Skip to main content

2018 | OriginalPaper | Buchkapitel

10. Musical Instruments as Synchronized Systems

verfasst von : Rolf Bader

Erschienen in: Springer Handbook of Systematic Musicology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Most musical instrument families have nearly perfect harmonic overtone series, for example plucked, bowed, or wind instruments. However, when considering the complex geometry and nonlinear driving mechanisms many of these instruments have we would expect them to have very inharmonic overtone series. So to make musical instruments play notes that we accept as harmonic sounds, synchronization needs to occur to arrive at the perfect harmonic overtone series the instruments actually produce. The reasons for this synchronization are different in the singing voice, organs, saxophones or clarinets, violin bowing or in plucked stringed instruments. However, when examining the mechanisms of synchronization further, we find general rules and suitable algorithms to understand the basic behavior of these instruments.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
10.1
Zurück zum Zitat H. Haken: Synergetics (Springer, Berlin, Heidelberg 1990)MATH H. Haken: Synergetics (Springer, Berlin, Heidelberg 1990)MATH
10.2
Zurück zum Zitat J. Argyris, G. Faust, M. Haase, R. Friedrich: An Exploration of Dynamical Systems and Chaos (Springer, Berlin, Heidelberg 2015)CrossRef J. Argyris, G. Faust, M. Haase, R. Friedrich: An Exploration of Dynamical Systems and Chaos (Springer, Berlin, Heidelberg 2015)CrossRef
10.3
Zurück zum Zitat V. Aschoff: Experimentelle Untersuchungen an einer Klarinette. [Experimental investigations of a clarinet], Akust. Z. 1, 77–93 (1936) V. Aschoff: Experimentelle Untersuchungen an einer Klarinette. [Experimental investigations of a clarinet], Akust. Z. 1, 77–93 (1936)
10.4
Zurück zum Zitat J. Sundberg: The Science of the Singing Voice (Nothern Illinois University Press, DeKalb 1988) J. Sundberg: The Science of the Singing Voice (Nothern Illinois University Press, DeKalb 1988)
10.5
Zurück zum Zitat I.R. Titze: The physics of small-amplitude oscillation of the vocal folds, J. Acoust. Soc. Am. 83, 1536–1552 (1988)CrossRef I.R. Titze: The physics of small-amplitude oscillation of the vocal folds, J. Acoust. Soc. Am. 83, 1536–1552 (1988)CrossRef
10.6
Zurück zum Zitat T. Fitch, J. Neubauer, H. Herzel: Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production, Animal Behav. 63(3), 407–418 (2002)CrossRef T. Fitch, J. Neubauer, H. Herzel: Calls out of chaos: The adaptive significance of nonlinear phenomena in mammalian vocal production, Animal Behav. 63(3), 407–418 (2002)CrossRef
10.7
Zurück zum Zitat P. Mergell, H. Herzel, T. Wittenberg, M. Tigges, U. Eysholdt: Phonation onset: Vocal fold modeling and high-speed glottography, J. Acoust. Soc. Am. 104(1), 464–470 (1998)CrossRef P. Mergell, H. Herzel, T. Wittenberg, M. Tigges, U. Eysholdt: Phonation onset: Vocal fold modeling and high-speed glottography, J. Acoust. Soc. Am. 104(1), 464–470 (1998)CrossRef
10.8
Zurück zum Zitat P. Mergell, H. Herzel, I.R. Tietze: Irregular vocal-fold vibration – High-speed observation and modeling, J. Acoust. Soc. Am. 108(6), 2996–2300 (2000)CrossRef P. Mergell, H. Herzel, I.R. Tietze: Irregular vocal-fold vibration – High-speed observation and modeling, J. Acoust. Soc. Am. 108(6), 2996–2300 (2000)CrossRef
10.9
