Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Photonic Network Communications 2/2022

16.01.2022 | Original Paper

MUX/DEMUX circuit using plasmonic antennas for LiFi and WiFi uplink and downlink transmission

verfasst von: A. Garhwal, A. E. Arumona, K. Ray, P. Youplao, S. Punthawanunt, P. Yupapin

Erschienen in: Photonic Network Communications | Ausgabe 2/2022

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

A microring-embedded Mach–Zehnder interferometer (MZI) system is proposed to form the multiplexing (demultiplexing) for wireless and light fidelity (WiFi and LiFi) uplink and downlink transmission. The system consists of two center microrings at the transmitter and a center microring at the receiver with two small rings along the sides of the center microrings. The whispering-gallery mode (WGM) is formed by the nonlinearity effect induced by the two small rings with suitable parameters. The embedded gold gratings are excited by the WGM, where the plasmon oscillation and electron density are obtained. All possible multiplexing/demultiplexing (MUX/DEMUX) schemes based on space–time input can be applied. The transmission is performed using the tested node. The uplink and downlink input source wavelengths of 1.10 µm and 1.30 µm for LiFi and WiFi are manipulated. The manipulated tested node is employed with a maximum length of 1, 000 km away from the transmitted point via a fiber optic cable. The results obtained have shown that the optimum transmission bit rate of 2.52 Petabit \({s}^{-1}\) with the optimum bit error rate (BER) of 0.38 is obtained.
Literatur
1.
Zurück zum Zitat Martinez, A., Sanchis, P., Marti, J.: Mach-Zehnder interferometers in photonic crystals. Opt. Quant. Electron. 37, 77–93 (2005) CrossRef Martinez, A., Sanchis, P., Marti, J.: Mach-Zehnder interferometers in photonic crystals. Opt. Quant. Electron. 37, 77–93 (2005) CrossRef
2.
Zurück zum Zitat Singh, S., Singh, S.: Design of optical wavelength conversion based on cross polarization modulation effect of SOA-MZI. Opt. Quant. Electron. 52, 122 (2020) CrossRef Singh, S., Singh, S.: Design of optical wavelength conversion based on cross polarization modulation effect of SOA-MZI. Opt. Quant. Electron. 52, 122 (2020) CrossRef
3.
Zurück zum Zitat Guo, Z., Lu, L., Zhou, L., Shen, L., Chen, J.: 16 x 16 silicon optical switched based on dual-ring assisted Mach-Zehnder interferometers. J. Light wave Technol. 36(2), 225–232 (2018) CrossRef Guo, Z., Lu, L., Zhou, L., Shen, L., Chen, J.: 16 x 16 silicon optical switched based on dual-ring assisted Mach-Zehnder interferometers. J. Light wave Technol. 36(2), 225–232 (2018) CrossRef
4.
Zurück zum Zitat Mendez-Astudillo, M., Okamoto, M., Ito, Y., Kita, T.: Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection. Opt. Exp. 27(2), 899–906 (2019) CrossRef Mendez-Astudillo, M., Okamoto, M., Ito, Y., Kita, T.: Compact thermo-optic MZI switch in silicon-on-insulator using direct carrier injection. Opt. Exp. 27(2), 899–906 (2019) CrossRef
5.
Zurück zum Zitat Singh, P., Tripathi, K.D., Jaiswal, S., Dixit, H.K.: Design of all-optical buffer and OR gate using SOA-MZI. Opt. Quant. Electron. 46, 1435–1444 (2013) CrossRef Singh, P., Tripathi, K.D., Jaiswal, S., Dixit, H.K.: Design of all-optical buffer and OR gate using SOA-MZI. Opt. Quant. Electron. 46, 1435–1444 (2013) CrossRef
6.
Zurück zum Zitat Soltanian, M.R.K., Amiri, I.S., Arianejad, M.M., Ahmad, H., Yupapin, P.: A simple humidity sensor utilizing air-gap as sensing part of the Mach-Zehnder interferometer. Opt. Quant. Electron. 49, 308 (2017) CrossRef Soltanian, M.R.K., Amiri, I.S., Arianejad, M.M., Ahmad, H., Yupapin, P.: A simple humidity sensor utilizing air-gap as sensing part of the Mach-Zehnder interferometer. Opt. Quant. Electron. 49, 308 (2017) CrossRef
7.
