Skip to main content

2020 | OriginalPaper | Buchkapitel

Multivariate Time Series Classification: A Relational Way

verfasst von : Dominique Gay, Alexis Bondu, Vincent Lemaire, Marc Boullé, Fabrice Clérot

Erschienen in: Big Data Analytics and Knowledge Discovery

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multivariate Time Series Classification (MTSC) has attracted increasing research attention in the past years due to the wide range applications in e.g., action/activity recognition, EEG/ECG classification, etc. In this paper, we open a novel path to tackle with MTSC: a relational way. The multiple dimensions of MTS are represented in a relational data scheme, then a propositionalisation technique (based on classical aggregation/selection functions from the relational data field) is applied to build interpretable features from secondary tables to “flatten” the data. Finally, the MTS flattened data are classified using a selective Naïve Bayes classifier. Experimental validation on various benchmark data sets show the relevance of the suggested approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bagnall, A.J., Davis, L.M., Hills, J., Lines, J.: Transformation based ensembles for time series classification. In: Proceedings of the Twelfth SIAM International Conference on Data Mining, (SDM 2012), Anaheim, California, USA, 26–28 April 2012, pp. 307–318 (2012) Bagnall, A.J., Davis, L.M., Hills, J., Lines, J.: Transformation based ensembles for time series classification. In: Proceedings of the Twelfth SIAM International Conference on Data Mining, (SDM 2012), Anaheim, California, USA, 26–28 April 2012, pp. 307–318 (2012)
7.
Zurück zum Zitat Bondu, A., Gay, D., Lemaire, V., Boullé, M., Cervenka, E.: FEARS: a feature and representation selection approach for time series classification. In: Proceedings of The 11th Asian Conference on Machine Learning, ACML 2019, Nagoya, Japan, 17–19 November 2019, pp. 379–394 (2019) Bondu, A., Gay, D., Lemaire, V., Boullé, M., Cervenka, E.: FEARS: a feature and representation selection approach for time series classification. In: Proceedings of The 11th Asian Conference on Machine Learning, ACML 2019, Nagoya, Japan, 17–19 November 2019, pp. 379–394 (2019)
8.
Zurück zum Zitat Boullé, M.: MODL: a Bayes optimal discretization method for continuous attributes. Mach. Learn. 65(1), 131–165 (2006)CrossRef Boullé, M.: MODL: a Bayes optimal discretization method for continuous attributes. Mach. Learn. 65(1), 131–165 (2006)CrossRef
9.
Zurück zum Zitat Boullé, M.: Compression-based averaging of selective Naive Bayes classifiers. J. Mach. Learn. Res. 8, 1659–1685 (2007)MathSciNetMATH Boullé, M.: Compression-based averaging of selective Naive Bayes classifiers. J. Mach. Learn. Res. 8, 1659–1685 (2007)MathSciNetMATH
10.
Zurück zum Zitat Boullé, M., Charnay, C., Lachiche, N.: A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data. Mach. Learn. 108(2), 229–266 (2019)MathSciNetCrossRef Boullé, M., Charnay, C., Lachiche, N.: A scalable robust and automatic propositionalization approach for Bayesian classification of large mixed numerical and categorical data. Mach. Learn. 108(2), 229–266 (2019)MathSciNetCrossRef
12.
Zurück zum Zitat Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)MathSciNetMATH Demšar, J.: Statistical comparisons of classifiers over multiple data sets. JMLR 7, 1–30 (2006)MathSciNetMATH
14.
Zurück zum Zitat Hsu, E.-Y., Liu, C.-L., Tseng, V.S.: Multivariate time series early classification with interpretability using deep learning and attention mechanism. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11441, pp. 541–553. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16142-2_42CrossRef Hsu, E.-Y., Liu, C.-L., Tseng, V.S.: Multivariate time series early classification with interpretability using deep learning and attention mechanism. In: Yang, Q., Zhou, Z.-H., Gong, Z., Zhang, M.-L., Huang, S.-J. (eds.) PAKDD 2019. LNCS (LNAI), vol. 11441, pp. 541–553. Springer, Cham (2019). https://​doi.​org/​10.​1007/​978-3-030-16142-2_​42CrossRef
15.
Zurück zum Zitat Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNS for time series classification. Neural Netw. 116, 237–245 (2019)CrossRef Karim, F., Majumdar, S., Darabi, H., Harford, S.: Multivariate LSTM-FCNS for time series classification. Neural Netw. 116, 237–245 (2019)CrossRef
18.
Zurück zum Zitat Lines, J., Taylor, S., Bagnall, A.J.: Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Disc. Data 12(5), 52:1–52:35 (2018) Lines, J., Taylor, S., Bagnall, A.J.: Time series classification with HIVE-COTE: the hierarchical vote collective of transformation-based ensembles. ACM Trans. Knowl. Disc. Data 12(5), 52:1–52:35 (2018)
19.
Zurück zum Zitat Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, 06–10 November 2017, pp. 637–646 (2017) Schäfer, P., Leser, U.: Fast and accurate time series classification with WEASEL. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, CIKM 2017, Singapore, 06–10 November 2017, pp. 637–646 (2017)
21.
Zurück zum Zitat Shokoohi-Yekta, M., Wang, J., Keogh, E.J.: On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, BC, Canada, 30 April–2 May 2015, pp. 289–297 (2015) Shokoohi-Yekta, M., Wang, J., Keogh, E.J.: On the non-trivial generalization of dynamic time warping to the multi-dimensional case. In: Proceedings of the 2015 SIAM International Conference on Data Mining, Vancouver, BC, Canada, 30 April–2 May 2015, pp. 289–297 (2015)
22.
Zurück zum Zitat Tuncel, K.S., Baydogan, M.G.: Autoregressive forests for multivariate time series modeling. Pattern Recogn. 73, 202–215 (2018)CrossRef Tuncel, K.S., Baydogan, M.G.: Autoregressive forests for multivariate time series modeling. Pattern Recogn. 73, 202–215 (2018)CrossRef
Metadaten
Titel
Multivariate Time Series Classification: A Relational Way
verfasst von
Dominique Gay
Alexis Bondu
Vincent Lemaire
Marc Boullé
Fabrice Clérot
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-59065-9_25