Zurück zum Zitat A. Behrmann, R.J. Baken: Correlation dimension of electroglottographic data from healthy and pathologic subjects, J. Acoust. Soc. Am. 102(4), 2371–2379 (1997)CrossRef A. Behrmann, R.J. Baken: Correlation dimension of electroglottographic data from healthy and pathologic subjects, J. Acoust. Soc. Am. 102(4), 2371–2379 (1997)CrossRef
10.10
Zurück zum Zitat J. Neubauer, M. Edgerton, H. Herzel: Nonlinear phenomena in contemporary vocal music, J. Voice 18(1), 1–12 (2004)CrossRef J. Neubauer, M. Edgerton, H. Herzel: Nonlinear phenomena in contemporary vocal music, J. Voice 18(1), 1–12 (2004)CrossRef
10.11
Zurück zum Zitat K. Ishizaka: Equivalent lumped-mass models of vocal fold vibration. In: Vocal Fold Physiology (1981) pp. 231–244 K. Ishizaka: Equivalent lumped-mass models of vocal fold vibration. In: Vocal Fold Physiology (1981) pp. 231–244
10.12
Zurück zum Zitat I.R. Titze, Sh S. Schmidt, M.R. Titze: Phonation threshold pressure in a physical model of the vocal fold mucosa, J. Acoust. Soc. Am. 97(5), 3080–3084 (1995)CrossRef I.R. Titze, Sh S. Schmidt, M.R. Titze: Phonation threshold pressure in a physical model of the vocal fold mucosa, J. Acoust. Soc. Am. 97(5), 3080–3084 (1995)CrossRef
10.13
Zurück zum Zitat J.J. Jiang, Y. Zhang: Modeling of chaotic vibrations in symmetric vocal folds, J. Acoust. Soc. Am. 110(4), 2120–2128 (2001)CrossRef J.J. Jiang, Y. Zhang: Modeling of chaotic vibrations in symmetric vocal folds, J. Acoust. Soc. Am. 110(4), 2120–2128 (2001)CrossRef
10.14
Zurück zum Zitat J.J. Jiang, Y. Zhang: Chaotic vibration induced by turbulent noise in a two-mass model of vocal folds, J. Acoust. Soc. Am. 112(5), 2127–2133 (2002)CrossRef J.J. Jiang, Y. Zhang: Chaotic vibration induced by turbulent noise in a two-mass model of vocal folds, J. Acoust. Soc. Am. 112(5), 2127–2133 (2002)CrossRef
10.15
Zurück zum Zitat J.G. Švec, H.K. Schutte, D.G. Miller: On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges, J. Acoust. Soc. Am. 106(3), 1523–1531 (1999)CrossRef J.G. Švec, H.K. Schutte, D.G. Miller: On pitch jumps between chest and falsetto registers in voice: Data from living and excised human larynges, J. Acoust. Soc. Am. 106(3), 1523–1531 (1999)CrossRef
10.16
Zurück zum Zitat I.T. Tokuda, M. Zemke, M. Kob, H. Herzel: Biomechanical modeling of register transition and the role of vocal tract resonators, J. Acoust. Soc. Am. 127(3), 1528–1536 (2010)CrossRef I.T. Tokuda, M. Zemke, M. Kob, H. Herzel: Biomechanical modeling of register transition and the role of vocal tract resonators, J. Acoust. Soc. Am. 127(3), 1528–1536 (2010)CrossRef
10.17
Zurück zum Zitat J.C. Lucero: Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region, J. Acoust. Soc. Am. 94(6), 3104–3111 (1993)CrossRef J.C. Lucero: Dynamics of the two-mass model of the vocal folds: Equilibria, bifurcations, and oscillation region, J. Acoust. Soc. Am. 94(6), 3104–3111 (1993)CrossRef
10.18
Zurück zum Zitat J.C. Lucero: A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset, J. Acoust. Soc. Am. 105(1), 423–431 (1999)CrossRef J.C. Lucero: A theoretical study of the hysteresis phenomenon at vocal fold oscillation onset-offset, J. Acoust. Soc. Am. 105(1), 423–431 (1999)CrossRef
10.19
Zurück zum Zitat J.C. Lucero, L.L. Koenig, K.G. Lourenço, N. Ruty, X. Pelorson: A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis, J. Acoust. Soc. Am. 129(3), 1568–1579 (2011)CrossRef J.C. Lucero, L.L. Koenig, K.G. Lourenço, N. Ruty, X. Pelorson: A lumped mucosal wave model of the vocal folds revisited: Recent extensions and oscillation hysteresis, J. Acoust. Soc. Am. 129(3), 1568–1579 (2011)CrossRef
