phys. 103, 360–364 (1995)CrossRef
[6]
Zurück zum Zitat D. Beglov, B. Roux: An integral equation to describe the solvation of polar molecules in liquid water, J. Phys. Chem. B 101, 7821–7826 (1997)CrossRef D. Beglov, B. Roux: An integral equation to describe the solvation of polar molecules in liquid water, J. Phys. Chem. B 101, 7821–7826 (1997)CrossRef
[7]
Zurück zum Zitat A. Kovalenko, F. Hirata: Three-dimensional density profiles of water in contact with a solute of arbitrary shape: A RISM approach, Chem. Phys. Lett. 290, 237–244 (1998)CrossRef A. Kovalenko, F. Hirata: Three-dimensional density profiles of water in contact with a solute of arbitrary shape: A RISM approach, Chem. Phys. Lett. 290, 237–244 (1998)CrossRef
[8]
Zurück zum Zitat A. Kovalenko, F. Hirata: Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model, J. Chem. Phys. 110, 10095–10112 (1999)CrossRef A. Kovalenko, F. Hirata: Self-consistent description of a metal–water interface by the Kohn–Sham density functional theory and the three-dimensional reference interaction site model, J. Chem. Phys. 110, 10095–10112 (1999)CrossRef
[9]
Zurück zum Zitat A. Kovalenko, F. Hirata: F. Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach, J. Chem. Phys. 112, 10391–10402 (2000)CrossRef A. Kovalenko, F. Hirata: F. Potentials of mean force of simple ions in ambient aqueous solution. I. Three-dimensional reference interaction site model approach, J. Chem. Phys. 112, 10391–10402 (2000)CrossRef
[10]
Zurück zum Zitat A. Kovalenko, F. Hirata: Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations, J. Chem. Phys. 112, 10403–10416 (2000)CrossRef A. Kovalenko, F. Hirata: Potentials of mean force of simple ions in ambient aqueous solution. II. Solvation structure from the three-dimensional reference interaction site model approach, and comparison with simulations, J. Chem. Phys. 112, 10403–10416 (2000)CrossRef
[11]
Zurück zum Zitat A. Kovalenko: Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces. In: Molecular Theory of Solvation, Understanding Chemichal Reactivity, Vol. 24, ed. by F. Hirata (Springer, Dordrecht 2003) pp. 169–275CrossRef A. Kovalenko: Three-dimensional RISM theory for molecular liquids and solid-liquid interfaces. In: Molecular Theory of Solvation, Understanding Chemichal Reactivity, Vol. 24, ed. by F. Hirata (Springer, Dordrecht 2003) pp. 169–275CrossRef
[12]
Zurück zum Zitat H. Sato, A. Kovalenko, F. Hirata: Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution, J. Chem. Phys. 112, 9463–9468 (2000)CrossRef H. Sato, A. Kovalenko, F. Hirata: Self-consistent field, ab initio molecular orbital and three-dimensional reference interaction site model study for solvation effect on carbon monoxide in aqueous solution, J. Chem. Phys. 112, 9463–9468 (2000)CrossRef
[13]
Zurück zum Zitat D. Casanova, S. Gusarov, A. Kovalenko, T. Ziegler: Evaluation of the SCF combination of KS-DFT and 3D-RISM-KH; Solvation effect on conformational equilibria, tautomerization energies, and activation barriers, J. Chem. Theory Comput. 3, 458–476 (2007)CrossRef D. Casanova, S. Gusarov, A. Kovalenko, T. Ziegler: Evaluation of the SCF combination of KS-DFT and 3D-RISM-KH; Solvation effect on conformational equilibria, tautomerization energies, and activation barriers, J. Chem. Theory Comput. 3, 458–476 (2007)CrossRef
[14]
Zurück zum Zitat J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko: Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density, J. Phys. Chem. A 114, 6082–6096 (2010)CrossRef J.W. Kaminski, S. Gusarov, T.A. Wesolowski, A. Kovalenko: Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density, J. Phys. Chem. A 114, 6082–6096 (2010)CrossRef
[15]
Zurück zum Zitat M. Malvaldi, S. Bruzzone, C. Chiappe, S. Gusarov, A. Kovalenko: Ab initio study of ionic liquids by KS-DFT/3D-RISM-KH theory, J. Phys. Chem. B 113, 3536–3542 (2009)CrossRef M. Malvaldi, S. Bruzzone, C. Chiappe, S. Gusarov, A. Kovalenko: Ab initio study of ionic liquids by KS-DFT/3D-RISM-KH theory, J. Phys. Chem. B 113, 3536–3542 (2009)CrossRef
[16]
Zurück zum Zitat A. Kovalenko, F. Hirata: First-principles realization of a van der Waals–Maxwell theory for water, Chem. Phys. Lett. 349, 496–502 (2001)CrossRef A. Kovalenko, F. Hirata: First-principles realization of a van der Waals–Maxwell theory for water, Chem. Phys. Lett. 349, 496–502 (2001)CrossRef
[17]
Zurück zum Zitat A. Kovalenko, F. Hirata: Towards a molecular theory for the van der Waals–Maxwell description of fluid phase transitions, J. Theor. Comput. Chem. 1, 381–406 (2002)CrossRef A. Kovalenko, F. Hirata: Towards a molecular theory for the van der Waals–Maxwell description of fluid phase transitions, J. Theor. Comput. Chem. 1, 381–406 (2002)CrossRef
[18]
Zurück zum Zitat V. Shapovalov, T.N. Truong, A. Kovalenko, F. Hirata: Liquid structure at metal oxide–water interface: Accuracy of a three-dimensional RISM methodology, Chem. Phys. Lett. 320, 186–193 (2000)CrossRef V. Shapovalov, T.N. Truong, A. Kovalenko, F. Hirata: Liquid structure at metal oxide–water interface: Accuracy of a three-dimensional RISM methodology, Chem. Phys. Lett. 320, 186–193 (2000)CrossRef
[19]
Zurück zum Zitat S.R. Stoyanov, S. Gusarov, A. Kovalenko: Multiscale modeling of the adsorption interaction between bitumen model compounds and zeolite nanoparticles in gas and liquid phase. In: Industrial Applications of Molecular Simulations, ed. by M. Meunier (CRC, Boca Raton 2011) pp. 203–230CrossRef S.R. Stoyanov, S. Gusarov, A. Kovalenko: Multiscale modeling of the adsorption interaction between bitumen model compounds and zeolite nanoparticles in gas and liquid phase. In: Industrial Applications of Molecular Simulations, ed. by M. Meunier (CRC, Boca Raton 2011) pp. 203–230CrossRef
[20]
Zurück zum Zitat J. Fafard, O. Lyubimova, S.R. Stoyanov, G.K. Dedzo, S. Gusarov, A. Kovalenko, C. Detellier: Adsorption of indole on kaolinite in non-aqueous media: Organoclay preparation and characterization, and 3D-RISM-KH molecular theory of solvation investigation, J. Phys. Chem. C 117, 18556–18566 (2013)CrossRef J. Fafard, O. Lyubimova, S.R. Stoyanov, G.K. Dedzo, S. Gusarov, A. Kovalenko, C. Detellier: Adsorption of indole on kaolinite in non-aqueous media: Organoclay preparation and characterization, and 3D-RISM-KH molecular theory of solvation investigation, J. Phys. Chem. C 117, 18556–18566 (2013)CrossRef
[21]