Zurück zum Zitat Wang, R., Zheng, C.-T., Liang, L., Ma, C.-H., Cui, Z.-C., Zhang, D.-M.: Multifunctional spectrum-periodic polymer MZI electro-optic switch/filter using serial-cascaded phase-generating couplers: theory, design and analysis. Opt. Quant. Electron. 44, 337–354 (2012) CrossRef Wang, R., Zheng, C.-T., Liang, L., Ma, C.-H., Cui, Z.-C., Zhang, D.-M.: Multifunctional spectrum-periodic polymer MZI electro-optic switch/filter using serial-cascaded phase-generating couplers: theory, design and analysis. Opt. Quant. Electron. 44, 337–354 (2012) CrossRef
8.
Zurück zum Zitat Lima, A.W., Jr., Sombra, A.S.B.: Graphene-based Mach-Zehnder nanophotonics interferometer working as a splitter/switch and as a multiplexer/demultiplexer. Opt. Quant. Electron. 49, 388 (2017) CrossRef Lima, A.W., Jr., Sombra, A.S.B.: Graphene-based Mach-Zehnder nanophotonics interferometer working as a splitter/switch and as a multiplexer/demultiplexer. Opt. Quant. Electron. 49, 388 (2017) CrossRef
9.
Zurück zum Zitat Kolesik, M., Matus, M., Moloney, J.V.: All-optical Mach-Zehnder-interferomter-based demultiplexier—a computer simulation study. IEEE Photon. Technol. Lett. 15(1), 78–80 (2003) CrossRef Kolesik, M., Matus, M., Moloney, J.V.: All-optical Mach-Zehnder-interferomter-based demultiplexier—a computer simulation study. IEEE Photon. Technol. Lett. 15(1), 78–80 (2003) CrossRef
10.
Zurück zum Zitat Meijerink, A., Roeloffzen, C.G.H., Meijerink, R., Zhuang, L., Marpaung, D.A.I., Bentum, M.J., Burla, M., Verpoorte, J., Jorna, P., Hulzinga, A., Etten, W.V.: Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis. J. Lightw. Technol. 28, 1 (2010) CrossRef Meijerink, A., Roeloffzen, C.G.H., Meijerink, R., Zhuang, L., Marpaung, D.A.I., Bentum, M.J., Burla, M., Verpoorte, J., Jorna, P., Hulzinga, A., Etten, W.V.: Novel ring resonator-based integrated photonic beamformer for broadband phased array receive antennas—part I: design and performance analysis. J. Lightw. Technol. 28, 1 (2010) CrossRef
11.
Zurück zum Zitat Chantakit, T., Chiangga, S., Amiri, I.S., Yupapin, P.: All-optical wireless wavelength multiplexing and demultiplexing using resonant cavity. Appl. Opt. 57(27), 7997 (2018) CrossRef Chantakit, T., Chiangga, S., Amiri, I.S., Yupapin, P.: All-optical wireless wavelength multiplexing and demultiplexing using resonant cavity. Appl. Opt. 57(27), 7997 (2018) CrossRef
12.
Zurück zum Zitat Badraoui, N., Berceli, T.: Enhancing capacity of optical links using polarization multiplexing. Opt. Quant. Electron. 51, 310 (2019) CrossRef Badraoui, N., Berceli, T.: Enhancing capacity of optical links using polarization multiplexing. Opt. Quant. Electron. 51, 310 (2019) CrossRef
13.
Zurück zum Zitat Lan, M., Yu, S., Cai, S., Gao, L., Gu, W.: Mode multiplexer/demultiplexer based on tapered multi-core fiber. IEEE Photon. Technol. Lett. 29(12), 979–982 (2017) CrossRef Lan, M., Yu, S., Cai, S., Gao, L., Gu, W.: Mode multiplexer/demultiplexer based on tapered multi-core fiber. IEEE Photon. Technol. Lett. 29(12), 979–982 (2017) CrossRef
14.
Zurück zum Zitat Mukherjee, K.: Method of implementation and application of all-optical frequency-encoded multiplexer and demultiplexer utilizing total reflectional switches (TRSs). J. Opt. 49, 102–109 (2020) CrossRef Mukherjee, K.: Method of implementation and application of all-optical frequency-encoded multiplexer and demultiplexer utilizing total reflectional switches (TRSs). J. Opt. 49, 102–109 (2020) CrossRef
15.
