Skip to main content

2023 | OriginalPaper | Buchkapitel

14. Nano-engineered 2D Materials for CO2 Capture

verfasst von : Neeraj Kumar, Rashi Gusain, Suprakas Sinha Ray

Erschienen in: Two-Dimensional Materials for Environmental Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, nano-engineered two-dimensional (2D) materials have gained immense interest in various applications, including CO2 capture. The precise atomic structure of 2D nanomaterials introduced various significant characteristics required for specific applications. Increasing levels of CO2 in the environment is a concerning topic for surviving a sustainable life on Earth. Therefore, CO2 capture and conversion into useful products have been recognized as the best approach to reduce the CO2 level in the atmosphere. To capture CO2, several materials have been studied and emphasised about their advantages and disadvantages. The recent progress in 2D materials, especially graphene-based materials, has shown their potential in CO2 capture. Graphene-based materials, transition metal dichalcogenides (TMDCs), 2D transition metal oxides (TMOs), MXenes, boron nitrides, carbon nitrides, 2D metal–organic frameworks (MOFs) etc., are the various examples of 2D materials, which have been investigated for CO2 capture. This chapter aims to provide a brief overview of the recent advantages in the nano-engineering of the various 2D materials for CO2 capture. In particular, the recent development of emerging strategies such as doping, defects engineering, hetero-structural designing, and architectural functionalization of 2D nanomaterials for enhanced CO2 capture are discussed thoroughly. The challenges and future outcomes have also been highlighted, which will open the directions for future research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Zhang, W. Zhang, R. Yang, Y. Liu, M. Jafari, CO2 capture and storage monitoring based on remote sensing techniques: a review. J. Clean. Prod. 281, 124409 (2021)CrossRef T. Zhang, W. Zhang, R. Yang, Y. Liu, M. Jafari, CO2 capture and storage monitoring based on remote sensing techniques: a review. J. Clean. Prod. 281, 124409 (2021)CrossRef
2.
Zurück zum Zitat B. Netz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers (2007) B. Netz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer, Climate change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Summary for Policymakers. Climate change 2007: Mitigation Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change Summary for Policymakers (2007)
3.
Zurück zum Zitat R. Gusain, N. Kumar, S.S. Ray, Metal oxide-based nanocomposites for photocatalytic reduction of CO2 Adv. Mater. Sustain. Environ., pp. 293–315 (2022). CRC Press R. Gusain, N. Kumar, S.S. Ray, Metal oxide-based nanocomposites for photocatalytic reduction of CO2 Adv. Mater. Sustain. Environ., pp. 293–315 (2022). CRC Press
4.
Zurück zum Zitat S. Dey, G.C. Dhal, Materials progress in the control of CO and CO2 emission at ambient conditions: an overview. Mater. Sci. Energy Technol. 2(3), 607–623 (2019) S. Dey, G.C. Dhal, Materials progress in the control of CO and CO2 emission at ambient conditions: an overview. Mater. Sci. Energy Technol. 2(3), 607–623 (2019)
5.
Zurück zum Zitat N.S. Sifat, Y. Haseli, A critical review of CO2 capture technologies and prospects for clean power generation. Energies 12(21), 4143 (2019)CrossRef N.S. Sifat, Y. Haseli, A critical review of CO2 capture technologies and prospects for clean power generation. Energies 12(21), 4143 (2019)CrossRef
6.
Zurück zum Zitat A. Saravanan, D.-V.N. Vo, S. Jeevanantham, V. Bhuvaneswari, V.A. Narayanan, P. Yaashikaa, et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci., 236, 116515 (2021). A. Saravanan, D.-V.N. Vo, S. Jeevanantham, V. Bhuvaneswari, V.A. Narayanan, P. Yaashikaa, et al. A comprehensive review on different approaches for CO2 utilization and conversion pathways. Chem. Eng. Sci., 236, 116515 (2021).
7.
Zurück zum Zitat A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35(6), 2610–2628 (2010)CrossRef A.A. Olajire, CO2 capture and separation technologies for end-of-pipe applications–a review. Energy 35(6), 2610–2628 (2010)CrossRef
8.
