Skip to main content

2024 | OriginalPaper | Buchkapitel

Music Recommendation Based on Face Emotion Recognition

verfasst von : Pallavi Ramsaran, Leckraj Nagowah

Erschienen in: Smart Mobile Communication & Artificial Intelligence

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The paper presents a mobile application, EmoTunes, that detects the face emotions of people and thereafter plays a suitable music. The emotion detection system works for any skin tone as the dataset introduced contains a mix of ethnicities. The dataset was collected by asking friends, family members and acquaintances selfies of themselves expressing the Ekman’s basic emotions. EmoTunes then used an ensemble learning with MobileNetV2 and ResNet50 to detect the 7 Ekman’s emotions: Angry, Disgust, Fear, Happy, Neutral, Sad and Surprise. The system can detect single user as well as multi-user emotions. It has 2 types of recommendation: Recommendation from server, where it fetches songs from the database, and Recommendation via YouTube, where it takes only a single emotion and fetches a YouTube song that best relates to the user’s preferences and liking. EmoTunes uses 2 methods of discretizing multi-user emotions: either by finding the most common emotion among them, or by finding the emotion of the face nearest to the camera. During real-time emotion detection, the system detects the user’s emotion for 15 s and finds the most common emotion expressed within those 15 s to play a music directly from the server. A total validation accuracy of 99.64% was deduced from the final model, making it one of the promising models when compared to recent research work. The system can be deployed to any part of the world as it adapts to each user’s liking using the YouTube feature. While humans are social creatures, they do not like to wait for services. EmoTunes can hence be deployed in waiting rooms such as for healthcare facilities and at the metro/bus stations, or even in buses and trains in Mauritius, or other parts of the world, to provide the users with some recomforting music based on their current emotions. Future considerations might include further working on the dataset to achieve a much bigger variation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Ekman, P.: Are there basic emotions? Psychol. Rev. 99, 550–553 (1992)CrossRef Ekman, P.: Are there basic emotions? Psychol. Rev. 99, 550–553 (1992)CrossRef
7.
Zurück zum Zitat Lasri, I., Solh, A., Belkacemi, M.: Facial emotion recognition of students using convolutional neural network. In: 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, 28–30 October 2019, pp. 1–6. IEEE (2019) Lasri, I., Solh, A., Belkacemi, M.: Facial emotion recognition of students using convolutional neural network. In: 2019 Third International Conference on Intelligent Computing in Data Sciences (ICDS), Marrakech, Morocco, 28–30 October 2019, pp. 1–6. IEEE (2019)
8.
Zurück zum Zitat Ahmed, T.U., Hossain, S., Hossain, M.S., ul Islam, R., Andersson, K.: Facial expression recognition using convolutional neural network with data augmentation. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, 30 May 2019, pp. 336–341. IEEE (2019) Ahmed, T.U., Hossain, S., Hossain, M.S., ul Islam, R., Andersson, K.: Facial expression recognition using convolutional neural network with data augmentation. In: 2019 Joint 8th International Conference on Informatics, Electronics & Vision (ICIEV) and 2019 3rd International Conference on Imaging, Vision & Pattern Recognition (icIVPR), Spokane, 30 May 2019, pp. 336–341. IEEE (2019)
9.
Zurück zum Zitat Modi, S., Bohara, M.H.: Facial emotion recognition using convolution neural network. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 06–08 May 2021, pp. 1339–1344. IEEE (2021) Modi, S., Bohara, M.H.: Facial emotion recognition using convolution neural network. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS), Madurai, India, 06–08 May 2021, pp. 1339–1344. IEEE (2021)
10.
Zurück zum Zitat Athavle, M., Mudale, D., Shrivastav, U., Gupta, M.: Music recommendation based on face emotion recognition. J. Inform. Electr. Electron. Eng. (JIEEE) 2(2), 1–11 (2021)CrossRef Athavle, M., Mudale, D., Shrivastav, U., Gupta, M.: Music recommendation based on face emotion recognition. J. Inform. Electr. Electron. Eng. (JIEEE) 2(2), 1–11 (2021)CrossRef
11.