Zurück zum Zitat J.G. Moralez, J. Raez, T. Yamazaki, R.K. Motkuri, A. Kovalenko, H. Fenniri: Helical rosette nanotubes with tunable stability and hierarchy, J. Am. Chem. Soc. 127, 8307–8309 (2005)CrossRef J.G. Moralez, J. Raez, T. Yamazaki, R.K. Motkuri, A. Kovalenko, H. Fenniri: Helical rosette nanotubes with tunable stability and hierarchy, J. Am. Chem. Soc. 127, 8307–8309 (2005)CrossRef
[22]
Zurück zum Zitat R.S. Johnson, T. Yamazaki, A. Kovalenko, H. Fenniri: Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes, J. Am. Chem. Soc. 129, 5735–5743 (2007)CrossRef R.S. Johnson, T. Yamazaki, A. Kovalenko, H. Fenniri: Molecular basis for water-promoted supramolecular chirality inversion in helical rosette nanotubes, J. Am. Chem. Soc. 129, 5735–5743 (2007)CrossRef
[23]
Zurück zum Zitat G. Tikhomirov, T. Yamazaki, A. Kovalenko, H. Fenniri: Self-assembly of prolate nanospheroids from hydrophobic rosette nanotubes, Langmuir 24, 4447–4450 (2007)CrossRef G. Tikhomirov, T. Yamazaki, A. Kovalenko, H. Fenniri: Self-assembly of prolate nanospheroids from hydrophobic rosette nanotubes, Langmuir 24, 4447–4450 (2007)CrossRef
[24]
Zurück zum Zitat T. Yamazaki, H. Fenniri, A. Kovalenko: Structural water drives self-assembly of organic rosette nanotubes and holds host atoms in the channel, ChemPhysChem 11, 361–367 (2010)CrossRef T. Yamazaki, H. Fenniri, A. Kovalenko: Structural water drives self-assembly of organic rosette nanotubes and holds host atoms in the channel, ChemPhysChem 11, 361–367 (2010)CrossRef
[25]
Zurück zum Zitat R. Chhabra, J.G. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A.J. Myles, A. Kovalenko, H. Fenniri: One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes, J. Am. Chem. Soc. 132, 32–33 (2010)CrossRef R. Chhabra, J.G. Moralez, J. Raez, T. Yamazaki, J.-Y. Cho, A.J. Myles, A. Kovalenko, H. Fenniri: One-pot nucleation, growth, morphogenesis, and passivation of 1.4 nm Au nanoparticles on self-assembled rosette nanotubes, J. Am. Chem. Soc. 132, 32–33 (2010)CrossRef
[26]
Zurück zum Zitat T. Imai, R. Hiraoka, A. Kovalenko, F. Hirata: Water molecules in a protein cavity detected by a statistical-mechanical theory, J. Am. Chem. Soc. 127, 15334–15335 (2005)CrossRef T. Imai, R. Hiraoka, A. Kovalenko, F. Hirata: Water molecules in a protein cavity detected by a statistical-mechanical theory, J. Am. Chem. Soc. 127, 15334–15335 (2005)CrossRef
[27]
Zurück zum Zitat N. Yoshida, T. Imai, S. Phongphanphanee, A. Kovalenko, F. Hirata: Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids, J. Phys. Chem. B 113, 873–886 (2009)CrossRef N. Yoshida, T. Imai, S. Phongphanphanee, A. Kovalenko, F. Hirata: Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids, J. Phys. Chem. B 113, 873–886 (2009)CrossRef
[28]
Zurück zum Zitat T. Imai, N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata, A. Kidera: Functionality mapping on internal surfaces of multidrug transporter AcrB based on molecular theory of solvation: Implications for drug efflux pathway, J. Phys. Chem. B 115, 8288–8295 (2011)CrossRef T. Imai, N. Miyashita, Y. Sugita, A. Kovalenko, F. Hirata, A. Kidera: Functionality mapping on internal surfaces of multidrug transporter AcrB based on molecular theory of solvation: Implications for drug efflux pathway, J. Phys. Chem. B 115, 8288–8295 (2011)CrossRef
[29]
Zurück zum Zitat T. Yamazaki, N. Blinov, D. Wishart, A. Kovalenko: Hydration effects on the HET-s prion and amyloid-β fibrillous aggregates, studied with three-dimensional molecular theory of solvation, Biophys. J. 95, 4540–4548 (2008)CrossRef T. Yamazaki, N. Blinov, D. Wishart, A. Kovalenko: Hydration effects on the HET-s prion and amyloid-β fibrillous aggregates, studied with three-dimensional molecular theory of solvation, Biophys. J. 95, 4540–4548 (2008)CrossRef
[30]
Zurück zum Zitat N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko: Association thermodynamics and conformational stability of β-sheet amyloid β(17-42) oligomers: Effects of E22Q (Dutch) mutation and charge neutralization, Biophys. J. 98, 282–296 (2010)CrossRef N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko: Association thermodynamics and conformational stability of β-sheet amyloid β(17-42) oligomers: Effects of E22Q (Dutch) mutation and charge neutralization, Biophys. J. 98, 282–296 (2010)CrossRef
[31]
Zurück zum Zitat N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko: 3D-RISM-KH approach for biomolecular modeling at nanoscale: Thermodynamics of fibril formation and beyond, Mol. Simul. 37, 718–728 (2011)CrossRef N. Blinov, L. Dorosh, D. Wishart, A. Kovalenko: 3D-RISM-KH approach for biomolecular modeling at nanoscale: Thermodynamics of fibril formation and beyond, Mol. Simul. 37, 718–728 (2011)CrossRef
[32]
Zurück zum Zitat A. Kovalenko, N. Blinov: Multiscale methods for nanochemistry and biophysics in solution, J. Mol. Liq. 164, 101–112 (2011)CrossRef A. Kovalenko, N. Blinov: Multiscale methods for nanochemistry and biophysics in solution, J. Mol. Liq. 164, 101–112 (2011)CrossRef
[33]
Zurück zum Zitat D. Nikolic, N. Blinov, D. Wishart, A. Kovalenko: 3D-RISM-DOCK: A new fragment-based drug design protocol, J. Chem. Theory Comput. 8, 3356–3372 (2012)CrossRef D. Nikolic, N. Blinov, D. Wishart, A. Kovalenko: 3D-RISM-DOCK: A new fragment-based drug design protocol, J. Chem. Theory Comput. 8, 3356–3372 (2012)CrossRef
[34]
Zurück zum Zitat M.C. Stumpe, N. Blinov, D. Wishart, A. Kovalenko, V.S. Pande: Calculation of local water densities in biological systems: A comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation, J. Phys. Chem. B 115, 319–328 (2011)CrossRef M.C. Stumpe, N. Blinov, D. Wishart, A. Kovalenko, V.S. Pande: Calculation of local water densities in biological systems: A comparison of molecular dynamics simulations and the 3D-RISM-KH molecular theory of solvation, J. Phys. Chem. B 115, 319–328 (2011)CrossRef
[35]
Zurück zum Zitat A. Kovalenko, A.E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu, N. Blinov, M. Yoshida: Molecular theory of solvation for supramolecules and soft matter structures: Application to ligand binding, ion channels, and oligomeric polyelectrolyte gelators, Soft Matter 8, 1508–1520 (2012)CrossRef A. Kovalenko, A.E. Kobryn, S. Gusarov, O. Lyubimova, X. Liu, N. Blinov, M. Yoshida: Molecular theory of solvation for supramolecules and soft matter structures: Application to ligand binding, ion channels, and oligomeric polyelectrolyte gelators, Soft Matter 8, 1508–1520 (2012)CrossRef