Zurück zum Zitat J. Pires, F. Martins, M. Alvim-Ferraz, M. Simões, Recent developments on carbon capture and storage: an overview. Chem. Eng. Res. Des. 89(9), 1446–1460 (2011)CrossRef J. Pires, F. Martins, M. Alvim-Ferraz, M. Simões, Recent developments on carbon capture and storage: an overview. Chem. Eng. Res. Des. 89(9), 1446–1460 (2011)CrossRef
9.
Zurück zum Zitat S. Lian, C. Song, Q. Liu, E. Duan, H. Ren, Y. Kitamura, Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J. Environ. Sci. 99, 281–295 (2021)CrossRef S. Lian, C. Song, Q. Liu, E. Duan, H. Ren, Y. Kitamura, Recent advances in ionic liquids-based hybrid processes for CO2 capture and utilization. J. Environ. Sci. 99, 281–295 (2021)CrossRef
10.
Zurück zum Zitat A. Sattari, A. Ramazani, H. Aghahosseini, M.K. Aroua, The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J. CO2 Utilization; 48, 101526 (2021) A. Sattari, A. Ramazani, H. Aghahosseini, M.K. Aroua, The application of polymer containing materials in CO2 capturing via absorption and adsorption methods. J. CO2 Utilization; 48, 101526 (2021)
11.
Zurück zum Zitat U. Kamran, S.-J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J. Clean. Prod. 290, 125776 (2021)CrossRef U. Kamran, S.-J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J. Clean. Prod. 290, 125776 (2021)CrossRef
12.
Zurück zum Zitat D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 013007 (2008)CrossRef D. Bonenfant, M. Kharoune, P. Niquette, M. Mimeault, R. Hausler, Advances in principal factors influencing carbon dioxide adsorption on zeolites. Sci. Technol. Adv. Mater. 9(1), 013007 (2008)CrossRef
13.
Zurück zum Zitat N. Mat, S.N. Timmiati, L.P. The, Recent development in metal oxide-based core–shell material for CO2 capture and utilisation. Appl. Nanosci., 1–21 (2022) N. Mat, S.N. Timmiati, L.P. The, Recent development in metal oxide-based core–shell material for CO2 capture and utilisation. Appl. Nanosci., 1–21 (2022)
14.
Zurück zum Zitat Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ. Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ.
15.
Zurück zum Zitat C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 1–16 (2017)CrossRef C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, The chemistry of metal–organic frameworks for CO2 capture, regeneration and conversion. Nat. Rev. Mater. 2(8), 1–16 (2017)CrossRef
16.
Zurück zum Zitat E. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng.g. 6(10), 1701–1738 (2021)CrossRef E. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng.g. 6(10), 1701–1738 (2021)CrossRef
17.
Zurück zum Zitat E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: review of CO2 capture and reuse technologies. J. Supercritical Fluids. 132, 3–16 (2018)CrossRef E.I. Koytsoumpa, C. Bergins, E. Kakaras, The CO2 economy: review of CO2 capture and reuse technologies. J. Supercritical Fluids. 132, 3–16 (2018)CrossRef
18.
Zurück zum Zitat T.N. Borhani, M. Wang, Role of solvents in CO2 capture processes:tThe review of selection and design methods. Renew. Sustain. Energy Rev. 114, 109299 (2019)CrossRef T.N. Borhani, M. Wang, Role of solvents in CO2 capture processes:tThe review of selection and design methods. Renew. Sustain. Energy Rev. 114, 109299 (2019)CrossRef
19.
Zurück zum Zitat B. Shao, Y. Zhang, Z. Sun, J. Li, Z. Gao, Z. Xie et al., CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chem. Eng. 3(3), 189–198 (2022)CrossRef B. Shao, Y. Zhang, Z. Sun, J. Li, Z. Gao, Z. Xie et al., CO2 capture and in-situ conversion: recent progresses and perspectives. Green Chem. Eng. 3(3), 189–198 (2022)CrossRef
20.
