Skip to main content
Erschienen in: Neural Computing and Applications 3-4/2014

01.09.2014 | Original Article

Mutual information-based optimization of sparse spatio-spectral filters in brain–computer interface

verfasst von: Mahnaz Arvaneh, Cuntai Guan, Kai Keng Ang, Chai Quek

Erschienen in: Neural Computing and Applications | Ausgabe 3-4/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, neuro-rehabilitation based on brain–computer interface (BCI) has been considered one of the important applications for BCI. A key challenge in this system is the accurate and reliable detection of motor imagery. In motor imagery-based BCIs, the common spatial patterns (CSP) algorithm is widely used to extract discriminative patterns from electroencephalography signals. However, the CSP algorithm is sensitive to noise and artifacts, and its performance depends on the operational frequency band. To address these issues, this paper proposes a novel optimized sparse spatio-spectral filtering (OSSSF) algorithm. The proposed OSSSF algorithm combines a filter bank framework with sparse CSP filters to automatically select subject-specific discriminative frequency bands as well as to robustify against noise and artifacts. The proposed algorithm directly selects the optimal regularization parameters using a novel mutual information-based approach, instead of the cross-validation approach that is computationally intractable in a filter bank framework. The performance of the proposed OSSSF algorithm is evaluated on a dataset from 11 stroke patients performing neuro-rehabilitation, as well as on the publicly available BCI competition III dataset IVa. The results show that the proposed OSSSF algorithm outperforms the existing algorithms based on CSP, stationary CSP, sparse CSP and filter bank CSP in terms of the classification accuracy, and substantially reduce the computational time of selecting the regularization parameters compared with the cross-validation approach.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791CrossRef Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control. Clin Neurophysiol 113:767–791CrossRef
2.
Zurück zum Zitat Birbaumer N (2006) Brain-computer-interface research: coming of age. Clin Neurophysiol 117:479–483CrossRef Birbaumer N (2006) Brain-computer-interface research: coming of age. Clin Neurophysiol 117:479–483CrossRef
3.
Zurück zum Zitat Wolpaw JR, McFarland DJ, Vaughan TM (2000) Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 8:222–226CrossRef Wolpaw JR, McFarland DJ, Vaughan TM (2000) Brain-computer interface research at the Wadsworth Center. IEEE Trans Rehabil Eng 8:222–226CrossRef
4.
Zurück zum Zitat Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103:642–651CrossRef Pfurtscheller G, Neuper C, Flotzinger D, Pregenzer M (1997) EEG-based discrimination between imagination of right and left hand movement. Electroencephalogr Clin Neurophysiol 103:642–651CrossRef
5.
Zurück zum Zitat McFarland DJ, Wolpaw JR (2008) Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis. J Neural Eng 5:155–162CrossRef McFarland DJ, Wolpaw JR (2008) Sensorimotor rhythm-based brain-computer interface (BCI): model order selection for autoregressive spectral analysis. J Neural Eng 5:155–162CrossRef
6.
Zurück zum Zitat Hu S, Tian Q, Cao Y, Zhang J, Kong W (2012) Motor imagery classification based on joint regression model and spectral power. Neural Comput Appl 21(7):1–6 doi:10.1007/s00521-012-1244-3 Hu S, Tian Q, Cao Y, Zhang J, Kong W (2012) Motor imagery classification based on joint regression model and spectral power. Neural Comput Appl 21(7):1–6 doi:10.​1007/​s00521-012-1244-3
7.
Zurück zum Zitat Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39:910–917CrossRef Buch E, Weber C, Cohen LG, Braun C, Dimyan MA, Ard T, Mellinger J, Caria A, Soekadar S, Fourkas A, Birbaumer N (2008) Think to move: a neuromagnetic brain-computer interface (BCI) system for chronic stroke. Stroke 39:910–917CrossRef
8.
Zurück zum Zitat Pfurtscheller G, Muller-Putz GR, Scherer R, Neuper C (2008) Rehabilitation with brain-computer interface systems. Comput Aided Des 41:58–65CrossRef Pfurtscheller G, Muller-Putz GR, Scherer R, Neuper C (2008) Rehabilitation with brain-computer interface systems. Comput Aided Des 41:58–65CrossRef
9.
Zurück zum Zitat Ang KK, Guan C, Chua KSG, Ang TB, Kuah CWK, Wang C, Phua KS, Chin ZY, Zhang H (2011) A large clinical study on the ability of stroke patients to use EEG-based motor imagery brain-computer interface. Clin EEG Neurosci 42:253–258CrossRef Ang KK, Guan C, Chua KSG, Ang TB, Kuah CWK, Wang C, Phua KS, Chin ZY, Zhang H (2011) A large clinical study on the ability of stroke patients to use EEG-based motor imagery brain-computer interface. Clin EEG Neurosci 42:253–258CrossRef