Zurück zum Zitat Prajzler, V., Mastera, R.: Wavelength division multiplexing module with large core optical polymer planar splitter and multi-layered dielectric filters. Opt. Quant. Electron. 49, 133 (2017) CrossRef Prajzler, V., Mastera, R.: Wavelength division multiplexing module with large core optical polymer planar splitter and multi-layered dielectric filters. Opt. Quant. Electron. 49, 133 (2017) CrossRef
16.
Zurück zum Zitat Perlicki, K.: Polarization division multiplexing system quality in the presence of polarization effects. Opt. Quant. Electron. 41, 997–1006 (2009) CrossRef Perlicki, K.: Polarization division multiplexing system quality in the presence of polarization effects. Opt. Quant. Electron. 41, 997–1006 (2009) CrossRef
17.
Zurück zum Zitat Sung, J.Y., Hsu, C.W., Su, H.Q., Chow, C.W., Yeh, C.H.: Optical filter analyses for demultiplexing all-optical OFDM transmission systems. Opt. Quant. Electron. 47, 2781–2792 (2015) CrossRef Sung, J.Y., Hsu, C.W., Su, H.Q., Chow, C.W., Yeh, C.H.: Optical filter analyses for demultiplexing all-optical OFDM transmission systems. Opt. Quant. Electron. 47, 2781–2792 (2015) CrossRef
18.
Zurück zum Zitat Malhotra, Y., Kaler, R.S.: Optical time division multiplexing at 160 Gbps using MZI switching. Optik 122, 1981–1984 (2011) CrossRef Malhotra, Y., Kaler, R.S.: Optical time division multiplexing at 160 Gbps using MZI switching. Optik 122, 1981–1984 (2011) CrossRef
19.
Zurück zum Zitat Heish, C.-H., Lin, K.-P., Leou, K.-C.: Design of a compact high performance electro-optic plasmonic switch. IEEE Photon. Technol. Lett. 27(23), 2473–2476 (2015) CrossRef Heish, C.-H., Lin, K.-P., Leou, K.-C.: Design of a compact high performance electro-optic plasmonic switch. IEEE Photon. Technol. Lett. 27(23), 2473–2476 (2015) CrossRef
20.
Zurück zum Zitat Sutili, T., Rocha, P., Gallep, C.M., Conforti, E.: Energy efficient switching technique for high-speed electro-optical semiconductor optical Amplifiers. J. Lightw. Technol. 37(24), 6015–6024 (2019) CrossRef Sutili, T., Rocha, P., Gallep, C.M., Conforti, E.: Energy efficient switching technique for high-speed electro-optical semiconductor optical Amplifiers. J. Lightw. Technol. 37(24), 6015–6024 (2019) CrossRef
21.
Zurück zum Zitat Ying, Z., Dhar, S., Zhao, Z., Feng, C., Mital, R., Chung, C.-J., Pan, D.J., Soref, R., Chen, T.R.: Eelctro-optic ripple carry adder in integrated silicon photonics for optical computing. IEEE J. Sel. Top. Quant. Electron. 24(6), 1–10 (2018) CrossRef Ying, Z., Dhar, S., Zhao, Z., Feng, C., Mital, R., Chung, C.-J., Pan, D.J., Soref, R., Chen, T.R.: Eelctro-optic ripple carry adder in integrated silicon photonics for optical computing. IEEE J. Sel. Top. Quant. Electron. 24(6), 1–10 (2018) CrossRef
22.
Zurück zum Zitat Chaudhary, S., Thakur, D., Sharma, A.: 10 Gbps-60GHz RoF transmission system for 5G applications. J. Opt. Commun. 40(3), 281–284 (2017) CrossRef Chaudhary, S., Thakur, D., Sharma, A.: 10 Gbps-60GHz RoF transmission system for 5G applications. J. Opt. Commun. 40(3), 281–284 (2017) CrossRef
23.
Zurück zum Zitat Islam, T., Uddin, M.N.: High Speed OTDM- DWDM bit compressed network for long-haul communication. Aiub J. Sci. Eng. 18(02), 57–65 (2019) Islam, T., Uddin, M.N.: High Speed OTDM- DWDM bit compressed network for long-haul communication. Aiub J. Sci. Eng. 18(02), 57–65 (2019)
24.
