Skip to main content
Erschienen in: Journal of Materials Science 7/2019

19.12.2018 | Computation and theory

Multistate magnetoresistance in zigzag-edge trigonal graphene magnetic junctions

verfasst von: Guangmeng He, Shuai Qiu, Yangjun Cui, Cuiju Yu, Yuanyuan Miao, Guangping Zhang, Junfeng Ren, Chuan-Kui Wang, Guichao Hu

Erschienen in: Journal of Materials Science | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using density functional theory combined with nonequilibrium Green’s function method, spin-dependent transport through a zigzag-edge trigonal graphene molecule coupled with two ferromagnets was investigated. The results reveal that due to the intrinsic magnetism of the central graphene nanoflake, four spin configurations of the device can be achieved. By calculating the current–voltage characteristic, a three-state magnetoresistance effect is obtained companied with a large spin filtering efficiency. The intrinsic mechanism is explored as different shifts of the spin-split frontier molecular orbitals depending on the spin configurations of the device. This work indicates an intriguing prospect of graphene nanoflakes in designing novel spintronic devices, such as multistate magnetoresistance devices.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRef
3.
Zurück zum Zitat Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef Neto AHC, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRef
4.
Zurück zum Zitat Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438(7065):201–204CrossRef Zhang Y, Tan YW, Stormer HL, Kim P (2005) Experimental observation of the quantum hall effect and Berry’s phase in graphene. Nature 438(7065):201–204CrossRef
5.
Zurück zum Zitat Deng XQ, Zhang ZH, Tang GP, Fan ZQ, Yang CH (2014) Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66:646–653CrossRef Deng XQ, Zhang ZH, Tang GP, Fan ZQ, Yang CH (2014) Spin filter effects in zigzag-edge graphene nanoribbons with symmetric and asymmetric edge hydrogenations. Carbon 66:646–653CrossRef
6.
Zurück zum Zitat Zeng J, Chen KQ, He J, Zhang XJ, Sun CQ (2011) Edge hydrogenation-induced spin-filtering and rectifying behaviors. J Phys Chem C 115(50):25072–25076CrossRef Zeng J, Chen KQ, He J, Zhang XJ, Sun CQ (2011) Edge hydrogenation-induced spin-filtering and rectifying behaviors. J Phys Chem C 115(50):25072–25076CrossRef
7.
Zurück zum Zitat Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRef
8.
Zurück zum Zitat Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444(7117):347–349CrossRef Son YW, Cohen ML, Louie SG (2006) Half-metallic graphene nanoribbons. Nature 444(7117):347–349CrossRef
9.
Zurück zum Zitat Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803CrossRef Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803CrossRef
10.
Zurück zum Zitat Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73(23):235411CrossRef Brey L, Fertig HA (2006) Electronic states of graphene nanoribbons studied with the Dirac equation. Phys Rev B 73(23):235411CrossRef
11.
Zurück zum Zitat Yao YX, Wang CZ, Zhang GP, Ji M, Ho KM (2009) A first-principles divide-and-conquer approach for electronic structure of large systems and its application to grapheme nanoribbons. J Phys Condens Matter 21(23):235501CrossRef Yao YX, Wang CZ, Zhang GP, Ji M, Ho KM (2009) A first-principles divide-and-conquer approach for electronic structure of large systems and its application to grapheme nanoribbons. J Phys Condens Matter 21(23):235501CrossRef
12.
Zurück zum Zitat Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM (2010) Electronic structure and transport of a carbon chain between graphene nanoribbon leads. J Phys Condens Matter 23(2):025302CrossRef Zhang GP, Fang XW, Yao YX, Wang CZ, Ding ZJ, Ho KM (2010) Electronic structure and transport of a carbon chain between graphene nanoribbon leads. J Phys Condens Matter 23(2):025302CrossRef
13.
Zurück zum Zitat Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11(7):2634–2639CrossRef Candini A, Klyatskaya S, Ruben M, Wernsdorfer W, Affronte M (2011) Graphene spintronic devices with molecular nanomagnets. Nano Lett 11(7):2634–2639CrossRef
14.