Zurück zum Zitat Pranav, E., Kamal, S., Chandran, C.S., Supriya, M.H.: Facial emotion recognition using deep convolutional neural network. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 06–07 March 2020, pp. 317–320. IEEE (2020) Pranav, E., Kamal, S., Chandran, C.S., Supriya, M.H.: Facial emotion recognition using deep convolutional neural network. In: 2020 6th International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India, 06–07 March 2020, pp. 317–320. IEEE (2020)
12.
Zurück zum Zitat Meena, G., Mohbey, K.K.: Sentiment analysis on images using different transfer learning models. Procedia Comput. Sci. 218, 1640–1649 (2023)CrossRef Meena, G., Mohbey, K.K.: Sentiment analysis on images using different transfer learning models. Procedia Comput. Sci. 218, 1640–1649 (2023)CrossRef
13.
Zurück zum Zitat Akhand, M.H., Roy, S., Siddique, N., Kamal, M.S., Shimamura, T.: Facial emotion recognition using transfer learning in the deep CNN. Electronics 10(9), 1036 (2021). MDPI Akhand, M.H., Roy, S., Siddique, N., Kamal, M.S., Shimamura, T.: Facial emotion recognition using transfer learning in the deep CNN. Electronics 10(9), 1036 (2021). MDPI
14.
Zurück zum Zitat Zahara, L., Musa, P., Wibowo, E.P., Karim, I., Musa, S.B.: The facial emotion recognition (FER-2013) dataset for prediction system of micro-expressions face using the convolutional neural network (CNN) algorithm based Raspberry Pi. In: 2020 Fifth International Conference on Informatics and Computing (ICIC), Gorontalo, Indonesia, 03–04 November 2020, pp. 1–9. IEEE (2020) Zahara, L., Musa, P., Wibowo, E.P., Karim, I., Musa, S.B.: The facial emotion recognition (FER-2013) dataset for prediction system of micro-expressions face using the convolutional neural network (CNN) algorithm based Raspberry Pi. In: 2020 Fifth International Conference on Informatics and Computing (ICIC), Gorontalo, Indonesia, 03–04 November 2020, pp. 1–9. IEEE (2020)
15.
Zurück zum Zitat Jain, N., Kumar, S., Kumar, A., Shamsolmoali, P., Zareapoor, M.: Hybrid deep neural networks for face emotion recognition. Pattern Recognit. Lett. 115, 101–106 (2018)CrossRef Jain, N., Kumar, S., Kumar, A., Shamsolmoali, P., Zareapoor, M.: Hybrid deep neural networks for face emotion recognition. Pattern Recognit. Lett. 115, 101–106 (2018)CrossRef
16.
Zurück zum Zitat Dhankhar, P.: ResNet-50 and VGG-16 for recognizing facial emotions. Int. J. Innov. Eng. Technol. 13(4) (2019) Dhankhar, P.: ResNet-50 and VGG-16 for recognizing facial emotions. Int. J. Innov. Eng. Technol. 13(4) (2019)
17.
Zurück zum Zitat Shaees, S., Naeem, H., Arslan, M., Naeem, M.R., Ali, S.H., Aldabbas, H.: Facial emotion recognition using transfer learning. In: 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 09–10 September 2020, pp. 1–5. IEEE (2020) Shaees, S., Naeem, H., Arslan, M., Naeem, M.R., Ali, S.H., Aldabbas, H.: Facial emotion recognition using transfer learning. In: 2020 International Conference on Computing and Information Technology (ICCIT-1441), Tabuk, Saudi Arabia, 09–10 September 2020, pp. 1–5. IEEE (2020)
18.
Zurück zum Zitat Wahyono, I.D., Saryono, D., Ashar, M., Asfani, K., Sunarti: Face emotional detection using computational intelligence based ubiquitous computing. In: 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 21–22 September, pp. 389–393. IEEE (2019) Wahyono, I.D., Saryono, D., Ashar, M., Asfani, K., Sunarti: Face emotional detection using computational intelligence based ubiquitous computing. In: 2019 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 21–22 September, pp. 389–393. IEEE (2019)
19.
Zurück zum Zitat Zhong, L., Liao, H., Xu, B., Lu, S., Wang, J.: Tied gender condition for facial expression recognition with deep random forest. J. Electron. Imaging 29(2) (2020) Zhong, L., Liao, H., Xu, B., Lu, S., Wang, J.: Tied gender condition for facial expression recognition with deep random forest. J. Electron. Imaging 29(2) (2020)
20.
Zurück zum Zitat Flores-Juarez, U.A., Álvarez-Cedillo, J.A., Álvarez-Sánchez, T.: Two facial emotion detection based on Naive Bayesian classifier. J. Theor. Appl. Inf. Technol. 99(23), 1–10 (2021) Flores-Juarez, U.A., Álvarez-Cedillo, J.A., Álvarez-Sánchez, T.: Two facial emotion detection based on Naive Bayesian classifier. J. Theor. Appl. Inf. Technol. 99(23), 1–10 (2021)
Metadaten
Titel
Music Recommendation Based on Face Emotion Recognition
verfasst von
Pallavi Ramsaran
Leckraj Nagowah
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-56075-0_18