10.20
Zurück zum Zitat P.Å. Lindestad, M. Södersten, B. Merker, S. Granqvist: Voice source characteristics in Mongolian ‘throat singing’ studied with high-speed imaging technique, acoustic spectra, and inverse filtering, J. Voice 15(1), 78–85 (2001)CrossRef P.Å. Lindestad, M. Södersten, B. Merker, S. Granqvist: Voice source characteristics in Mongolian ‘throat singing’ studied with high-speed imaging technique, acoustic spectra, and inverse filtering, J. Voice 15(1), 78–85 (2001)CrossRef
10.21
Zurück zum Zitat I. Steinecke, H. Herzel: Birfurcations in an asymmetric vocal fold model, J. Acoust. Soc. Am. 97, 1874–1884 (1995)CrossRef I. Steinecke, H. Herzel: Birfurcations in an asymmetric vocal fold model, J. Acoust. Soc. Am. 97, 1874–1884 (1995)CrossRef
10.22
Zurück zum Zitat M.-H. Lee, J.N. Lee, K.-S. Soh: Chaos in segments from Korean traditional singing and Western singing, J. Acoust. Soc. Am. 103(2), 1175–1182 (1998)CrossRef M.-H. Lee, J.N. Lee, K.-S. Soh: Chaos in segments from Korean traditional singing and Western singing, J. Acoust. Soc. Am. 103(2), 1175–1182 (1998)CrossRef
10.23
Zurück zum Zitat D.A. Berry, H. Herzel, I.R. Titze, K. Krischer: Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions, J. Acoust. Soc. Am. 95(6), 3595–3604 (1994)CrossRef D.A. Berry, H. Herzel, I.R. Titze, K. Krischer: Interpretation of biomechanical simulations of normal and chaotic vocal fold oscillations with empirical eigenfunctions, J. Acoust. Soc. Am. 95(6), 3595–3604 (1994)CrossRef
10.24
Zurück zum Zitat Q. Xue, R. Mittal, X. Zhang: A computational study of the effect of vocal-fold asymmetry on phonation, J. Acoust. Soc. Am. 128(2), 181–187 (2010)CrossRef Q. Xue, R. Mittal, X. Zhang: A computational study of the effect of vocal-fold asymmetry on phonation, J. Acoust. Soc. Am. 128(2), 181–187 (2010)CrossRef
10.25
Zurück zum Zitat F.A. Berry, H. Herzel, I.R. Tieze, B.H. Story: Bifurcations in excised larynx experiments, J. Voice 10, 129–138 (1996)CrossRef F.A. Berry, H. Herzel, I.R. Tieze, B.H. Story: Bifurcations in excised larynx experiments, J. Voice 10, 129–138 (1996)CrossRef
10.26
Zurück zum Zitat T. Lerch: Vergleichende Untersuchung von Bohrungsprofilen historischer Blockflöten des Barock (Comparative investigation of bore profiles of historical Barock recorder flutes) (Staatliches Institut für Musikforschung. Preussischer Kulturbesitz Musikinstrumentenmuseum, Berlin 1996) T. Lerch: Vergleichende Untersuchung von Bohrungsprofilen historischer Blockflöten des Barock (Comparative investigation of bore profiles of historical Barock recorder flutes) (Staatliches Institut für Musikforschung. Preussischer Kulturbesitz Musikinstrumentenmuseum, Berlin 1996)
10.27
Zurück zum Zitat C.J. Nederveen: Acoustical Aspects of Musical Instruments (Northern Illinois University Press, DeKalb 1998) C.J. Nederveen: Acoustical Aspects of Musical Instruments (Northern Illinois University Press, DeKalb 1998)
10.28
Zurück zum Zitat A.H. Benade: Fundamentals of Musical Acoustics (Oxford Univ. Press, New York 1976) A.H. Benade: Fundamentals of Musical Acoustics (Oxford Univ. Press, New York 1976)
10.29