Zurück zum Zitat M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M.M. Abdelnaby et al., Advanced strategies in metal-organic frameworks for CO2 capture and separation. Chem. Rec. 22(7), e202100230 (2022)CrossRef M. Usman, N. Iqbal, T. Noor, N. Zaman, A. Asghar, M.M. Abdelnaby et al., Advanced strategies in metal-organic frameworks for CO2 capture and separation. Chem. Rec. 22(7), e202100230 (2022)CrossRef
21.
Zurück zum Zitat M. Aghaie, N. Rezaei, S. Zendehboudi, A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 96, 502–525 (2018)CrossRef M. Aghaie, N. Rezaei, S. Zendehboudi, A systematic review on CO2 capture with ionic liquids: Current status and future prospects. Renew. Sustain. Energy Rev. 96, 502–525 (2018)CrossRef
22.
Zurück zum Zitat M. Haaf, R. Anantharaman, S. Roussanaly, J. Ströhle, B. Epple, CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 162, 104973 (2020)CrossRef M. Haaf, R. Anantharaman, S. Roussanaly, J. Ströhle, B. Epple, CO2 capture from waste-to-energy plants: Techno-economic assessment of novel integration concepts of calcium looping technology. Resour. Conserv. Recycl. 162, 104973 (2020)CrossRef
23.
Zurück zum Zitat E. Paoletti, F. Manes, Effects of elevated carbon dioxide and acidic rain on the growth of holm oak. Developments in Environmental Science. 3: Elsevier; p. 375–89 (2003) E. Paoletti, F. Manes, Effects of elevated carbon dioxide and acidic rain on the growth of holm oak. Developments in Environmental Science. 3: Elsevier; p. 375–89 (2003)
24.
Zurück zum Zitat M. Cellura, F. Guarino, S. Longo, G. Tumminia, Climate change and the building sector: modelling and energy implications to an office building in southern Europe. Energy Sustain. Dev. 45, 46–65 (2018)CrossRef M. Cellura, F. Guarino, S. Longo, G. Tumminia, Climate change and the building sector: modelling and energy implications to an office building in southern Europe. Energy Sustain. Dev. 45, 46–65 (2018)CrossRef
25.
Zurück zum Zitat J. Kahl, Effect of acid rain on building material of the El Tajín archaeological zone in Veracruz. Mexico. Environ. Pollut. 144(2), 655–660 (2006)CrossRef J. Kahl, Effect of acid rain on building material of the El Tajín archaeological zone in Veracruz. Mexico. Environ. Pollut. 144(2), 655–660 (2006)CrossRef
26.
Zurück zum Zitat H. Kurihara, Y. Shirayama, Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser. 274, 161–169 (2004)CrossRef H. Kurihara, Y. Shirayama, Effects of increased atmospheric CO2 on sea urchin early development. Mar. Ecol. Prog. Ser. 274, 161–169 (2004)CrossRef
27.
Zurück zum Zitat J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption. Chem. Rev. 121(13), 7280–7345 (2021)CrossRef J.M. Kolle, M. Fayaz, A. Sayari, Understanding the effect of water on CO2 adsorption. Chem. Rev. 121(13), 7280–7345 (2021)CrossRef
28.
Zurück zum Zitat W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49(23), 8584–8686 (2020)CrossRef W. Gao, S. Liang, R. Wang, Q. Jiang, Y. Zhang, Q. Zheng et al., Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem. Soc. Rev. 49(23), 8584–8686 (2020)CrossRef
29.
Zurück zum Zitat B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture. J. CO2 Utilization 1, 69–87 (2013) B.P. Spigarelli, S.K. Kawatra, Opportunities and challenges in carbon dioxide capture. J. CO2 Utilization 1, 69–87 (2013)
30.
Zurück zum Zitat M. Younas, M. Sohail, L.K. Leong, M.J. Bashir, S. Sumathi, Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int. J. Environ. Sci. Technol. 13(7), 1839–1860 (2016)CrossRef M. Younas, M. Sohail, L.K. Leong, M.J. Bashir, S. Sumathi, Feasibility of CO2 adsorption by solid adsorbents: a review on low-temperature systems. Int. J. Environ. Sci. Technol. 13(7), 1839–1860 (2016)CrossRef
31.