Zurück zum Zitat Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75(12):125408CrossRef Yazyev OV, Helm L (2007) Defect-induced magnetism in graphene. Phys Rev B 75(12):125408CrossRef
15.
Zurück zum Zitat Kunstmann J, Özdoğan C, Quandt A, Fehske H (2011) Stability of edge states and edge magnetism in graphene nanoribbons. Phys Rev B 83(4):045414CrossRef Kunstmann J, Özdoğan C, Quandt A, Fehske H (2011) Stability of edge states and edge magnetism in graphene nanoribbons. Phys Rev B 83(4):045414CrossRef
16.
Zurück zum Zitat Sawada K, Ishii F, Saito M (2010) Magnetism in graphene nanoribbons on Ni(111): first-principles density functional study. Phys Rev B 82(24):245426CrossRef Sawada K, Ishii F, Saito M (2010) Magnetism in graphene nanoribbons on Ni(111): first-principles density functional study. Phys Rev B 82(24):245426CrossRef
17.
Zurück zum Zitat Wang WL, Meng S, Kaxiras E (2008) Graphene nanoflakes with large spin. Nano Lett 8(1):241–245CrossRef Wang WL, Meng S, Kaxiras E (2008) Graphene nanoflakes with large spin. Nano Lett 8(1):241–245CrossRef
18.
Zurück zum Zitat Wang WL, Yazyev OV, Meng S, Kaxiras E (2009) Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys Rev Lett 102(15):157201CrossRef Wang WL, Yazyev OV, Meng S, Kaxiras E (2009) Topological frustration in graphene nanoflakes: magnetic order and spin logic devices. Phys Rev Lett 102(15):157201CrossRef
19.
Zurück zum Zitat Ezawa M (2008) Graphene nanoribbon and graphene nanodisk. Physica E 40(5):1421–1423CrossRef Ezawa M (2008) Graphene nanoribbon and graphene nanodisk. Physica E 40(5):1421–1423CrossRef
20.
Zurück zum Zitat Ezawa M (2007) Metallic graphene nanodisks: electronic and magnetic properties. Phys Rev B 76(24):245415CrossRef Ezawa M (2007) Metallic graphene nanodisks: electronic and magnetic properties. Phys Rev B 76(24):245415CrossRef
21.
Zurück zum Zitat Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef Berger C, Song Z, Li X, Wu X, Brown N, Naud C, Mayou D, Li T, Hass J, Marchenkov AN, Conrad EH, First PN, de Heer WA (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRef
22.
Zurück zum Zitat Räder HJ, Rouhanipour A, Talarico AM, Palermo V, Samorì P, Müllen K (2006) Processing of giant graphene molecules by soft-landing mass spectrometry. Nat Mater 5(4):276–280CrossRef Räder HJ, Rouhanipour A, Talarico AM, Palermo V, Samorì P, Müllen K (2006) Processing of giant graphene molecules by soft-landing mass spectrometry. Nat Mater 5(4):276–280CrossRef
23.
Zurück zum Zitat Saffarzadeh A, Farghadan R (2011) A spin-filter device based on armchair graphene nanoribbons. Appl Phys Lett 98(2):023106CrossRef Saffarzadeh A, Farghadan R (2011) A spin-filter device based on armchair graphene nanoribbons. Appl Phys Lett 98(2):023106CrossRef
24.
Zurück zum Zitat Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K (2001) The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J Am Chem Soc 123(50):12702–12703CrossRef Inoue J, Fukui K, Kubo T, Nakazawa S, Sato K, Shiomi D, Morita Y, Yamamoto K, Takui T, Nakasuji K (2001) The first detection of a Clar’s hydrocarbon, 2,6,10-tri-tert-butyltriangulene: a ground-state triplet of non-Kekulé polynuclear benzenoid hydrocarbon. J Am Chem Soc 123(50):12702–12703CrossRef
25.
Zurück zum Zitat Ci L, Xu Z, Wang L, Gao W, Feng D, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res 1(2):116–122CrossRef Ci L, Xu Z, Wang L, Gao W, Feng D, Kelly KF, Yakobson BI, Ajayan PM (2008) Controlled nanocutting of graphene. Nano Res 1(2):116–122CrossRef
26.