[36]
Zurück zum Zitat K. Yoshida, T. Yamaguchi, A. Kovalenko, F. Hirata: Structure of tert-butyl alcohol–water mixtures studied by the RISM theory, J. Phys. Chem. B 106, 5042–5049 (2002)CrossRef K. Yoshida, T. Yamaguchi, A. Kovalenko, F. Hirata: Structure of tert-butyl alcohol–water mixtures studied by the RISM theory, J. Phys. Chem. B 106, 5042–5049 (2002)CrossRef
[37]
Zurück zum Zitat I. Omelyan, A. Kovalenko, F. Hirata: Compressibility of tert-butyl alcohol–water mixtures: The RISM theory, J. Theor. Comput. Chem. 2, 193–203 (2003)CrossRef I. Omelyan, A. Kovalenko, F. Hirata: Compressibility of tert-butyl alcohol–water mixtures: The RISM theory, J. Theor. Comput. Chem. 2, 193–203 (2003)CrossRef
[38]
Zurück zum Zitat A. Kovalenko, F. Hirata: A molecular theory of liquid interfaces, Phys. Chem. Chem. Phys. 7, 1785–1793 (2005)CrossRef A. Kovalenko, F. Hirata: A molecular theory of liquid interfaces, Phys. Chem. Chem. Phys. 7, 1785–1793 (2005)CrossRef
[39]
Zurück zum Zitat A. Kovalenko, F. Hirata: A molecular theory of solutions at liquid interfaces. In: Interfacial Nanochemistry: Molecular Science and Engineering at Liquid–Liquid Interfaces, Nanostructure Science and Technology, ed. by H. Watarai, N. Teramae, T. Sawada (Springer, Berlin, Heidelberg 2005) pp. 97–125CrossRef A. Kovalenko, F. Hirata: A molecular theory of solutions at liquid interfaces. In: Interfacial Nanochemistry: Molecular Science and Engineering at Liquid–Liquid Interfaces, Nanostructure Science and Technology, ed. by H. Watarai, N. Teramae, T. Sawada (Springer, Berlin, Heidelberg 2005) pp. 97–125CrossRef
[40]
Zurück zum Zitat T. Miyata, F. Hirata: Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution, J. Comput. Chem. 29, 871–882 (2008)CrossRef T. Miyata, F. Hirata: Combination of molecular dynamics method and 3D-RISM theory for conformational sampling of large flexible molecules in solution, J. Comput. Chem. 29, 871–882 (2008)CrossRef
[41]
Zurück zum Zitat T. Luchko, S. Gusarov, D.R. Roe, C. Simmerling, D.A. Case, J. Tuszynski, A. Kovalenko: Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber, J. Chem. Theory Comput. 6, 607–624 (2010)CrossRef T. Luchko, S. Gusarov, D.R. Roe, C. Simmerling, D.A. Case, J. Tuszynski, A. Kovalenko: Three-dimensional molecular theory of solvation coupled with molecular dynamics in Amber, J. Chem. Theory Comput. 6, 607–624 (2010)CrossRef
[42]
Zurück zum Zitat I.P. Omelyan, A. Kovalenko: Generalized canonical-isokinetic ensemble: Speeding up multiscale molecular dynamics and coupling with 3D molecular theory of solvation, Mol. Simul. 39, 25–48 (2012)CrossRef I.P. Omelyan, A. Kovalenko: Generalized canonical-isokinetic ensemble: Speeding up multiscale molecular dynamics and coupling with 3D molecular theory of solvation, Mol. Simul. 39, 25–48 (2012)CrossRef
[43]
Zurück zum Zitat I.P. Omelyan, A. Kovalenko: Multi-time-step MD/3D-RISM-KH simulation in the optimized isokinetic ensemble, accelerated with advanced extrapolation of effective solvation forces, J. Chem. Phys. 139, 244106 (2013)CrossRef I.P. Omelyan, A. Kovalenko: Multi-time-step MD/3D-RISM-KH simulation in the optimized isokinetic ensemble, accelerated with advanced extrapolation of effective solvation forces, J. Chem. Phys. 139, 244106 (2013)CrossRef
[44]
Zurück zum Zitat I.P. Omelyan, A. Kovalenko: Multi-time-step molecular dynamics of biomolecules in the optimized isokinetic Nosé-Hoover ensemble, steered by 3D-RISM-KH effective solvation forces with generalized extrapolation, J. Comput. Chem. 11, 1875–1895 (2013) I.P. Omelyan, A. Kovalenko: Multi-time-step molecular dynamics of biomolecules in the optimized isokinetic Nosé-Hoover ensemble, steered by 3D-RISM-KH effective solvation forces with generalized extrapolation, J. Comput. Chem. 11, 1875–1895 (2013)
[45]
Zurück zum Zitat S. Gusarov, T. Ziegler, A. Kovalenko: A. self-consistent combination of the three-dimensional RISM theory of molecular solvation with analytical gradients and the Amsterdam density functional package, J. Phys. Chem. A 110, 6083–6090 (2006)CrossRef S. Gusarov, T. Ziegler, A. Kovalenko: A. self-consistent combination of the three-dimensional RISM theory of molecular solvation with analytical gradients and the Amsterdam density functional package, J. Phys. Chem. A 110, 6083–6090 (2006)CrossRef
[46]
Zurück zum Zitat B. Skinner, T. Chen, M.S. Loth, B.I. Shklovskii: Theory of volumetric capacitance of an electric double-layer supercapacitor, Phys. Rev. E 83, 056102–56111 (2011)CrossRef B. Skinner, T. Chen, M.S. Loth, B.I. Shklovskii: Theory of volumetric capacitance of an electric double-layer supercapacitor, Phys. Rev. E 83, 056102–56111 (2011)CrossRef
[47]
Zurück zum Zitat G. Feng, D. Jiang, P.T. Cummings: Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces, J. Chem. Theory Comput. 8, 1058–1063 (2012)CrossRef G. Feng, D. Jiang, P.T. Cummings: Curvature effect on the capacitance of electric double layers at ionic liquid/onion-like carbon interfaces, J. Chem. Theory Comput. 8, 1058–1063 (2012)CrossRef
[48]
Zurück zum Zitat A. Kovalenko, F. Hirata: A replica reference interaction site model theory for a polar molecular liquid sorbed in a disordered microporous material with polar chemical groups, J. Chem. Phys. 115, 8620–8633 (2001)CrossRef A. Kovalenko, F. Hirata: A replica reference interaction site model theory for a polar molecular liquid sorbed in a disordered microporous material with polar chemical groups, J. Chem. Phys. 115, 8620–8633 (2001)CrossRef
[49]
Zurück zum Zitat A. Kovalenko, F. Hirata: Description of a polar molecular liquid in a disordered microporous material with activating chemical groups by a replica RISM theory, Condens. Matter Phys. 4, 643–678 (2001)CrossRef A. Kovalenko, F. Hirata: Description of a polar molecular liquid in a disordered microporous material with activating chemical groups by a replica RISM theory, Condens. Matter Phys. 4, 643–678 (2001)CrossRef
[50]
Zurück zum Zitat A. Tanimura, A. Kovalenko, F. Hirata: A molecular theory of a double layer formed by aqueous electrolyte solution sorbed in a carbonized polyvinylidene chloride nanoporous electrode, Chem. Phys. Lett. 378, 638–646 (2003)CrossRef A. Tanimura, A. Kovalenko, F. Hirata: A molecular theory of a double layer formed by aqueous electrolyte solution sorbed in a carbonized polyvinylidene chloride nanoporous electrode, Chem. Phys. Lett. 378, 638–646 (2003)CrossRef