Zurück zum Zitat L.-P. Merkouri, T.R. Reina, M.S. Duyar, Closing the carbon cycle with dual function materials. Energy Fuels 35(24), 19859–19880 (2021)CrossRef L.-P. Merkouri, T.R. Reina, M.S. Duyar, Closing the carbon cycle with dual function materials. Energy Fuels 35(24), 19859–19880 (2021)CrossRef
32.
Zurück zum Zitat H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, J. Huang, Progress in the development and application of CaO-based adsorbents for CO2 capture—a review. Mater. Today Sustain. 1–2, 1–27 (2018) H. Sun, C. Wu, B. Shen, X. Zhang, Y. Zhang, J. Huang, Progress in the development and application of CaO-based adsorbents for CO2 capture—a review. Mater. Today Sustain. 1–2, 1–27 (2018)
33.
Zurück zum Zitat L. Yang, J. Heinlein, C. Hua, R. Gao, S. Hu, L. Pfefferle et al., Emerging dual-functional 2D transition metal oxides for carbon capture and utilization: a review. Fuel 324, 124706 (2022)CrossRef L. Yang, J. Heinlein, C. Hua, R. Gao, S. Hu, L. Pfefferle et al., Emerging dual-functional 2D transition metal oxides for carbon capture and utilization: a review. Fuel 324, 124706 (2022)CrossRef
34.
Zurück zum Zitat E.J. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng. 6(10), 1701–1738 (2021)CrossRef E.J. Jelmy, N. Thomas, D.T. Mathew, J. Louis, N.T. Padmanabhan, V. Kumaravel et al., Impact of structure, doping and defect-engineering in 2D materials on CO2 capture and conversion. Reaction Chem. Eng. 6(10), 1701–1738 (2021)CrossRef
35.
Zurück zum Zitat A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 15(3), 1012 (2022)CrossRef A. Razaq, F. Bibi, X. Zheng, R. Papadakis, S.H.M. Jafri, H. Li, Review on graphene-, graphene oxide-, reduced graphene oxide-based flexible composites: from fabrication to applications. Materials 15(3), 1012 (2022)CrossRef
36.
Zurück zum Zitat R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B 181, 352–362 (2016)CrossRef R. Gusain, P. Kumar, O.P. Sharma, S.L. Jain, O.P. Khatri, Reduced graphene oxide–CuO nanocomposites for photocatalytic conversion of CO2 into methanol under visible light irradiation. Appl. Catal. B 181, 352–362 (2016)CrossRef
37.
Zurück zum Zitat R. Gusain, H.P. Mungse, N. Kumar, T.R. Ravindran, R. Pandian, H. Sugimura et al., Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. J. Mater. Chem. A 4(3), 926–937 (2016)CrossRef R. Gusain, H.P. Mungse, N. Kumar, T.R. Ravindran, R. Pandian, H. Sugimura et al., Covalently attached graphene–ionic liquid hybrid nanomaterials: synthesis, characterization and tribological application. J. Mater. Chem. A 4(3), 926–937 (2016)CrossRef
38.
Zurück zum Zitat N. Mukwevho, R. Gusain, E. Fosso-Kankeu, N. Kumar, F. Waanders, S.S. Ray, Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. J. Ind. Eng. Chem. 81, 393–404 (2020)CrossRef N. Mukwevho, R. Gusain, E. Fosso-Kankeu, N. Kumar, F. Waanders, S.S. Ray, Removal of naphthalene from simulated wastewater through adsorption-photodegradation by ZnO/Ag/GO nanocomposite. J. Ind. Eng. Chem. 81, 393–404 (2020)CrossRef
39.
Zurück zum Zitat A. Ali, R. Pothu, S.H. Siyal, S. Phulpoto, M. Sajjad, K.H. Thebo, Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol. 2(1), 83–88 (2019) A. Ali, R. Pothu, S.H. Siyal, S. Phulpoto, M. Sajjad, K.H. Thebo, Graphene-based membranes for CO2 separation. Mater. Sci. Energy Technol. 2(1), 83–88 (2019)
40.