Zurück zum Zitat Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. N J Phys 11(8):083019CrossRef Chuvilin A, Meyer JC, Algara-Siller G, Kaiser U (2009) From graphene constrictions to single carbon chains. N J Phys 11(8):083019CrossRef
27.
Zurück zum Zitat Silva AM, Pires MS, Freire VN, Albuquerque EL, Azevedo DL, Caetano EWS (2010) Graphene nanoflakes: thermal stability, infrared signatures, and potential applications in the field of spintronics and optical nanodevices. J Phys Chem C 114(41):17472–17485CrossRef Silva AM, Pires MS, Freire VN, Albuquerque EL, Azevedo DL, Caetano EWS (2010) Graphene nanoflakes: thermal stability, infrared signatures, and potential applications in the field of spintronics and optical nanodevices. J Phys Chem C 114(41):17472–17485CrossRef
28.
Zurück zum Zitat Lieb EH (2002) Two theorems on the Hubbard model inequalities. Springer, Berlin, pp 91–94 Lieb EH (2002) Two theorems on the Hubbard model inequalities. Springer, Berlin, pp 91–94
29.
Zurück zum Zitat Wagner P, Ivanovskaya VV, Melle-Franco M, Humbert B, Adjizian JJ, Briddon PR, Ewels CP (2013) Stable hydrogenated graphene edge types: normal and reconstructed Klein edges. Phys Rev B 88(9):094106CrossRef Wagner P, Ivanovskaya VV, Melle-Franco M, Humbert B, Adjizian JJ, Briddon PR, Ewels CP (2013) Stable hydrogenated graphene edge types: normal and reconstructed Klein edges. Phys Rev B 88(9):094106CrossRef
30.
Zurück zum Zitat Şahin H, Senger RT, Ciraci S (2010) Spintronic properties of zigzag-edged triangular graphene flakes. J Appl Phys 108(7):074301CrossRef Şahin H, Senger RT, Ciraci S (2010) Spintronic properties of zigzag-edged triangular graphene flakes. J Appl Phys 108(7):074301CrossRef
31.
Zurück zum Zitat Zhang JJ, Zhang ZH, Tang GP (2014) Modulating magnetic ordering of the zigzag-edge trigonal graphene by functionalizations. Org Electron 15(7):1338–1346CrossRef Zhang JJ, Zhang ZH, Tang GP (2014) Modulating magnetic ordering of the zigzag-edge trigonal graphene by functionalizations. Org Electron 15(7):1338–1346CrossRef
32.
Zurück zum Zitat Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514CrossRef Shang NG, Papakonstantinou P, McMullan M, Chu M, Stamboulis A, Potenza A, Dhesi SS, Marchetto H (2008) Catalyst-free efficient growth, orientation and biosensing properties of multilayer graphene nanoflake films with sharp edge planes. Adv Funct Mater 18(21):3506–3514CrossRef
33.
Zurück zum Zitat Rezapour MR, Myung CW, Yun J, Ghassami A, Li N, Yu SU, Hajibabaei A, Park Y, Kim KS (2017) Graphene and graphene analogs toward optical, electronic, spintronic, green-chemical, energy-material, sensing, and medical applications. ACS Appl Mater Int 9(29):24393–24406CrossRef Rezapour MR, Myung CW, Yun J, Ghassami A, Li N, Yu SU, Hajibabaei A, Park Y, Kim KS (2017) Graphene and graphene analogs toward optical, electronic, spintronic, green-chemical, energy-material, sensing, and medical applications. ACS Appl Mater Int 9(29):24393–24406CrossRef
34.
Zurück zum Zitat Zhang ZH, Zhang JJ, Kwong G, Li J, Fan ZQ, Deng XQ, Tang GP (2013) All-carbon sp–sp 2 hybrid structures: geometrical properties, current rectification, and current amplification. Sci Rep 3:2575CrossRef Zhang ZH, Zhang JJ, Kwong G, Li J, Fan ZQ, Deng XQ, Tang GP (2013) All-carbon spsp 2 hybrid structures: geometrical properties, current rectification, and current amplification. Sci Rep 3:2575CrossRef
35.
