Skip to main content

2020 | OriginalPaper | Buchkapitel

Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies

verfasst von : C. K. Parashar, P. Das, S. Samanta, A. Ganguly, P. K. Chatterjee

Erschienen in: Energy Recovery Processes from Wastes

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Utilization of Municipal Solid Waste (MSW) as a free resource of energy has gained popularity to reduce the use of conventional fuel. India, as a developing country having a major population residing in rural areas with unplanned societies, unscientific waste management is steeping at enormous rate. This paper highlights several waste-to-energy (WTE) conversion technologies incorporated for the utilization of MSW to produce useful energy. With high end research and development, pyrolysis and gasification processes incorporating enormous temperature and heating rates, has paved the way for the utilization of high density polymeric wastes in generating oil and synthetic gas as products for utilization as fuels having high calorific values. Utilization of kitchen, agricultural and other organic wastes is a promising energy resource to mitigate the dependency on conventional fuels, if scientifically adapted all over the geographical area. In particular, since animal rejects, food waste and agricultural remains cannot be altered, their utilization as fuel is a promising free source of energy. These wastes are fed for biogas production, along with production of alternative manure for farming through bio-methanation and composting. In view of applications in automobiles, aircrafts, and domestic purposes, conversion of methane enriched fuel into bio-diesel paves the way towards sustainable future. As the supply of conventional fuels are facing threat in view of scarcity and pollution caused by their usage, energy from MSW will eradicate the problems of landfills, pollution and other waste management issues, also economically benefiting the society with their livelihood.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nishikawa, H., Ibe, M., Tanaka, M., Takemoto, T., & Ushio, M. (2006). Effect of DC steam plasma on gasifying carbonized waste. Vacuum, 80, 1311–1315.CrossRef Nishikawa, H., Ibe, M., Tanaka, M., Takemoto, T., & Ushio, M. (2006). Effect of DC steam plasma on gasifying carbonized waste. Vacuum, 80, 1311–1315.CrossRef
2.
Zurück zum Zitat Morcos, V. (1989). Energy recovery from municipal solid waste incineration. Heat Recover System CHP, 9, 115–1126.CrossRef Morcos, V. (1989). Energy recovery from municipal solid waste incineration. Heat Recover System CHP, 9, 115–1126.CrossRef
3.
Zurück zum Zitat Ansbakov, A. S., Faleev, V. A., & Kezevich, D. D. (2002). Domestic waste plasma gasification technology and its comparison with ordinary one burning on the final products. In Ecology, electrotechnology and waste processing; KORUS (pp. 211–213). Ansbakov, A. S., Faleev, V. A., & Kezevich, D. D. (2002). Domestic waste plasma gasification technology and its comparison with ordinary one burning on the final products. In Ecology, electrotechnology and waste processing; KORUS (pp. 211–213).
4.
Zurück zum Zitat Lyubina, Y. L., & Suris, A. L. (1999). Thermodynamic model of the plasma gasification of organic solid waste. Chemical and Petroleum Engineering, 35, 38–40.CrossRef Lyubina, Y. L., & Suris, A. L. (1999). Thermodynamic model of the plasma gasification of organic solid waste. Chemical and Petroleum Engineering, 35, 38–40.CrossRef
7.
Zurück zum Zitat Nema, S. K., & Ganeshprasad, K. S. (2002). Plasma pyrolysis of medical waste. Current Science, 83, 271–278. Nema, S. K., & Ganeshprasad, K. S. (2002). Plasma pyrolysis of medical waste. Current Science, 83, 271–278.
8.
Zurück zum Zitat Dave, P.N., & Joshi, A. K. (2010). Plasma pyrolysis and gasification of plastic waste - a review. Journal of Scientific & Industrial Research, 69, 177-179. Dave, P.N., & Joshi, A. K. (2010). Plasma pyrolysis and gasification of plastic waste - a review. Journal of Scientific & Industrial Research, 69, 177-179.
9.
Zurück zum Zitat Punčochář, M., Ruj, B., & Chatterjee, P. K. (2012). Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Engineering, 42, 420–430. Punčochář, M., Ruj, B., & Chatterjee, P. K. (2012). Development of process for disposal of plastic waste using plasma pyrolysis technology and option for energy recovery. Procedia Engineering, 42, 420–430.