[51]
Zurück zum Zitat A. Kovalenko: Molecular description of electrosorption in a nanoporous carbon electrode, J. Comput. Theor. Nanosci. 1, 398–411 (2004)CrossRef A. Kovalenko: Molecular description of electrosorption in a nanoporous carbon electrode, J. Comput. Theor. Nanosci. 1, 398–411 (2004)CrossRef
[52]
Zurück zum Zitat A. Tanimura, A. Kovalenko, F. Hirata: Structure of electrolyte solutions sorbed in carbon nanospaces, studied by the replica RISM theory, Langmuir 23, 1507–1517 (2007)CrossRef A. Tanimura, A. Kovalenko, F. Hirata: Structure of electrolyte solutions sorbed in carbon nanospaces, studied by the replica RISM theory, Langmuir 23, 1507–1517 (2007)CrossRef
[53]
Zurück zum Zitat J.S. Perkyns, G.C. Lynch, J.J. Howard, B.M. Pettitt: Protein solvation from theory and simulation: Exact treatment of coulomb interactions in three-dimensional theories, J. Chem. Phys. 132, 064106 (2010)CrossRef J.S. Perkyns, G.C. Lynch, J.J. Howard, B.M. Pettitt: Protein solvation from theory and simulation: Exact treatment of coulomb interactions in three-dimensional theories, J. Chem. Phys. 132, 064106 (2010)CrossRef
[54]
Zurück zum Zitat S.M. Kast, T. Kloss: Closed-form expressions of the chemical potential for integral equation closures with certain bridge functions, J. Chem. Phys. 129, 236101–236103 (2008)CrossRef S.M. Kast, T. Kloss: Closed-form expressions of the chemical potential for integral equation closures with certain bridge functions, J. Chem. Phys. 129, 236101–236103 (2008)CrossRef
[55]
Zurück zum Zitat I.S. Joung, T. Luchko, D.A. Case: Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions, J. Chem. Phys. 138, 044103–44115 (2013)CrossRef I.S. Joung, T. Luchko, D.A. Case: Simple electrolyte solutions: Comparison of DRISM and molecular dynamics results for alkali halide solutions, J. Chem. Phys. 138, 044103–44115 (2013)CrossRef
[56]
Zurück zum Zitat Y. Harano, T. Imai, A. Kovalenko, M. Kinoshita, F. Hirata: Theoretical study for partial molar volume of amino acids and poly-peptides by the three-dimensional reference interaction site model, J. Chem. Phys. 114, 9506–9511 (2001)CrossRef Y. Harano, T. Imai, A. Kovalenko, M. Kinoshita, F. Hirata: Theoretical study for partial molar volume of amino acids and poly-peptides by the three-dimensional reference interaction site model, J. Chem. Phys. 114, 9506–9511 (2001)CrossRef
[57]
Zurück zum Zitat T. Imai, Y. Harano, A. Kovalenko, F. Hirata: Theoretical study for volume changes associated with the helix-coil transition of polypeptides, Biopolymers 59, 512–519 (2001)CrossRef T. Imai, Y. Harano, A. Kovalenko, F. Hirata: Theoretical study for volume changes associated with the helix-coil transition of polypeptides, Biopolymers 59, 512–519 (2001)CrossRef
[58]
Zurück zum Zitat T. Yamazaki, A. Kovalenko: Spatial decomposition analysis of the thermodynamics of cyclodextrin complexation, J. Chem. Theory Comput. 5, 1723–1730 (2009)CrossRef T. Yamazaki, A. Kovalenko: Spatial decomposition analysis of the thermodynamics of cyclodextrin complexation, J. Chem. Theory Comput. 5, 1723–1730 (2009)CrossRef
[59]
Zurück zum Zitat T. Yamazaki, A. Kovalenko: Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: Application to miniproteins, J. Phys. Chem. B 115, 310–318 (2011)CrossRef T. Yamazaki, A. Kovalenko: Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: Application to miniproteins, J. Phys. Chem. B 115, 310–318 (2011)CrossRef
[60]
Zurück zum Zitat T. Imai, K. Oda, A. Kovalenko, F. Hirata, A. Kidera: Ligand mapping on protein surfaces by the 3D-RISM theory: Toward computational fragment-based drug design, J. Am. Chem. Soc. 131, 12430–12440 (2009)CrossRef T. Imai, K. Oda, A. Kovalenko, F. Hirata, A. Kidera: Ligand mapping on protein surfaces by the 3D-RISM theory: Toward computational fragment-based drug design, J. Am. Chem. Soc. 131, 12430–12440 (2009)CrossRef
[61]
Zurück zum Zitat J.S. Perkyns, B.M. Pettitt: A site–site theory for finite concentration saline solutions, J. Chem. Phys. 97, 7656–7666 (1992)CrossRef J.S. Perkyns, B.M. Pettitt: A site–site theory for finite concentration saline solutions, J. Chem. Phys. 97, 7656–7666 (1992)CrossRef
[62]
Zurück zum Zitat B. Kvamme: Interaction-site representation of polar mixtures and electrolyte solutions, Int. J. Thermophys. 16, 743–750 (1995)CrossRef B. Kvamme: Interaction-site representation of polar mixtures and electrolyte solutions, Int. J. Thermophys. 16, 743–750 (1995)CrossRef
[63]
Zurück zum Zitat J.G. Kirkwood, F.P. Buff: The statistical mechanical theory of solutions. I, J. Chem. Phys. 19, 774–777 (1951)MathSciNetCrossRef J.G. Kirkwood, F.P. Buff: The statistical mechanical theory of solutions. I, J. Chem. Phys. 19, 774–777 (1951)MathSciNetCrossRef
[64]
Zurück zum Zitat S. Gusarov, B.S. Pujari, A. Kovalenko: Kovalenko, efficient treatment of solvation shells in 3D molecular theory of solvation, J. Comput. Chem. 33, 1478–1494 (2012)CrossRef S. Gusarov, B.S. Pujari, A. Kovalenko: Kovalenko, efficient treatment of solvation shells in 3D molecular theory of solvation, J. Comput. Chem. 33, 1478–1494 (2012)CrossRef
[65]
Zurück zum Zitat A. Kovalenko, S. Ten-no, F. Hirata: Solution of the three-dimensional RISM/HNC equations for SPC water by the modified method of direct inversion in the iterative subspace, J. Comput. Chem. 20, 928–936 (1999)CrossRef A. Kovalenko, S. Ten-no, F. Hirata: Solution of the three-dimensional RISM/HNC equations for SPC water by the modified method of direct inversion in the iterative subspace, J. Comput. Chem. 20, 928–936 (1999)CrossRef
[66]
Zurück zum Zitat P. Pulay: Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett. 73, 393–398 (1980)CrossRef P. Pulay: Convergence acceleration of iterative sequences. The case of SCF iteration, Chem. Phys. Lett. 73, 393–398 (1980)CrossRef
[67]
Zurück zum Zitat Y. Saad, M.H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATHCrossRef Y. Saad, M.H. Schultz: GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, J. Sci. Stat. Comput. 7, 856–869 (1986)MathSciNetMATHCrossRef
[68]
Zurück zum Zitat N. Minezawa, S. Kato: Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations, J. Chem. Phys. 126, 054511–54515 (2007)CrossRef N. Minezawa, S. Kato: Efficient implementation of three-dimensional reference interaction site model self-consistent-field method: Application to solvatochromic shift calculations, J. Chem. Phys. 126, 054511–54515 (2007)CrossRef