Zurück zum Zitat Deng X, Tang G, Guo C (2012) Tuning the electronic transport properties for a trigonal graphene flake. Phys Lett A 376(23):1839–1844CrossRef Deng X, Tang G, Guo C (2012) Tuning the electronic transport properties for a trigonal graphene flake. Phys Lett A 376(23):1839–1844CrossRef
36.
Zurück zum Zitat Liu W, Fang C, Zhao J, Cheng J, Liu D (2016) Electronic transport properties of trigonal graphene nanoribbon with different edge termination. MATEC Web Conf 67:02006CrossRef Liu W, Fang C, Zhao J, Cheng J, Liu D (2016) Electronic transport properties of trigonal graphene nanoribbon with different edge termination. MATEC Web Conf 67:02006CrossRef
37.
Zurück zum Zitat Ono T, Ota T, Egami Y (2011) Fully spin-dependent transport of triangular graphene flakes. Phys Rev B 84(22):224424CrossRef Ono T, Ota T, Egami Y (2011) Fully spin-dependent transport of triangular graphene flakes. Phys Rev B 84(22):224424CrossRef
38.
Zurück zum Zitat Sheng W, Ning ZY, Yang ZQ, Guo H (2010) Magnetism and perfect spin filtering effect in graphene nanoflakes. Nanotechnology 21(38):385201CrossRef Sheng W, Ning ZY, Yang ZQ, Guo H (2010) Magnetism and perfect spin filtering effect in graphene nanoflakes. Nanotechnology 21(38):385201CrossRef
39.
Zurück zum Zitat Ezawa M (2009) Spin filter, spin amplifier and spin diode in graphene nanodisk. Eur Phys J B 67(4):543–549CrossRef Ezawa M (2009) Spin filter, spin amplifier and spin diode in graphene nanodisk. Eur Phys J B 67(4):543–549CrossRef
41.
Zurück zum Zitat Yu CJ, Miao YY, Qiu S, Cui YJ, He GM, Zhang GP, Wang CK, Hu GC (2018) Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. J Phys D Appl Phys 51(34):345302CrossRef Yu CJ, Miao YY, Qiu S, Cui YJ, He GM, Zhang GP, Wang CK, Hu GC (2018) Modulating spin-dependent electron transport in benzene-dithiolate magnetic junctions by hybrid interface states. J Phys D Appl Phys 51(34):345302CrossRef
42.
Zurück zum Zitat Liu R, Bi JJ, Xie Z, Yin K, Wang D, Zhang GP, Xiang D, Wang CK, Li ZL (2018) Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev Appl 9(5):054023CrossRef Liu R, Bi JJ, Xie Z, Yin K, Wang D, Zhang GP, Xiang D, Wang CK, Li ZL (2018) Fabricating atom-sized gaps by field-aided atom migration in nanoscale junctions. Phys Rev Appl 9(5):054023CrossRef
43.
Zurück zum Zitat Zeng J, Chen KQ (2014) Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device. Appl Phys Lett 104(3):033104CrossRef Zeng J, Chen KQ (2014) Magnetic configuration dependence of magnetoresistance in a Fe-porphyrin-like carbon nanotube spintronic device. Appl Phys Lett 104(3):033104CrossRef
45.
Zurück zum Zitat Liu F, Liu Y, Smith DL, Ruden PP (2015) Device model for graphene spin valves. IEEE Trans Electron Devices 62(10):3426–3432CrossRef Liu F, Liu Y, Smith DL, Ruden PP (2015) Device model for graphene spin valves. IEEE Trans Electron Devices 62(10):3426–3432CrossRef
46.
Zurück zum Zitat Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Díez-Pérez I (2015) Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett 16(1):218–226CrossRef Aragonès AC, Aravena D, Cerdá JI, Acís-Castillo Z, Li H, Real JA, Sanz F, Hihath J, Ruiz E, Díez-Pérez I (2015) Large conductance switching in a single-molecule device through room temperature spin-dependent transport. Nano Lett 16(1):218–226CrossRef
47.
Zurück zum Zitat Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401CrossRef Brandbyge M, Mozos JL, Ordejón P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65(16):165401CrossRef
49.
Zurück zum Zitat Troullier N, Martins JL (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74(7):613–616CrossRef Troullier N, Martins JL (1990) A straightforward method for generating soft transferable pseudopotentials. Solid State Commun 74(7):613–616CrossRef
50.