10.
Zurück zum Zitat Ojha, A., Reuben, A. C., & Sharma, D. (2012). Solid waste management in developing countries through plasma arc gasification-An alternative approach. APCBEE Procedia, 1, 193–198.CrossRef Ojha, A., Reuben, A. C., & Sharma, D. (2012). Solid waste management in developing countries through plasma arc gasification-An alternative approach. APCBEE Procedia, 1, 193–198.CrossRef
11.
Zurück zum Zitat Detailed project report (DPR) for municipal solid waste disposal through incineration process by Pondicherry Urban Development Agency—Local Administration Department on November 2014. Detailed project report (DPR) for municipal solid waste disposal through incineration process by Pondicherry Urban Development Agency—Local Administration Department on November 2014.
12.
Zurück zum Zitat Detailed project report (DPR) on municipal solid waste management for Vishakhapatnam, prepared and submitted by Feedback Infra Private Limited in JV with Eco save Systems Pvt Ltd on September 2015. Detailed project report (DPR) on municipal solid waste management for Vishakhapatnam, prepared and submitted by Feedback Infra Private Limited in JV with Eco save Systems Pvt Ltd on September 2015.
14.
Zurück zum Zitat Williams, R., Jenkins, B., & Nguyen, D. (2003). Solid waste conversion: A review and database of current and emerging technologies (pp. 1–129). Final Report: Department of Biology. Williams, R., Jenkins, B., & Nguyen, D. (2003). Solid waste conversion: A review and database of current and emerging technologies (pp. 1–129). Final Report: Department of Biology.
15.
Zurück zum Zitat Williams, R. B., Jenkins, B. M., & Kaffka, S. (2013). California BC. An Assessment of Biomass Resources in California, Data. Contract Report to CEC PIER Contract 500-11-020 2015:1–155. Williams, R. B., Jenkins, B. M., & Kaffka, S. (2013). California BC. An Assessment of Biomass Resources in California, Data. Contract Report to CEC PIER Contract 500-11-020 2015:1–155.
16.
Zurück zum Zitat Leary, M. (2004). Contractor’s Report to the Board Landfill Facility Compliance Study Task 6 Report—Review of MSW Landfill Regulations from Selected States and Countries. Leary, M. (2004). Contractor’s Report to the Board Landfill Facility Compliance Study Task 6 Report—Review of MSW Landfill Regulations from Selected States and Countries.
17.
Zurück zum Zitat Commission of the European Communities. (2006). Green Paper on a future Maritime Policy for the EU presented by the commission; SEC, p. 689. Commission of the European Communities. (2006). Green Paper on a future Maritime Policy for the EU presented by the commission; SEC, p. 689.
18.
Zurück zum Zitat Municipal Solid Waste in the United States. (2005). Facts and figures. US Environmental Protection Agency, municipal and industrial solid waste division; 2006: PA530-R-06-011. Municipal Solid Waste in the United States. (2005). Facts and figures. US Environmental Protection Agency, municipal and industrial solid waste division; 2006: PA530-R-06-011.
19.
Zurück zum Zitat UN-HABITAT. (2009). Solid waste management in the world’s cities. United Nations Human Settlements Programme. UN-HABITAT. (2009). Solid waste management in the world’s cities. United Nations Human Settlements Programme.
20.
Zurück zum Zitat Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. C. (2008). Municipal solid waste management in Indian cities—A review. Waste Management, 28, 459–467.CrossRef Sharholy, M., Ahmad, K., Mahmood, G., & Trivedi, R. C. (2008). Municipal solid waste management in Indian cities—A review. Waste Management, 28, 459–467.CrossRef
21.
Zurück zum Zitat Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource Technology, 101, 3816–3824.CrossRef Cheng, H., & Hu, Y. (2010). Municipal solid waste (MSW) as a renewable source of energy: Current and future practices in China. Bioresource Technology, 101, 3816–3824.CrossRef
22.
Zurück zum Zitat Hamer, G. (2003). Solid waste treatment and disposal: Effects on public health and environmental safety. Biotechnology Advancement, 22, 71–79.CrossRef Hamer, G. (2003). Solid waste treatment and disposal: Effects on public health and environmental safety. Biotechnology Advancement, 22, 71–79.CrossRef
24.