[69]
Zurück zum Zitat R.R. Lahiji, X. Xu, R. Reifenberger, A. Raman, A. Rudie, R.J. Moon: Atomic force microscopy characterization of cellulose nanocrystals, Langmuir 26, 4480–4488 (2010)CrossRef R.R. Lahiji, X. Xu, R. Reifenberger, A. Raman, A. Rudie, R.J. Moon: Atomic force microscopy characterization of cellulose nanocrystals, Langmuir 26, 4480–4488 (2010)CrossRef
[70]
Zurück zum Zitat W. Hamad: On the development and applications of cellulosic nanofibrillar and nanocrystalline materials, Can. J. Chem. Eng. 84, 513–519 (2006)CrossRef W. Hamad: On the development and applications of cellulosic nanofibrillar and nanocrystalline materials, Can. J. Chem. Eng. 84, 513–519 (2006)CrossRef
[71]
Zurück zum Zitat M.T. Postek, A.E. Vladar, J. Dagata, N. Farkas, B. Ming, R. Sabo, T.H. Wegner, J. Beecher: Cellulose nanocrystals the next big nano-thing?, Proc. SPIE 7042, 70420D (2008)CrossRef M.T. Postek, A.E. Vladar, J. Dagata, N. Farkas, B. Ming, R. Sabo, T.H. Wegner, J. Beecher: Cellulose nanocrystals the next big nano-thing?, Proc. SPIE 7042, 70420D (2008)CrossRef
[72]
Zurück zum Zitat G. Siqueira, J. Bras, A. Dufresne: Cellulosic bionanocomposites: A review of preparation, properties and applications, Polymers 2, 728–765 (2010)CrossRef G. Siqueira, J. Bras, A. Dufresne: Cellulosic bionanocomposites: A review of preparation, properties and applications, Polymers 2, 728–765 (2010)CrossRef
[73]
Zurück zum Zitat S.Y.Z. Zainuddin, I. Ahmad, H. Kargarzadeh, I. Abdullah, A. Dufresne: Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites, Carbohydr. Polym. 92, 2299–2305 (2013)CrossRef S.Y.Z. Zainuddin, I. Ahmad, H. Kargarzadeh, I. Abdullah, A. Dufresne: Potential of using multiscale kenaf fibers as reinforcing filler in cassava starch-kenaf biocomposites, Carbohydr. Polym. 92, 2299–2305 (2013)CrossRef
[74]
Zurück zum Zitat J.P. de Mesquita, C.L. Donnici, I.F. Teixeira, F.V. Pereira: Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals, Carbohydr. Polym. 90, 210–217 (2012)CrossRef J.P. de Mesquita, C.L. Donnici, I.F. Teixeira, F.V. Pereira: Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals, Carbohydr. Polym. 90, 210–217 (2012)CrossRef
[75]
Zurück zum Zitat R.A. Khan, S. Beck, D. Dussault, S. Salmieri, J. Bouchard, M. Lacroix: Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: Effect of gamma radiation, J. Appl. Polym. Sci. 129, 3038–3046 (2013)CrossRef R.A. Khan, S. Beck, D. Dussault, S. Salmieri, J. Bouchard, M. Lacroix: Mechanical and barrier properties of nanocrystalline cellulose reinforced poly(caprolactone) composites: Effect of gamma radiation, J. Appl. Polym. Sci. 129, 3038–3046 (2013)CrossRef
[76]
Zurück zum Zitat D. Chen, D. Lawton, M.R. Thompson, Q. Liu: Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste, Carbohydr. Polym. 90, 709–716 (2012)CrossRef D. Chen, D. Lawton, M.R. Thompson, Q. Liu: Biocomposites reinforced with cellulose nanocrystals derived from potato peel waste, Carbohydr. Polym. 90, 709–716 (2012)CrossRef
[77]
Zurück zum Zitat T. Abitbol, T. Johnstone, T.M. Quinn, D.G. Gray: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing, Soft Matter 7, 2373–2379 (2011)CrossRef T. Abitbol, T. Johnstone, T.M. Quinn, D.G. Gray: Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing, Soft Matter 7, 2373–2379 (2011)CrossRef
[78]
Zurück zum Zitat A. Dorris, D.G. Gray: Gelation of cellulose nanocrystal suspensions in glycerol, Cellulose 19, 687–694 (2012)CrossRef A. Dorris, D.G. Gray: Gelation of cellulose nanocrystal suspensions in glycerol, Cellulose 19, 687–694 (2012)CrossRef
[79]
Zurück zum Zitat J.A. Kelly, A.M. Shukaliak, C.C.Y. Cheung, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan: Responsive photonic hydrogels based on nanocrystalline cellulose, Angew. Chem. Int. Ed. Engl. 52, 8912–8916 (2013)CrossRef J.A. Kelly, A.M. Shukaliak, C.C.Y. Cheung, K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan: Responsive photonic hydrogels based on nanocrystalline cellulose, Angew. Chem. Int. Ed. Engl. 52, 8912–8916 (2013)CrossRef
[80]
Zurück zum Zitat N. Lin, A. Dufresne: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin, Biomacromolecules 14, 871–880 (2013)CrossRef N. Lin, A. Dufresne: Supramolecular hydrogels from in situ host-guest inclusion between chemically modified cellulose nanocrystals and cyclodextrin, Biomacromolecules 14, 871–880 (2013)CrossRef
[81]
Zurück zum Zitat J. Yang, C.-R. Han, J.-F. Duan, F. Xu, R.-C. Sun: Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels, ACS Appl. Mater. Interfaces 5, 3199–3207 (2013)CrossRef J. Yang, C.-R. Han, J.-F. Duan, F. Xu, R.-C. Sun: Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels, ACS Appl. Mater. Interfaces 5, 3199–3207 (2013)CrossRef
[82]
Zurück zum Zitat V.M. Wik, M.I. Aranguren, M.A. Mosiewicki: Castor oil-based polyurethanes containing cellulose nanocrystals, Polym. Eng. Sci. 51, 1389–1396 (2011)CrossRef V.M. Wik, M.I. Aranguren, M.A. Mosiewicki: Castor oil-based polyurethanes containing cellulose nanocrystals, Polym. Eng. Sci. 51, 1389–1396 (2011)CrossRef
[83]
Zurück zum Zitat B.L. Holt, S.D. Stoyanov, E. Pelan, V.N. Paunov: Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives, J. Mater. Chem. 20, 10058–10070 (2010)CrossRef B.L. Holt, S.D. Stoyanov, E. Pelan, V.N. Paunov: Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives, J. Mater. Chem. 20, 10058–10070 (2010)CrossRef
[84]
Zurück zum Zitat Y.P. Zhang, V.P. Chodavarapu, A.G. Kirk, M.P. Andrews: Nanocrystalline cellulose for covert optical encryption, J. Nanophotonics 6, 063516 (2012)CrossRef Y.P. Zhang, V.P. Chodavarapu, A.G. Kirk, M.P. Andrews: Nanocrystalline cellulose for covert optical encryption, J. Nanophotonics 6, 063516 (2012)CrossRef
[85]
Zurück zum Zitat G. Picard, D. Simon, Y. Kadiri, J.D. LeBreux, F. Ghozayel: Cellulose nanocrystal iridescence: A new model, Langmuir 28, 14799–14807 (2012)CrossRef G. Picard, D. Simon, Y. Kadiri, J.D. LeBreux, F. Ghozayel: Cellulose nanocrystal iridescence: A new model, Langmuir 28, 14799–14807 (2012)CrossRef
[86]
Zurück zum Zitat X.M. Dong, T. Kimura, J.F. Revol, D.G. Gray: Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir 12, 2076–2082 (1996)CrossRef X.M. Dong, T. Kimura, J.F. Revol, D.G. Gray: Effects of ionic strength on the isotropic-chiral nematic phase transition of suspensions of cellulose crystallites, Langmuir 12, 2076–2082 (1996)CrossRef