Zurück zum Zitat Datta S (1995) Electron transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRef Datta S (1995) Electron transport in mesoscopic systems. Cambridge University Press, CambridgeCrossRef
51.
Zurück zum Zitat Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73(5):056501CrossRef Yazyev OV (2010) Emergence of magnetism in graphene materials and nanostructures. Rep Prog Phys 73(5):056501CrossRef
52.
Zurück zum Zitat Xiong ZH, Wu D, Vardeny ZV, Shi J (2004) Giant magnetoresistance in organic spin-valves. Nature 427(6977):821–824CrossRef Xiong ZH, Wu D, Vardeny ZV, Shi J (2004) Giant magnetoresistance in organic spin-valves. Nature 427(6977):821–824CrossRef
53.
Zurück zum Zitat Kim WY, Kim KS (2008) Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol 3(7):408CrossRef Kim WY, Kim KS (2008) Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat Nanotechnol 3(7):408CrossRef
54.
Zurück zum Zitat Rezapour MR, Yun J, Lee G, Kim KS (2016) Lower electric field-driven magnetic phase transition and perfect spin filtering in graphene nanoribbons by edge functionalization. J Phys Chem Lett 7(24):5049–5055CrossRef Rezapour MR, Yun J, Lee G, Kim KS (2016) Lower electric field-driven magnetic phase transition and perfect spin filtering in graphene nanoribbons by edge functionalization. J Phys Chem Lett 7(24):5049–5055CrossRef
55.
Zurück zum Zitat Zhang YT, Jiang H, Sun Q, Xie XC (2010) Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys Rev B 81(16):165404CrossRef Zhang YT, Jiang H, Sun Q, Xie XC (2010) Spin polarization and giant magnetoresistance effect induced by magnetization in zigzag graphene nanoribbons. Phys Rev B 81(16):165404CrossRef
56.
Zurück zum Zitat Larade B, Taylor J, Zheng QR, Mehrez H, Pomorski P, Guo H (2001) Renormalized molecular levels in a Sc3N@C80 molecular electronic device. Phys Rev B 64(19):195402CrossRef Larade B, Taylor J, Zheng QR, Mehrez H, Pomorski P, Guo H (2001) Renormalized molecular levels in a Sc3N@C80 molecular electronic device. Phys Rev B 64(19):195402CrossRef
57.
Zurück zum Zitat Hu GC, Zuo MY, Li Y, Ren JF, Xie SJ (2014) Multi-state magnetoresistance in ferromagnet/organic-ferromagnet/ferromagnet junctions. Appl Phys Lett 104(3):033302CrossRef Hu GC, Zuo MY, Li Y, Ren JF, Xie SJ (2014) Multi-state magnetoresistance in ferromagnet/organic-ferromagnet/ferromagnet junctions. Appl Phys Lett 104(3):033302CrossRef
58.
Zurück zum Zitat Botton GA, Guo GY, Temmerman WM, Humphreys CJ (1996) Experimental and theoretical study of the electronic structure of Fe Co, and Ni aluminides with the B2 structure. Phys Rev B 54(3):1682CrossRef Botton GA, Guo GY, Temmerman WM, Humphreys CJ (1996) Experimental and theoretical study of the electronic structure of Fe Co, and Ni aluminides with the B2 structure. Phys Rev B 54(3):1682CrossRef
59.
Zurück zum Zitat Papaconstantopoulos DA (2015) Handbook of the band structure of elemental solids. Springer, BostonCrossRef Papaconstantopoulos DA (2015) Handbook of the band structure of elemental solids. Springer, BostonCrossRef
Metadaten
Titel
Multistate magnetoresistance in zigzag-edge trigonal graphene magnetic junctions
verfasst von
Guangmeng He
Shuai Qiu
Yangjun Cui
Cuiju Yu
Yuanyuan Miao
Guangping Zhang
Junfeng Ren
Chuan-Kui Wang
Guichao Hu
Publikationsdatum
19.12.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 7/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-03246-1

Weitere Artikel der Ausgabe 7/2019

Journal of Materials Science 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.