Zurück zum Zitat Szabó, S., Bódis, K., Kougias, I., Moner-Girona, M., Jäger-Waldau, A., Barton, G., et al. (2017). A methodology for maximizing the benefits of solar landfills on closed sites. Renewable and Sustainable Energy Reviews, 76, 1291–1300.CrossRef Szabó, S., Bódis, K., Kougias, I., Moner-Girona, M., Jäger-Waldau, A., Barton, G., et al. (2017). A methodology for maximizing the benefits of solar landfills on closed sites. Renewable and Sustainable Energy Reviews, 76, 1291–1300.CrossRef
25.
Zurück zum Zitat Hartmann, B., Török, S., Börcsök, E., & Oláhné, Groma V. (2014). Multi-objective method for energy purpose redevelopment of brownfield sites. Journal Clean Production, 82, 202–212.CrossRef Hartmann, B., Török, S., Börcsök, E., & Oláhné, Groma V. (2014). Multi-objective method for energy purpose redevelopment of brownfield sites. Journal Clean Production, 82, 202–212.CrossRef
26.
Zurück zum Zitat Mønster, J., Samuelsson, J., Kjeldsen, P., & Scheutz, C. (2015). Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method. Waste Management, 35, 177–186.CrossRef Mønster, J., Samuelsson, J., Kjeldsen, P., & Scheutz, C. (2015). Quantification of methane emissions from 15 Danish landfills using the mobile tracer dispersion method. Waste Management, 35, 177–186.CrossRef
27.
Zurück zum Zitat Vázquez, M. A., & Soto, M. (2017). The efficiency of home composting programmes and compost quality. Waste Management, 64, 39–50.CrossRef Vázquez, M. A., & Soto, M. (2017). The efficiency of home composting programmes and compost quality. Waste Management, 64, 39–50.CrossRef
28.
Zurück zum Zitat Yang, D., Zheng, L., Song, W., Chen, S., & Zhang, Y. (2012). Evaluation indexes and methods for water quality in ocean dumping areas. Procedia Environment Science, 16, 112–117.CrossRef Yang, D., Zheng, L., Song, W., Chen, S., & Zhang, Y. (2012). Evaluation indexes and methods for water quality in ocean dumping areas. Procedia Environment Science, 16, 112–117.CrossRef
29.
Zurück zum Zitat Simonini, R., Ansaloni, I., Cavallini, F., Graziosi, F., Iotti, M., Massamba N’Siala, G., et al. (2005). Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (Northern Adriatic Sea, Italy). Marine Pollution Bulletin, 50, 1595–1605.CrossRef Simonini, R., Ansaloni, I., Cavallini, F., Graziosi, F., Iotti, M., Massamba N’Siala, G., et al. (2005). Effects of long-term dumping of harbor-dredged material on macrozoobenthos at four disposal sites along the Emilia-Romagna coast (Northern Adriatic Sea, Italy). Marine Pollution Bulletin, 50, 1595–1605.CrossRef
30.
Zurück zum Zitat Zheng, L., Cui, W., Song, W., Qu, L., Yuan, Y., & Yang, D. (2012). The biological effects of the marine dumping on mollusks. Procedia Environment Science, 16, 118–124.CrossRef Zheng, L., Cui, W., Song, W., Qu, L., Yuan, Y., & Yang, D. (2012). The biological effects of the marine dumping on mollusks. Procedia Environment Science, 16, 118–124.CrossRef
31.
Zurück zum Zitat Wang, Y., Cheng, K., Wu, W., Tian, H., Yi, P., Zhi, G., et al. (2017). Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmosphere Environment, 152, 6–15.CrossRef Wang, Y., Cheng, K., Wu, W., Tian, H., Yi, P., Zhi, G., et al. (2017). Atmospheric emissions of typical toxic heavy metals from open burning of municipal solid waste in China. Atmosphere Environment, 152, 6–15.CrossRef
32.
Zurück zum Zitat Szijjarto, A., & Hungerb, K. (2017). Optimized energy use through systematic short—Term management of industrial waste incineration. Computers and Chemical Engineering, 1354(17), 30151-301515. Szijjarto, A., & Hungerb, K. (2017). Optimized energy use through systematic short—Term management of industrial waste incineration. Computers and Chemical Engineering, 1354(17), 30151-301515.