[87]
Zurück zum Zitat S. Beck, J. Bouchard, R. Berry: Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose, Biomacromolecules 12, 167–172 (2011)CrossRef S. Beck, J. Bouchard, R. Berry: Controlling the reflection wavelength of iridescent solid films of nanocrystalline cellulose, Biomacromolecules 12, 167–172 (2011)CrossRef
[88]
Zurück zum Zitat K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan: Flexible and iridescent chiral nematic mesoporous organosilica films, J. Am. Chem. Soc. 134, 867–870 (2012)CrossRef K.E. Shopsowitz, W.Y. Hamad, M.J. MacLachlan: Flexible and iridescent chiral nematic mesoporous organosilica films, J. Am. Chem. Soc. 134, 867–870 (2012)CrossRef
[89]
Zurück zum Zitat J.A. Kelly, K.E. Shopsowitz, J.M. Ahn, W.Y. Hamad, M.J. MacLachlan: Chiral nematic stained glass: Controlling the optical properties of nanocrystalline cellulose-templated materials, Langmuir 28, 17256–17262 (2012)CrossRef J.A. Kelly, K.E. Shopsowitz, J.M. Ahn, W.Y. Hamad, M.J. MacLachlan: Chiral nematic stained glass: Controlling the optical properties of nanocrystalline cellulose-templated materials, Langmuir 28, 17256–17262 (2012)CrossRef
[90]
Zurück zum Zitat M. Hasani, E.D. Cranston, G. Estman, D.G. Gray: Cationic surface functionalization of cellulose nanocrystals, Soft Matter 4, 2238–2244 (2008)CrossRef M. Hasani, E.D. Cranston, G. Estman, D.G. Gray: Cationic surface functionalization of cellulose nanocrystals, Soft Matter 4, 2238–2244 (2008)CrossRef
[91]
Zurück zum Zitat Y. Habibi, L.A. Lucia, O.J. Rojas: Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev. 110, 3479–3500 (2010)CrossRef Y. Habibi, L.A. Lucia, O.J. Rojas: Cellulose nanocrystals: Chemistry, self-assembly, and applications, Chem. Rev. 110, 3479–3500 (2010)CrossRef
[92]
Zurück zum Zitat J. Araki, M. Wada, S. Kuga: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting, Langmuir 17, 21–27 (2007)CrossRef J. Araki, M. Wada, S. Kuga: Steric stabilization of a cellulose microcrystal suspension by poly(ethylene glycol) grafting, Langmuir 17, 21–27 (2007)CrossRef
[93]
Zurück zum Zitat S. Montanari, M. Roumani, L. Heux, M.R. Vignon: Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation, Macromolecules 38, 1665–1671 (2005)CrossRef S. Montanari, M. Roumani, L. Heux, M.R. Vignon: Topochemistry of carboxylated cellulose nanocrystals resulting from TEMPO-mediated oxidation, Macromolecules 38, 1665–1671 (2005)CrossRef
[94]
Zurück zum Zitat N. Wang, E. Ding, R. Cheng: Surface modification of cellulose nanocrystals, Front. Chem. Eng. China 1, 228 (2007)CrossRef N. Wang, E. Ding, R. Cheng: Surface modification of cellulose nanocrystals, Front. Chem. Eng. China 1, 228 (2007)CrossRef
[95]
Zurück zum Zitat E.D. Cranston, D.G. Gray: Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field, Sci. Technol. Adv. Mater. 7, 319–321 (2006)CrossRef E.D. Cranston, D.G. Gray: Formation of cellulose-based electrostatic layer-by-layer films in a magnetic field, Sci. Technol. Adv. Mater. 7, 319–321 (2006)CrossRef
[96]
Zurück zum Zitat C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury: Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents, Polym. 43, 2645–2651 (2002)CrossRef C. Gousse, H. Chanzy, G. Excoffier, L. Soubeyrand, E. Fleury: Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents, Polym. 43, 2645–2651 (2002)CrossRef
[97]
Zurück zum Zitat S.R. Stoyanov, S. Gusarov, A. Kovalenko: Multiscale modeling of solvation and effective interactions of functionalized cellulose nanocrystals. In: Production and Application of Cellulose Nanoparticles, ed. by M.T. Postek, R.J. Moon, A. Rudie, M. Bilodeau (TAPPI, Peachtree Corners 2013) pp. 147–150 S.R. Stoyanov, S. Gusarov, A. Kovalenko: Multiscale modeling of solvation and effective interactions of functionalized cellulose nanocrystals. In: Production and Application of Cellulose Nanoparticles, ed. by M.T. Postek, R.J. Moon, A. Rudie, M. Bilodeau (TAPPI, Peachtree Corners 2013) pp. 147–150
[98]
Zurück zum Zitat S.R. Stoyanov, O. Lyubimova, S. Gusarov, A. Kovalenko: Computational modeling of the structure relaxation and dispersion thermodynamics of pristine and modified cellulose nanocrystals in solution, Nordic Pulp Paper Res. J. 29(1), 144–155 (2014)CrossRef S.R. Stoyanov, O. Lyubimova, S. Gusarov, A. Kovalenko: Computational modeling of the structure relaxation and dispersion thermodynamics of pristine and modified cellulose nanocrystals in solution, Nordic Pulp Paper Res. J. 29(1), 144–155 (2014)CrossRef
[99]
Zurück zum Zitat Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 125, 14300–14306 (2003)CrossRef Y. Nishiyama, J. Sugiyama, H. Chanzy, P. Langan: Crystal structure and hydrogen bonding system in cellulose Iα from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 125, 14300–14306 (2003)CrossRef
[100]
Zurück zum Zitat Y. Boluk, L. Zhao, V. Incani: Dispersions of nanocrystalline cellulose in aqueous polymer solutions: Structure formation of colloidal rods, Langmuir 28, 6114–6123 (2012)CrossRef Y. Boluk, L. Zhao, V. Incani: Dispersions of nanocrystalline cellulose in aqueous polymer solutions: Structure formation of colloidal rods, Langmuir 28, 6114–6123 (2012)CrossRef
[101]
Zurück zum Zitat F. Jiang, A.R. Esker, M. Roman: Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals, Langmuir 26, 17919–17925 (2010)CrossRef F. Jiang, A.R. Esker, M. Roman: Acid-catalyzed and solvolytic desulfation of H2SO4-hydrolyzed cellulose nanocrystals, Langmuir 26, 17919–17925 (2010)CrossRef
[102]
Zurück zum Zitat T. Welton, P. Wasserschield: Ionic Liquids in Synthesis (VCH-Wiley, Weinheim 2007) T. Welton, P. Wasserschield: Ionic Liquids in Synthesis (VCH-Wiley, Weinheim 2007)
[103]
Zurück zum Zitat Y. Nishiyama, P. Langan, H. Chanzy: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 124, 9074–9082 (2002)CrossRef Y. Nishiyama, P. Langan, H. Chanzy: Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction, J. Am. Chem. Soc. 124, 9074–9082 (2002)CrossRef
[104]
Zurück zum Zitat J.A. Wagoner, N.A. Baker: Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms, Proc. Natl. Acad. Sci. USA 103, 8331–8336 (2006)CrossRef J.A. Wagoner, N.A. Baker: Assessing implicit models for nonpolar mean solvation forces: The importance of dispersion and volume terms, Proc. Natl. Acad. Sci. USA 103, 8331–8336 (2006)CrossRef
[105]