Zurück zum Zitat G. Krassnitzer: Multiphonics für Klarinette mit deutschem System und andere zeitgenössische Spielarten. (Multiphonics for clarinet with german system and other contemporary styles) (edition ebenos, Aachen 2002) G. Krassnitzer: Multiphonics für Klarinette mit deutschem System und andere zeitgenössische Spielarten. (Multiphonics for clarinet with german system and other contemporary styles) (edition ebenos, Aachen 2002)
10.30
Zurück zum Zitat P.A. Durbin, R. Pettersson: Statistical Theory and Modeling for Turbulent Flows (Wiley, Chichester 2001)MATH P.A. Durbin, R. Pettersson: Statistical Theory and Modeling for Turbulent Flows (Wiley, Chichester 2001)MATH
10.31
Zurück zum Zitat B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acta Acust. United Acust. 82, 863–877 (1996) B. Fabre, A. Hirschberg, A.P.J. Wijnands: Vortex shedding in steady oscillation of a flue organ pipe, Acta Acust. United Acust. 82, 863–877 (1996)
10.32
Zurück zum Zitat J.-P. Dalmont, J. Gilbert, J. Kergomard, S. Ollivier: An analytical prediction of the oscillation and extinction thresholds of a clarinet, J. Acoust. Soc. Am. 118(5), 3294–3305 (2005)CrossRef J.-P. Dalmont, J. Gilbert, J. Kergomard, S. Ollivier: An analytical prediction of the oscillation and extinction thresholds of a clarinet, J. Acoust. Soc. Am. 118(5), 3294–3305 (2005)CrossRef
10.33
Zurück zum Zitat R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 1. Instantaneous pressure fields at a single frequency, J. Fluid Mech. 169, 125–149 (1986)CrossRef R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 1. Instantaneous pressure fields at a single frequency, J. Fluid Mech. 169, 125–149 (1986)CrossRef
10.34
Zurück zum Zitat R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 2: Multiple frequency pressure fields, J. Fluid Mech. 169, 151–172 (1986)CrossRef R. Kaykayoglu, D. Rockwell: Unstable jet-edge interaction. Part 2: Multiple frequency pressure fields, J. Fluid Mech. 169, 151–172 (1986)CrossRef
10.35
Zurück zum Zitat A. Richter, R. Grundmann: Numerical investigations of the bassoons aeroacoustic, J. Acoust. Soc. Am. 123, 3448 (2008)CrossRef A. Richter, R. Grundmann: Numerical investigations of the bassoons aeroacoustic, J. Acoust. Soc. Am. 123, 3448 (2008)CrossRef
10.36
Zurück zum Zitat R. Bader: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology, Springer Series Current Research in Systematic Musicology, Vol. 2 (Springer, Heidelberg 2013)CrossRef R. Bader: Nonlinearities and Synchronization in Musical Acoustics and Music Psychology, Springer Series Current Research in Systematic Musicology, Vol. 2 (Springer, Heidelberg 2013)CrossRef
10.37
Zurück zum Zitat J.W. Coltman: Sounding mechanism of the flute and organ pipe, J. Acoust. Soc. Am. 44(4), 983–992 (1968)CrossRef J.W. Coltman: Sounding mechanism of the flute and organ pipe, J. Acoust. Soc. Am. 44(4), 983–992 (1968)CrossRef
10.38
Zurück zum Zitat M. Abel, S. Bergweiler, R. Gerhard-Multhaupt: Synchronization of organ pipes: Experimental observations and modeling, J. Acoust. Soc. Am. 119, 2467 (2006)CrossRef M. Abel, S. Bergweiler, R. Gerhard-Multhaupt: Synchronization of organ pipes: Experimental observations and modeling, J. Acoust. Soc. Am. 119, 2467 (2006)CrossRef
10.39
Zurück zum Zitat W. Lottermoser: Orgeln, Kirchen und Akustik (Organs, Churches, and Acoustics) (Erwin Bochinsky, Frankfurt a.M. 1983) W. Lottermoser: Orgeln, Kirchen und Akustik (Organs, Churches, and Acoustics) (Erwin Bochinsky, Frankfurt a.M. 1983)
10.40