33.
Zurück zum Zitat Nabavi-pelesaraei, A., Bayat, R., Hosseinzadeh, H., Afrasyabi, H., & Chau, K. (2017). Modelling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management—A case study in Tehran Metropolis of Iran. Journal of Clean Production, 6526(17), 30194-4. Nabavi-pelesaraei, A., Bayat, R., Hosseinzadeh, H., Afrasyabi, H., & Chau, K. (2017). Modelling of energy consumption and environmental life cycle assessment for incineration and landfill systems of municipal solid waste management—A case study in Tehran Metropolis of Iran. Journal of Clean Production, 6526(17), 30194-4.
34.
Zurück zum Zitat Zhou, X., Zhou, M., Wu, X., Han, Y., Geng, J., Wang, T., et al. (2017). Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag. Chemosphere, 182, 76–84.CrossRef Zhou, X., Zhou, M., Wu, X., Han, Y., Geng, J., Wang, T., et al. (2017). Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag. Chemosphere, 182, 76–84.CrossRef
35.
Zurück zum Zitat Hwang, K. L., Choi, S. M., Kim, M. K., Heo, J. B., & Zoh, K. D. (2017). Emission of greenhouse gases from waste incineration in Korea. Journal of Environment Management, 196, 710–718.CrossRef Hwang, K. L., Choi, S. M., Kim, M. K., Heo, J. B., & Zoh, K. D. (2017). Emission of greenhouse gases from waste incineration in Korea. Journal of Environment Management, 196, 710–718.CrossRef
36.
Zurück zum Zitat Gradus, R. H. J. M., Nillesen, P. H. L., Dijkgraaf, E., & van Koppen, R. J. (2017). A cost-effectiveness analysis for incineration or recycling of Dutch household plastic waste. Ecological Economics, 135, 22–28.CrossRef Gradus, R. H. J. M., Nillesen, P. H. L., Dijkgraaf, E., & van Koppen, R. J. (2017). A cost-effectiveness analysis for incineration or recycling of Dutch household plastic waste. Ecological Economics, 135, 22–28.CrossRef
37.
Zurück zum Zitat Song, J., Sun, Y., & Jin, L. (2017). PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renewable and Sustainable Energy Reviews, 80, 276–289.CrossRef Song, J., Sun, Y., & Jin, L. (2017). PESTEL analysis of the development of the waste-to-energy incineration industry in China. Renewable and Sustainable Energy Reviews, 80, 276–289.CrossRef
38.
Zurück zum Zitat Ansah, E., Wang, L., & Shahbazi, A. (2016). Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Management (article in press). Ansah, E., Wang, L., & Shahbazi, A. (2016). Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components. Waste Management (article in press).
39.
Zurück zum Zitat Gunasee, S. D., Carrier, M., Gorgens, J. F., & Mohee, R. (2016). synergistic effects using TGA-MS. Journal of Analytical and Applied Pyrolysis, 1–12. Gunasee, S. D., Carrier, M., Gorgens, J. F., & Mohee, R. (2016). synergistic effects using TGA-MS. Journal of Analytical and Applied Pyrolysis, 1–12.
41.
Zurück zum Zitat Gray, L. (2014). Plasma gasification as a viable waste-to- energy treatment of municipal solid waste. MANE-6960; Solid and Hazardous Waste Prevention and Control Engineering. Gray, L. (2014). Plasma gasification as a viable waste-to- energy treatment of municipal solid waste. MANE-6960; Solid and Hazardous Waste Prevention and Control Engineering.
42.
Zurück zum Zitat He, J., & Zhang, W. (2011). Review of syngas production via biomass. Renewable and Sustainable Energy Reviews, 15, 482–492.CrossRef He, J., & Zhang, W. (2011). Review of syngas production via biomass. Renewable and Sustainable Energy Reviews, 15, 482–492.CrossRef
43.
Zurück zum Zitat Han, J., & Kim, H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: An overview Renewable and Sustainable Energy Reviews, 12, 397–416. Han, J., & Kim, H. (2008). The reduction and control technology of tar during biomass gasification/pyrolysis: An overview Renewable and Sustainable Energy Reviews, 12, 397–416.