Zurück zum Zitat R.M. Levy, L.Y. Zhang, A.K. Felts: On the nonpolar hydration free energy of proteins: Surface area and continuum solvent models for the solute-solvent interaction energy, J. Am. Chem. Soc. 125, 9523–9530 (2003)CrossRef R.M. Levy, L.Y. Zhang, A.K. Felts: On the nonpolar hydration free energy of proteins: Surface area and continuum solvent models for the solute-solvent interaction energy, J. Am. Chem. Soc. 125, 9523–9530 (2003)CrossRef
[106]
Zurück zum Zitat H. Gohlke, D.A. Case: Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf, J. Comput. Chem. 25, 238–250 (2004)CrossRef H. Gohlke, D.A. Case: Converging free energy estimates: MM-PB(GB)SA studies on the protein-protein complex Ras-Raf, J. Comput. Chem. 25, 238–250 (2004)CrossRef
[107]
Zurück zum Zitat K. Lum, D. Chandler, J. Weeks: Hydrophobicity at small and large length scales, J. Phys. Chem. B 103, 4570–4577 (1999)CrossRef K. Lum, D. Chandler, J. Weeks: Hydrophobicity at small and large length scales, J. Phys. Chem. B 103, 4570–4577 (1999)CrossRef
[108]
Zurück zum Zitat T.A. Wesolowski, A. Warshel: Frozen density functional approach for ab initio calculations of solvated molecules, J. Phys. Chem. 97, 8050–8053 (1993)CrossRef T.A. Wesolowski, A. Warshel: Frozen density functional approach for ab initio calculations of solvated molecules, J. Phys. Chem. 97, 8050–8053 (1993)CrossRef
[109]
Zurück zum Zitat E.J. Baerends, P. Ros, D.E. Ellis: Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure, Chem. Phys. 2, 41–51 (1973)CrossRef E.J. Baerends, P. Ros, D.E. Ellis: Self-consistent molecular Hartree–Fock–Slater calculations I. The computational procedure, Chem. Phys. 2, 41–51 (1973)CrossRef
[110]
Zurück zum Zitat G. te Velde, F. Bickelhaupt, S. van Gisbergen, C. Fonseca Guerra, E. Baerends, J. Snijders, T. Ziegler: Chemistry with ADF, J. Comput. Chem. 22, 931–967 (2001)CrossRef G. te Velde, F. Bickelhaupt, S. van Gisbergen, C. Fonseca Guerra, E. Baerends, J. Snijders, T. Ziegler: Chemistry with ADF, J. Comput. Chem. 22, 931–967 (2001)CrossRef
[111]
Zurück zum Zitat C. Fonseca Guerra, J. Snijders: G. te Velde, E. Baerends: Towards an order-N DFT method, Theor. Chem. Acc. 99, 391–403 (1998) C. Fonseca Guerra, J. Snijders: G. te Velde, E. Baerends: Towards an order-N DFT method, Theor. Chem. Acc. 99, 391–403 (1998)
[112]
Zurück zum Zitat L. Verslus, T. Ziegler: The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration, J. Chem. Phys. 88, 322–328 (1988)CrossRef L. Verslus, T. Ziegler: The determination of molecular structures by density functional theory. The evaluation of analytical energy gradients by numerical integration, J. Chem. Phys. 88, 322–328 (1988)CrossRef
[113]
Zurück zum Zitat I.P. Omelyan, A. Kovalenko: Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. I. Microcanonical ensemble, J. Chem. Phys. 135, 11410–11419 (2011) I.P. Omelyan, A. Kovalenko: Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. I. Microcanonical ensemble, J. Chem. Phys. 135, 11410–11419 (2011)
[114]
Zurück zum Zitat E. Barth, T. Schlick: Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN, J. Chem. Phys. 109, 1617–1632 (1998)CrossRef E. Barth, T. Schlick: Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN, J. Chem. Phys. 109, 1617–1632 (1998)CrossRef
[115]
Zurück zum Zitat J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, R.D. Skeel: Langevin stabilization of molecular dynamics, J. Chem. Phys. 114, 2090–2098 (2001)CrossRef J.A. Izaguirre, D.P. Catarello, J.M. Wozniak, R.D. Skeel: Langevin stabilization of molecular dynamics, J. Chem. Phys. 114, 2090–2098 (2001)CrossRef
[116]
Zurück zum Zitat R.D. Skeel, J.A. Izaguirre: An impulse integrator for Langevin dynamics, Mol. Phys. 100, 3885–3891 (2002)CrossRef R.D. Skeel, J.A. Izaguirre: An impulse integrator for Langevin dynamics, Mol. Phys. 100, 3885–3891 (2002)CrossRef
[117]
Zurück zum Zitat Q. Ma, J.A. Izaguirre: Targeted mollified impulse: A multiscale stochastic integrator for long molecular dynamics simulations, Multiscale Model. Simul. 2, 1–21 (2003)MathSciNetMATHCrossRef Q. Ma, J.A. Izaguirre: Targeted mollified impulse: A multiscale stochastic integrator for long molecular dynamics simulations, Multiscale Model. Simul. 2, 1–21 (2003)MathSciNetMATHCrossRef
[118]
Zurück zum Zitat S. Melchionna: Can short-range hybrids describe long-range-dependent properties? J. Chem, Phys. 127, 044108–44109 (2007) S. Melchionna: Can short-range hybrids describe long-range-dependent properties? J. Chem, Phys. 127, 044108–44109 (2007)
[119]
Zurück zum Zitat G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein: Explicit reversible integrators for extended system dynamics, Mol. Phys. 87, 1117–1157 (1996)CrossRef G.J. Martyna, M.E. Tuckerman, D.J. Tobias, M.L. Klein: Explicit reversible integrators for extended system dynamics, Mol. Phys. 87, 1117–1157 (1996)CrossRef
[120]
Zurück zum Zitat A. Cheng, K.M. Merz Jr.: Application of a multiple time step algorithm to biomolecular systems, J. Phys. Chem. B 103, 5396–5405 (1999)CrossRef A. Cheng, K.M. Merz Jr.: Application of a multiple time step algorithm to biomolecular systems, J. Phys. Chem. B 103, 5396–5405 (1999)CrossRef
[121]
Zurück zum Zitat J. Komeiji: Ewald summation and multiple time step methods for molecular dynamics simulation of biological molecules, J. Mol. Struct. THEOCHEM 530, 237–243 (2000)CrossRef J. Komeiji: Ewald summation and multiple time step methods for molecular dynamics simulation of biological molecules, J. Mol. Struct. THEOCHEM 530, 237–243 (2000)CrossRef
[122]
Zurück zum Zitat W. Shinoda, M. Mikami: Rigid-body dynamics in the isothermal-isobaric ensemble: A test on the accuracy and computational efficiency, J. Comput. Chem. 24, 920–930 (2003)CrossRef W. Shinoda, M. Mikami: Rigid-body dynamics in the isothermal-isobaric ensemble: A test on the accuracy and computational efficiency, J. Comput. Chem. 24, 920–930 (2003)CrossRef
[123]
Zurück zum Zitat I.P. Omelyan, A. Kovalenko: Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. II. Canonical and isokinetic ensembles, J. Chem. Phys. 135, 234107–234112 (2011)CrossRef I.P. Omelyan, A. Kovalenko: Multiple time scale molecular dynamics for fluids with orientational degrees of freedom. II. Canonical and isokinetic ensembles, J. Chem. Phys. 135, 234107–234112 (2011)CrossRef
[124]