Zurück zum Zitat C. Koehn: A bowed bamboo tube zither from Southeast Asia. In: ISMA, Le Mans 2014 (2014) pp. 499–502 C. Koehn: A bowed bamboo tube zither from Southeast Asia. In: ISMA, Le Mans 2014 (2014) pp. 499–502
10.41
Zurück zum Zitat G. Müller, W. Lauterborn: The bowed string as a nonlinear dynamical system, Acustica 82, 657–664 (1996) G. Müller, W. Lauterborn: The bowed string as a nonlinear dynamical system, Acustica 82, 657–664 (1996)
10.42
Zurück zum Zitat C.V. Raman: On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results, Bull. Indian Assoc. Cultivat. Sci. 15, 1–158 (1918) C.V. Raman: On the mechanical theory of the vibrations of bowed strings and of musical instruments of the violin family, with experimental verification of the results, Bull. Indian Assoc. Cultivat. Sci. 15, 1–158 (1918)
10.43
Zurück zum Zitat L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985) L. Cremer: The Physics of the Violin (MIT Press, Cambridge 1985)
10.44
Zurück zum Zitat A. Askenfeld: Measurements of bow motion and bow force in violin playing, J. Acoust. Soc. Am. 80, 1007–1015 (1986)CrossRef A. Askenfeld: Measurements of bow motion and bow force in violin playing, J. Acoust. Soc. Am. 80, 1007–1015 (1986)CrossRef
10.45
Zurück zum Zitat P. Duffour, J. Woodhouse: Instability of systems with a frictional point contact: Part 1, Basic modelling, J. Sound Vib. 271, 365–390 (2004)CrossRef P. Duffour, J. Woodhouse: Instability of systems with a frictional point contact: Part 1, Basic modelling, J. Sound Vib. 271, 365–390 (2004)CrossRef
10.46
Zurück zum Zitat P. Duffour, J. Woodhouse: Instability of systems with a frictional point contact: Part 2, Model extensions, J. Sound Vib. 271, 391–410 (2004)CrossRef P. Duffour, J. Woodhouse: Instability of systems with a frictional point contact: Part 2, Model extensions, J. Sound Vib. 271, 391–410 (2004)CrossRef
10.47
Zurück zum Zitat W. Güth: A comparison of the Raman and the oscillator models of string excitation by bowing, Acustica 82, 169–174 (1996)MATH W. Güth: A comparison of the Raman and the oscillator models of string excitation by bowing, Acustica 82, 169–174 (1996)MATH
10.48
Zurück zum Zitat M.E. McIntyre, J. Woodhouse: Fundamentals of bowed-string dynamics, Acustica 43, 93–108 (1979)MATH M.E. McIntyre, J. Woodhouse: Fundamentals of bowed-string dynamics, Acustica 43, 93–108 (1979)MATH
10.49
Zurück zum Zitat M.E. McIntyre, J. Woodhouse: On the oscillations of musical instruments, J. Acoust. Soc. Am. 74(5), 1325–1345 (1983)CrossRef M.E. McIntyre, J. Woodhouse: On the oscillations of musical instruments, J. Acoust. Soc. Am. 74(5), 1325–1345 (1983)CrossRef
10.50
Zurück zum Zitat R. Bader: Whole geometry finite-difference modeling of the violin. In: Proc. Forum Acusticum 2005 (2005) pp. 629–634 R. Bader: Whole geometry finite-difference modeling of the violin. In: Proc. Forum Acusticum 2005 (2005) pp. 629–634
10.51
Zurück zum Zitat R.J. Hanson, A.J. Schneider, F.W. Halgedahl: Anomalous low-pitched tones from a bowed violin string, J. Catgut Acoust. Soc. 2, 1–7 (1994) R.J. Hanson, A.J. Schneider, F.W. Halgedahl: Anomalous low-pitched tones from a bowed violin string, J. Catgut Acoust. Soc. 2, 1–7 (1994)
10.52
Zurück zum Zitat M. Kimura: How to produce subharmonics on the violin, New Music Res. 28, 178–184 (1999)CrossRef M. Kimura: How to produce subharmonics on the violin, New Music Res. 28, 178–184 (1999)CrossRef
10.53