10.
Zurück zum Zitat Ang KK, Guan C, Chua KSG, Ang TB, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H (2010) Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: IEEE 32th annual international conference of the engineering in medicine and biology society, pp 5549–5552 Ang KK, Guan C, Chua KSG, Ang TB, Kuah C, Wang C, Phua KS, Chin ZY, Zhang H (2010) Clinical study of neurorehabilitation in stroke using EEG-based motor imagery brain-computer interface with robotic feedback. In: IEEE 32th annual international conference of the engineering in medicine and biology society, pp 5549–5552
11.
Zurück zum Zitat Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515CrossRef Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103:499–515CrossRef
12.
Zurück zum Zitat Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25:41–56CrossRef Blankertz B, Tomioka R, Lemm S, Kawanabe M, Müller KR (2008) Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process Mag 25:41–56CrossRef
13.
Zurück zum Zitat Pregenzer M, Pfurtscheller G (1999) Frequency component selection for an EEG-based brain to computer interface. IEEE Trans Rehabil Eng 7:413–419CrossRef Pregenzer M, Pfurtscheller G (1999) Frequency component selection for an EEG-based brain to computer interface. IEEE Trans Rehabil Eng 7:413–419CrossRef
14.
Zurück zum Zitat Fukunaga K (1990) Introduction to statistical pattern recognition 2nd edn. Academic Press, New York, pp 26–34 Fukunaga K (1990) Introduction to statistical pattern recognition 2nd edn. Academic Press, New York, pp 26–34
15.
Zurück zum Zitat Krauledat M, Dornhege G, Blankertz B, Müller, KR (2007) Robustifying EEG data analysis by removing outliers Chaos Complex Lett 2:259–274 Krauledat M, Dornhege G, Blankertz B, Müller, KR (2007) Robustifying EEG data analysis by removing outliers Chaos Complex Lett 2:259–274
16.
Zurück zum Zitat Kang H, Nam Y, Choi S (2009) Composite common spatial pattern for subject-to-subject transfer. IEEE Sig Proc Let 16:683–686CrossRef Kang H, Nam Y, Choi S (2009) Composite common spatial pattern for subject-to-subject transfer. IEEE Sig Proc Let 16:683–686CrossRef
17.
Zurück zum Zitat Lu H, Eng HL, Guan C, Plataniotis KN, Venetsanopoulos AN (2010) Regularized common spatial pattern with aggregation for EEG classification in small-sample setting. IEEE Trans Biomed Eng 57:2936–2946CrossRef Lu H, Eng HL, Guan C, Plataniotis KN, Venetsanopoulos AN (2010) Regularized common spatial pattern with aggregation for EEG classification in small-sample setting. IEEE Trans Biomed Eng 57:2936–2946CrossRef
18.
Zurück zum Zitat Blankertz B, Kawanabe M, Tomioka R, Hohlefeld F, Nikulin V, Müller KR (2008) Invariant common spatial patterns: alleviating nonstationarities in brain-computer interfacing. In: Advances in neural information processing systems (NIPS 20), pp 113–120 Blankertz B, Kawanabe M, Tomioka R, Hohlefeld F, Nikulin V, Müller KR (2008) Invariant common spatial patterns: alleviating nonstationarities in brain-computer interfacing. In: Advances in neural information processing systems (NIPS 20), pp 113–120
19.
Zurück zum Zitat Lotte F, Guan C (2010) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58:355–362CrossRef Lotte F, Guan C (2010) Regularizing common spatial patterns to improve BCI designs: unified theory and new algorithms. IEEE Trans Biomed Eng 58:355–362CrossRef
20.
Zurück zum Zitat Arvaneh M, Guan C, Ang KK and Quek HC (2011) Spatially sparsed common spatial pattern to improve BCI performance. In: IEEE international conference acoustics speech and signal process, pp 2412–2415. Arvaneh M, Guan C, Ang KK and Quek HC (2011) Spatially sparsed common spatial pattern to improve BCI performance. In: IEEE international conference acoustics speech and signal process, pp 2412–2415.
21.
Zurück zum Zitat Arvaneh M, Guan C, Ang KK and Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58:1865–1873CrossRef Arvaneh M, Guan C, Ang KK and Quek C (2011) Optimizing the channel selection and classification accuracy in EEG-based BCI. IEEE Trans Biomed Eng 58:1865–1873CrossRef
22.
Zurück zum Zitat Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–1548CrossRef Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52(9):1541–1548CrossRef
23.
Zurück zum Zitat Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Müller, KR (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53(11):2274–2281CrossRef Dornhege G, Blankertz B, Krauledat M, Losch F, Curio G, Müller, KR (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53(11):2274–2281CrossRef
24.