44.
Zurück zum Zitat Fabry, F., Rehmet, C., Rohani, V., & Fulcheri, L. (2013). Waste gasification by thermal plasma: A review. Waste Biomass Valorisation, 3, 421–439 (Springer). Fabry, F., Rehmet, C., Rohani, V., & Fulcheri, L. (2013). Waste gasification by thermal plasma: A review. Waste Biomass Valorisation, 3, 421–439 (Springer).
45.
Zurück zum Zitat Shiota, K., Tsujimoto, Y., Takaoka, M., Oshita, K., & Fujimori, T. (2017). Emission of particulate matter from gasification and melting furnace for municipal solid waste in Japan. Journal of Environment Chemical Engineering, 17, 30102–1. Shiota, K., Tsujimoto, Y., Takaoka, M., Oshita, K., & Fujimori, T. (2017). Emission of particulate matter from gasification and melting furnace for municipal solid waste in Japan. Journal of Environment Chemical Engineering, 17, 30102–1.
46.
Zurück zum Zitat Cao, W., Cao, C., Guo, L., & Jin, H. (2017). Gasification of diosgenin solid waste for hydrogen production in supercritical water. International Journal of Hydrogen Energy, 1–10. Cao, W., Cao, C., Guo, L., & Jin, H. (2017). Gasification of diosgenin solid waste for hydrogen production in supercritical water. International Journal of Hydrogen Energy, 1–10.
47.
Zurück zum Zitat Dinis, N. C., Bruno, V. S., & Rouboa, A. (2016). Thermodynamic evaluation of Portuguese municipal solid waste gasification. Journal of Cleaner Production, 139, 622–635.CrossRef Dinis, N. C., Bruno, V. S., & Rouboa, A. (2016). Thermodynamic evaluation of Portuguese municipal solid waste gasification. Journal of Cleaner Production, 139, 622–635.CrossRef
48.
Zurück zum Zitat Shankar, D. P., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste Management (article in press). Shankar, D. P., Das, S., Pan, I., Leahy, J. J., & Kwapinski, W. (2016). Artificial neural network based modelling approach for municipal solid waste gasification in a fluidized bed reactor. Waste Management (article in press).
49.
Zurück zum Zitat Nielsen, M. C. (19). United States (12) 2009;1. Patent application US20090064581A1. Nielsen, M. C. (19). United States (12) 2009;1. Patent application US20090064581A1.
50.
Zurück zum Zitat Zhao, P., Ni, G., Jiang, Y., Chen, L., Chen, M., & Meng, Y. (2010). Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials, 181, 580–585.CrossRef Zhao, P., Ni, G., Jiang, Y., Chen, L., Chen, M., & Meng, Y. (2010). Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. Journal of Hazardous Materials, 181, 580–585.CrossRef
51.
Zurück zum Zitat Kosuke, K., & Tomohiro, T. (2014). Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles and Waste Management, 2014–2015. Kosuke, K., & Tomohiro, T. (2014). Revisiting estimates of municipal solid waste generation per capita and their reliability. Journal of Material Cycles and Waste Management, 2014–2015.
52.
Zurück zum Zitat Ivapalan, K., Muhd, Y., Kamaruzzaman, S., & Abdul, S. (2003). Energy potential from municipal solid waste in Malaysia. Renewable Energy, 29, 559–567. Ivapalan, K., Muhd, Y., Kamaruzzaman, S., & Abdul, S. (2003). Energy potential from municipal solid waste in Malaysia. Renewable Energy, 29, 559–567.
53.
Zurück zum Zitat Murphya, D., & McKeogh, E. (2004). Technical, economic and environmental analysis of energy production from municipal solid waste. Renewable Energy, 29, 1043–1057.CrossRef Murphya, D., & McKeogh, E. (2004). Technical, economic and environmental analysis of energy production from municipal solid waste. Renewable Energy, 29, 1043–1057.CrossRef
Metadaten
Titel
Municipal Solid Wastes—A Promising Sustainable Source of Energy: A Review on Different Waste-to-Energy Conversion Technologies
verfasst von
C. K. Parashar
P. Das
S. Samanta
A. Ganguly
P. K. Chatterjee
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-32-9228-4_13