Zurück zum Zitat Garhwal, A., Arumona, A.E., Youplao, P., Ray, K., Amiri, I.S., Yupapin, P.: Human-like stereo sensors using plasmonic antenna embedded MZI with space–time modulation control. Chin. Opt. Lett. 19(10), 101301–101309 (2021) CrossRef Garhwal, A., Arumona, A.E., Youplao, P., Ray, K., Amiri, I.S., Yupapin, P.: Human-like stereo sensors using plasmonic antenna embedded MZI with space–time modulation control. Chin. Opt. Lett. 19(10), 101301–101309 (2021) CrossRef
25.
Zurück zum Zitat Li, X., Feng, X., Cui, K., Liu, F., Huang, Y.: Integrated silicon modulator based on microring array assisted MZI. Opt. Lett. 22(9), 10550–10558 (2014) Li, X., Feng, X., Cui, K., Liu, F., Huang, Y.: Integrated silicon modulator based on microring array assisted MZI. Opt. Lett. 22(9), 10550–10558 (2014)
26.
Zurück zum Zitat Sarapat, N., Pornsuwancharoen, N., Youplao, P., Amiri, I.S., Jalil, M.A., Ali, J., Singh, G., Yupapin, P., Grattan, K.T.: LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsyst. Technol. 25, 945–950 (2019) CrossRef Sarapat, N., Pornsuwancharoen, N., Youplao, P., Amiri, I.S., Jalil, M.A., Ali, J., Singh, G., Yupapin, P., Grattan, K.T.: LiFi up-downlink conversion node model generated by inline successive optical pumping. Microsyst. Technol. 25, 945–950 (2019) CrossRef
27.
Zurück zum Zitat Punthawanunt, S., Aziz, M.S., Phatharacorn, P., Chiangga, S., Ali, J., Yupapin, P.: LiFi cross-connection node model using whispering gallery mode of light in a microring resonator. Microsyst. Technol. 24, 4833–4838 (2018) CrossRef Punthawanunt, S., Aziz, M.S., Phatharacorn, P., Chiangga, S., Ali, J., Yupapin, P.: LiFi cross-connection node model using whispering gallery mode of light in a microring resonator. Microsyst. Technol. 24, 4833–4838 (2018) CrossRef
28.
Zurück zum Zitat Pornsuwancharoen, N., Youplao, P., Aziz, M.A., Ali, J., Singh, G., Amiri, I.S., Punthawanunt, S., Yupapin, P.: Characteristics of microring circuit using plasmonic island driven electron mobility. Microsyst. Technol. 24, 3573–3577 (2018) CrossRef Pornsuwancharoen, N., Youplao, P., Aziz, M.A., Ali, J., Singh, G., Amiri, I.S., Punthawanunt, S., Yupapin, P.: Characteristics of microring circuit using plasmonic island driven electron mobility. Microsyst. Technol. 24, 3573–3577 (2018) CrossRef
29.
Zurück zum Zitat Bahadoran, M., Amiri, I.S.: Double critical coupled ring resonator-based add-drop filters. J. Theor. Appl. Phys. 13, 213–220 (2019) CrossRef Bahadoran, M., Amiri, I.S.: Double critical coupled ring resonator-based add-drop filters. J. Theor. Appl. Phys. 13, 213–220 (2019) CrossRef
30.
Zurück zum Zitat Youplao, P., Sarapat, N., Pornsuwancharoen, N., Chaiwong, K., Jalil, M.A., Amiri, I.S., Ali, J., Aziz, M.S., Chiangga, S., Singh, G., Yupapin, P., Grattan, K.T.V.: Plasmonic op-amp circuit model using the inline successive microring pumping scheme. Microsyst. Technol. 24, 3689–3695 (2018) CrossRef Youplao, P., Sarapat, N., Pornsuwancharoen, N., Chaiwong, K., Jalil, M.A., Amiri, I.S., Ali, J., Aziz, M.S., Chiangga, S., Singh, G., Yupapin, P., Grattan, K.T.V.: Plasmonic op-amp circuit model using the inline successive microring pumping scheme. Microsyst. Technol. 24, 3689–3695 (2018) CrossRef
31.