Zurück zum Zitat P. Minary, G.J. Martyna, M.E. Tuckerman: Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics, J. Chem. Phys. 118, 2510–2526 (2003)CrossRef P. Minary, G.J. Martyna, M.E. Tuckerman: Algorithms and novel applications based on the isokinetic ensemble. I. Biophysical and path integral molecular dynamics, J. Chem. Phys. 118, 2510–2526 (2003)CrossRef
[125]
Zurück zum Zitat P. Minary, M.E. Tuckerman, G.J. Martyna: Long time molecular dynamics for enhanced conformational sampling in biomolecular systems, Phys. Rev. Lett. 93, 150201–150204 (2004)CrossRef P. Minary, M.E. Tuckerman, G.J. Martyna: Long time molecular dynamics for enhanced conformational sampling in biomolecular systems, Phys. Rev. Lett. 93, 150201–150204 (2004)CrossRef
[126]
Zurück zum Zitat J.B. Abrams, M.E. Tuckerman, G.J. Martyna: Equilibrium statistical mechanics, non-Hamiltonian molecular dynamics, and Novel applications from resonance-free timesteps to adiabatic free energy dynamics. In: Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1, Lecture Notes in Physics, Vol. 703, ed. by M. Ferrario, G. Ciccotti, K. Binder (Springer, Berlin, Heidelberg 2006) pp. 139–192CrossRef J.B. Abrams, M.E. Tuckerman, G.J. Martyna: Equilibrium statistical mechanics, non-Hamiltonian molecular dynamics, and Novel applications from resonance-free timesteps to adiabatic free energy dynamics. In: Computer Simulations in Condensed Matter Systems: From Materials to Chemical Biology Volume 1, Lecture Notes in Physics, Vol. 703, ed. by M. Ferrario, G. Ciccotti, K. Binder (Springer, Berlin, Heidelberg 2006) pp. 139–192CrossRef
[127]
Zurück zum Zitat D.J. Tobias, C.L. Brooks III: Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: A comparison of theoretical results, J. Phys. Chem. 96, 3864–3870 (1992)CrossRef D.J. Tobias, C.L. Brooks III: Conformational equilibrium in the alanine dipeptide in the gas phase and aqueous solution: A comparison of theoretical results, J. Phys. Chem. 96, 3864–3870 (1992)CrossRef
[128]
Zurück zum Zitat D.S. Chekmarev, T. Ishida, R.M. Levy: Long-time conformational transitions of alanine dipeptide in aqueous solution: Continuous and discrete-state kinetic models, J. Phys. Chem. B 108, 19487–19495 (2004)CrossRef D.S. Chekmarev, T. Ishida, R.M. Levy: Long-time conformational transitions of alanine dipeptide in aqueous solution: Continuous and discrete-state kinetic models, J. Phys. Chem. B 108, 19487–19495 (2004)CrossRef
[129]
Zurück zum Zitat D. Boda, W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg, D. Gillespie: Steric selectivity in Na channels arising from protein polarization and mobile side chains, Biophys. J. 93, 1960–1980 (2007)CrossRef D. Boda, W. Nonner, M. Valiskó, D. Henderson, B. Eisenberg, D. Gillespie: Steric selectivity in Na channels arising from protein polarization and mobile side chains, Biophys. J. 93, 1960–1980 (2007)CrossRef
[130]
Zurück zum Zitat D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie: The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel, J. Chem. Phys. 125, 034901–34911 (2006)CrossRef D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie: The effect of protein dielectric coefficient on the ionic selectivity of a calcium channel, J. Chem. Phys. 125, 034901–34911 (2006)CrossRef
[131]
Zurück zum Zitat D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie: Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel, Phys. Rev. Lett. 98, 168102–168104 (2007)CrossRef D. Boda, M. Valiskó, B. Eisenberg, W. Nonner, D. Henderson, D. Gillespie: Combined effect of pore radius and protein dielectric coefficient on the selectivity of a calcium channel, Phys. Rev. Lett. 98, 168102–168104 (2007)CrossRef
[132]
Zurück zum Zitat N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J.-P. Changeux, M. Delarue, P.-J. Corringer: X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature 457, 111–114 (2009)CrossRef N. Bocquet, H. Nury, M. Baaden, C. Le Poupon, J.-P. Changeux, M. Delarue, P.-J. Corringer: X-ray structure of a pentameric ligand-gated ion channel in an apparently open conformation, Nature 457, 111–114 (2009)CrossRef
[133]
Zurück zum Zitat Y. Weng, L. Yang, P.-J. Corringer, J.M. Sonner: Anesthetic sensitivity of the gloeobacter violaceus proton-gated ion channel, Anesth. Analg. 110, 59–63 (2010)CrossRef Y. Weng, L. Yang, P.-J. Corringer, J.M. Sonner: Anesthetic sensitivity of the gloeobacter violaceus proton-gated ion channel, Anesth. Analg. 110, 59–63 (2010)CrossRef
[134]
Zurück zum Zitat J. Given: Liquid-state methods for random media: Random sequential adsorption, Phys. Rev. A 45, 816–824 (1992)CrossRef J. Given: Liquid-state methods for random media: Random sequential adsorption, Phys. Rev. A 45, 816–824 (1992)CrossRef
[135]
Zurück zum Zitat J. Given, G. Stell: Comment on: Fluid distributions in two – phase random media: Arbitrary matrices, J. Chem. Phys. 97, 4573–4574 (1992)CrossRef J. Given, G. Stell: Comment on: Fluid distributions in two – phase random media: Arbitrary matrices, J. Chem. Phys. 97, 4573–4574 (1992)CrossRef
[136]
Zurück zum Zitat J. Given, G. Stell: The replica Ornstein–Zernike equations and the structure of partly quenched media, Physica A 209, 495–510 (1994)CrossRef J. Given, G. Stell: The replica Ornstein–Zernike equations and the structure of partly quenched media, Physica A 209, 495–510 (1994)CrossRef
[137]
Zurück zum Zitat J. Given, G. Stell: Liquid-state theory for some non-equilibrium processes, Condens. Matter Theor. 8, 395–410 (1993)CrossRef J. Given, G. Stell: Liquid-state theory for some non-equilibrium processes, Condens. Matter Theor. 8, 395–410 (1993)CrossRef
[138]
Zurück zum Zitat L.L. Lee: Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function, J. Chem. Phys. 97, 8606–8616 (1992)CrossRef L.L. Lee: Chemical potentials based on the molecular distribution functions. An exact diagrammatical representation and the star function, J. Chem. Phys. 97, 8606–8616 (1992)CrossRef
[139]
Zurück zum Zitat M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, K. Ishii: High power electric double layer capacitor (EDLC’s); From operating principle to pore size control in advanced carbons, Carbon Sci. 1, 117–128 (2001) M. Endo, T. Takeda, Y.J. Kim, K. Koshiba, K. Ishii: High power electric double layer capacitor (EDLC’s); From operating principle to pore size control in advanced carbons, Carbon Sci. 1, 117–128 (2001)
Metadaten
Titel
Multiscale Modeling of Solvation
verfasst von
Andriy Kovalenko
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-46657-5_5