Zurück zum Zitat Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial EEG classification, Technical report, Department of Mathematical Engineering, University of Tokyo, Japan Tomioka R, Dornhege G, Nolte G, Blankertz B, Aihara K, Müller KR (2006) Spectrally weighted common spatial pattern algorithm for single trial EEG classification, Technical report, Department of Mathematical Engineering, University of Tokyo, Japan
25.
Zurück zum Zitat Wu W, Gao X, Hong B, Gao S (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55(6):1733–1743CrossRef Wu W, Gao X, Hong B, Gao S (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55(6):1733–1743CrossRef
26.
Zurück zum Zitat Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE international joint conference on neural networks, pp 2391–2398 Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: IEEE international joint conference on neural networks, pp 2391–2398
27.
Zurück zum Zitat Ang KK, Chin ZY, Zhang H, Guan C (2011) Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recogn Lett 45(6):2137–2144CrossRef Ang KK, Chin ZY, Zhang H, Guan C (2011) Mutual information-based selection of optimal spatial-temporal patterns for single-trial EEG-based BCIs. Pattern Recogn Lett 45(6):2137–2144CrossRef
28.
Zurück zum Zitat Dornhege G, Blankertz B, Curio G, Müller KR (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 51:993–1002CrossRef Dornhege G, Blankertz B, Curio G, Müller KR (2004) Boosting bit rates in noninvasive EEG single-trial classifications by feature combination and multiclass paradigms. IEEE Trans Biomed Eng 51:993–1002CrossRef
29.
Zurück zum Zitat Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446CrossRef Ramoser H, Müller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446CrossRef
30.
31.
Zurück zum Zitat Powell M (1978) A fast algorithm for nonlinearly constrained optimization calculations. In: Watson G (ed) Numerical analysis. Springer Berlin, Heidelberg, pp 144–157 Powell M (1978) A fast algorithm for nonlinearly constrained optimization calculations. In: Watson G (ed) Numerical analysis. Springer Berlin, Heidelberg, pp 144–157
32.
Zurück zum Zitat Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Net 5(4):537–550CrossRef Battiti R (1994) Using mutual information for selecting features in supervised neural net learning. IEEE Trans Neural Net 5(4):537–550CrossRef
33.
Zurück zum Zitat Kwak N, Choi CH (2002) Input feature selection by mutual information based on Parzen window. IEEE Trans Pattern Anal Mach Intell 24:1667–1671CrossRef Kwak N, Choi CH (2002) Input feature selection by mutual information based on Parzen window. IEEE Trans Pattern Anal Mach Intell 24:1667–1671CrossRef
34.
Zurück zum Zitat Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations. Oxford, Oxford University PressMATH Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis: the kernel approach with S-Plus illustrations. Oxford, Oxford University PressMATH
35.
Zurück zum Zitat Blankertz B, Müller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlögl A, Pfurtscheller G, Millan JR, Schröder M, Birbaumer N (1997) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14:153–159CrossRef Blankertz B, Müller KR, Krusienski DJ, Schalk G, Wolpaw JR, Schlögl A, Pfurtscheller G, Millan JR, Schröder M, Birbaumer N (1997) The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Trans Neural Syst Rehabil Eng 14:153–159CrossRef
36.
Zurück zum Zitat Samek W, Vidaurre C, Müller KR, Kawanabe M (2012) Stationary common spatial patterns for brain-computer interfacing. J Neural Eng 9(2):026013CrossRef Samek W, Vidaurre C, Müller KR, Kawanabe M (2012) Stationary common spatial patterns for brain-computer interfacing. J Neural Eng 9(2):026013CrossRef
37.
Zurück zum Zitat Sprent P, Smeeton N (2001) Applied nonparametric statistical methods. Chapman & Hall, LondonMATH Sprent P, Smeeton N (2001) Applied nonparametric statistical methods. Chapman & Hall, LondonMATH
38.
Zurück zum Zitat Arvaneh M, Guan C, Ang K K, Quek C (2013) EEG data space adaptation to reduce inter-session non-stationarity in brain-computer interface. Neural Comput Appl 25(8):2146–2171MathSciNetCrossRef Arvaneh M, Guan C, Ang K K, Quek C (2013) EEG data space adaptation to reduce inter-session non-stationarity in brain-computer interface. Neural Comput Appl 25(8):2146–2171MathSciNetCrossRef
Metadaten
Titel
Mutual information-based optimization of sparse spatio-spectral filters in brain–computer interface
verfasst von
Mahnaz Arvaneh
Cuntai Guan
Kai Keng Ang
Chai Quek
Publikationsdatum
01.09.2014
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 3-4/2014
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-013-1523-7

Weitere Artikel der Ausgabe 3-4/2014

Neural Computing and Applications 3-4/2014 Zur Ausgabe