Zurück zum Zitat Zheng, Y., Wu, Z., Shum, P.P., Xu, Z., Keiser, G., Humbert, G., Zhang, H., Zeng, S., Dinh, X.Q.: Sensing and lasing applications of whispering gallery mode microresonators. Opt. Electr. Adv. 1(9), 1800 (2018) Zheng, Y., Wu, Z., Shum, P.P., Xu, Z., Keiser, G., Humbert, G., Zhang, H., Zeng, S., Dinh, X.Q.: Sensing and lasing applications of whispering gallery mode microresonators. Opt. Electr. Adv. 1(9), 1800 (2018)
32.
Zurück zum Zitat Mitatha, S., Pornsuwancharoen, N., Yupapin, P.P.: A simultaneous short-wave and millimeter-wave generation using a soliton pulse within a nano-waveguide. IEEE Photon. Technol. Lett. 21, 932–934 (2009) CrossRef Mitatha, S., Pornsuwancharoen, N., Yupapin, P.P.: A simultaneous short-wave and millimeter-wave generation using a soliton pulse within a nano-waveguide. IEEE Photon. Technol. Lett. 21, 932–934 (2009) CrossRef
33.
Zurück zum Zitat Mitatha, S., Piyatamrong, B., Tamee, K., Yupapin, P.P.: Multifunction sensors using coincidence dark-bright soliton pair in a MZI. IEEE Sens. J. 12(5), 984–987 (2011) CrossRef Mitatha, S., Piyatamrong, B., Tamee, K., Yupapin, P.P.: Multifunction sensors using coincidence dark-bright soliton pair in a MZI. IEEE Sens. J. 12(5), 984–987 (2011) CrossRef
34.
Zurück zum Zitat Arumona, A.E., Amiri, I.S., Yupapin, P.: Plasmonic micro-antenna characteristics using gold grating embedded in a panda-ring circuit. Plasmonics 15, 279–285 (2020) CrossRef Arumona, A.E., Amiri, I.S., Yupapin, P.: Plasmonic micro-antenna characteristics using gold grating embedded in a panda-ring circuit. Plasmonics 15, 279–285 (2020) CrossRef
35.
Zurück zum Zitat Garhwal, A., Ray, K., Arumona, A.E., Bharti, G.K., Amiri, I.S., Yupapin, P.: Spin-wave generation using MZI embedded plasmonic antenna for quantum communications. Opt. Quant. Electron. 52, 241 (2020) CrossRef Garhwal, A., Ray, K., Arumona, A.E., Bharti, G.K., Amiri, I.S., Yupapin, P.: Spin-wave generation using MZI embedded plasmonic antenna for quantum communications. Opt. Quant. Electron. 52, 241 (2020) CrossRef
36.
Zurück zum Zitat Arumona, A.E., Amiri, I.S., Punthawanunt, S., Yupapin, P.: High-density quantum bits generation using microring plasmonic antenna. Opt. Quant. Electron. 52, 208 (2020) CrossRef Arumona, A.E., Amiri, I.S., Punthawanunt, S., Yupapin, P.: High-density quantum bits generation using microring plasmonic antenna. Opt. Quant. Electron. 52, 208 (2020) CrossRef
37.
Zurück zum Zitat Arumona, A.E., Amiri, I.S., Punthawanunt, S., Ray, K., Yupapin, P.: Electron density transport using microring circuit for dual-mode power transmission. Opt. Quant. Electron. 52, 213 (2020) CrossRef Arumona, A.E., Amiri, I.S., Punthawanunt, S., Ray, K., Yupapin, P.: Electron density transport using microring circuit for dual-mode power transmission. Opt. Quant. Electron. 52, 213 (2020) CrossRef
Metadaten
Titel
MUX/DEMUX circuit using plasmonic antennas for LiFi and WiFi uplink and downlink transmission
verfasst von
A. Garhwal
A. E. Arumona
K. Ray
P. Youplao
S. Punthawanunt
P. Yupapin
Publikationsdatum
16.01.2022
Verlag
Springer US
Erschienen in
Photonic Network Communications / Ausgabe 2/2022
Print ISSN: 1387-974X
Elektronische ISSN: 1572-8188
DOI
https://doi.org/10.1007/s11107-021-00959-3

Weitere Artikel der Ausgabe 2/2022

Photonic Network Communications 2/2022 Zur Ausgabe