Zurück zum Zitat J. Angster, J. Angster, A. Miklós: Coupling between simultaneously sounded organ pipes, AES E-Library 94, 1–8 (1993) J. Angster, J. Angster, A. Miklós: Coupling between simultaneously sounded organ pipes, AES E-Library 94, 1–8 (1993)
10.54
Zurück zum Zitat D.H. Keefe, B. Laden: Correlation dimension of woodwind multiphonic tones, J. Acoust. Soc. Am. 90(4), 1754–1765 (1991)CrossRef D.H. Keefe, B. Laden: Correlation dimension of woodwind multiphonic tones, J. Acoust. Soc. Am. 90(4), 1754–1765 (1991)CrossRef
10.55
Zurück zum Zitat D. Borgo: Sync or Swarm. Improvising Music in a Complex Age (Bloomsbury Academic, New York, London 2005) D. Borgo: Sync or Swarm. Improvising Music in a Complex Age (Bloomsbury Academic, New York, London 2005)
10.56
10.57
Zurück zum Zitat R.V. Velazques: Ancient aerophones with mirliton. In: Proceedings ISGMA (2004) pp. 363–373 R.V. Velazques: Ancient aerophones with mirliton. In: Proceedings ISGMA (2004) pp. 363–373
10.58
Zurück zum Zitat N.H. Fletcher: Mode locking in nonlinearly excited inharmonic musical oscillators, J. Acoust. Soc. Am. 64, 1566–1569 (1978)CrossRef N.H. Fletcher: Mode locking in nonlinearly excited inharmonic musical oscillators, J. Acoust. Soc. Am. 64, 1566–1569 (1978)CrossRef
10.59
Zurück zum Zitat S. Dubnov, X. Rodet: Investigation of phase coupling phenomena in sustained portion of musical instruments sound, J. Acoust. Soc. Am. 113, 348–359 (2003)CrossRef S. Dubnov, X. Rodet: Investigation of phase coupling phenomena in sustained portion of musical instruments sound, J. Acoust. Soc. Am. 113, 348–359 (2003)CrossRef
10.60
Zurück zum Zitat K.A. Legge, N.H. Fletcher: Nonlinear generation of missing modes on a vibrating string, J. Acoust. Soc. Am. 76(1), 5–12 (1984)CrossRef K.A. Legge, N.H. Fletcher: Nonlinear generation of missing modes on a vibrating string, J. Acoust. Soc. Am. 76(1), 5–12 (1984)CrossRef
10.61
Zurück zum Zitat R. Bader: Theoretical framework for initial transient and steady-state frequency amplitudes of musical instruments as coupled subsystems. In: Proc. 20th Int. Symp. Music Acoust. (ISMA) (2010) pp. 1–8 R. Bader: Theoretical framework for initial transient and steady-state frequency amplitudes of musical instruments as coupled subsystems. In: Proc. 20th Int. Symp. Music Acoust. (ISMA) (2010) pp. 1–8
10.62
Zurück zum Zitat P. Cariani: Temporal codes, timing nets, and music perception, J. New Music Res. 30(2), 107135 (2001) P. Cariani: Temporal codes, timing nets, and music perception, J. New Music Res. 30(2), 107135 (2001)
10.63
Zurück zum Zitat F. Messner: Friction blocks of New Ireland. In: Australia and the Pacific Islands, Garland Encyclopedia of World Music, Vol. 9, ed. by A.L. Kaeppler, J.W. Love (Routledge, London 1998) pp. 380–382 F. Messner: Friction blocks of New Ireland. In: Australia and the Pacific Islands, Garland Encyclopedia of World Music, Vol. 9, ed. by A.L. Kaeppler, J.W. Love (Routledge, London 1998) pp. 380–382
10.64
Zurück zum Zitat N.J. Conrad, M. Malina, S.C. Münzel: New flutes document the earliest musical tradition in southwestern Germany, Nature 460, 737–740 (2009)CrossRef N.J. Conrad, M. Malina, S.C. Münzel: New flutes document the earliest musical tradition in southwestern Germany, Nature 460, 737–740 (2009)CrossRef
Metadaten
Titel
Musical Instruments as Synchronized Systems
verfasst von
Rolf Bader
Copyright-Jahr
2018
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-55004-5_10

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.