Zurück zum Zitat P. Li, H.C. Zeng, Hierarchical nanocomposite by the integration of reduced graphene oxide and amorphous carbon with ultrafine MgO nanocrystallites for enhanced CO2 capture. Environ. Sci. Technol. 51(21), 12998–13007 (2017)CrossRef P. Li, H.C. Zeng, Hierarchical nanocomposite by the integration of reduced graphene oxide and amorphous carbon with ultrafine MgO nanocrystallites for enhanced CO2 capture. Environ. Sci. Technol. 51(21), 12998–13007 (2017)CrossRef
41.
Zurück zum Zitat N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of graphene: a comprehensive review. FlatChem. 27, 100224 (2021)CrossRef N. Kumar, R. Salehiyan, V. Chauke, O. Joseph Botlhoko, K. Setshedi, M. Scriba et al., Top-down synthesis of graphene: a comprehensive review. FlatChem. 27, 100224 (2021)CrossRef
42.
Zurück zum Zitat L. Jiang, Z. Fan, Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4), 1922–1945 (2014)MathSciNetCrossRef L. Jiang, Z. Fan, Design of advanced porous graphene materials: from graphene nanomesh to 3D architectures. Nanoscale 6(4), 1922–1945 (2014)MathSciNetCrossRef
43.
Zurück zum Zitat J. Oh, Y.-H. Mo, V.-D. Le, S. Lee, J. Han, G. Park et al., Borane-modified graphene-based materials as CO2 adsorbents. Carbon 79, 450–456 (2014)CrossRef J. Oh, Y.-H. Mo, V.-D. Le, S. Lee, J. Han, G. Park et al., Borane-modified graphene-based materials as CO2 adsorbents. Carbon 79, 450–456 (2014)CrossRef
44.
Zurück zum Zitat Z.-Y. Sui, B.-H. Han, Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon 82, 590–598 (2015)CrossRef Z.-Y. Sui, B.-H. Han, Effect of surface chemistry and textural properties on carbon dioxide uptake in hydrothermally reduced graphene oxide. Carbon 82, 590–598 (2015)CrossRef
45.
Zurück zum Zitat D. Kim, D.W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung et al., Intercalation of gas molecules in graphene oxide interlayer: The role of water. Jo. Phys. Chem. C. 118(20), 11142–11148 (2014)CrossRef D. Kim, D.W. Kim, H.-K. Lim, J. Jeon, H. Kim, H.-T. Jung et al., Intercalation of gas molecules in graphene oxide interlayer: The role of water. Jo. Phys. Chem. C. 118(20), 11142–11148 (2014)CrossRef
46.
Zurück zum Zitat A.K. Mishra, S. Ramaprabhu, Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J. Mater. Chem. 22(9), 3708–3712 (2012)CrossRef A.K. Mishra, S. Ramaprabhu, Nanostructured polyaniline decorated graphene sheets for reversible CO2 capture. J. Mater. Chem. 22(9), 3708–3712 (2012)CrossRef
47.
Zurück zum Zitat A.K. Mishra, S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets. AIP Adv. 1(3), 032152 (2011)CrossRef A.K. Mishra, S. Ramaprabhu, Carbon dioxide adsorption in graphene sheets. AIP Adv. 1(3), 032152 (2011)CrossRef
48.
Zurück zum Zitat G.-J. Shin, K. Rhee, S.-J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int. J. Hydrogen Energy 41(32), 14351–14359 (2016)CrossRef G.-J. Shin, K. Rhee, S.-J. Park, Improvement of CO2 capture by graphite oxide in presence of polyethylenimine. Int. J. Hydrogen Energy 41(32), 14351–14359 (2016)CrossRef
49.
Zurück zum Zitat Y. Liu, B. Sajjadi, W.-Y. Chen, R. Chatterjee, Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247, 10–18 (2019)CrossRef Y. Liu, B. Sajjadi, W.-Y. Chen, R. Chatterjee, Ultrasound-assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247, 10–18 (2019)CrossRef
50.
Zurück zum Zitat J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos et al., CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)CrossRef J. Pokhrel, N. Bhoria, S. Anastasiou, T. Tsoufis, D. Gournis, G. Romanos et al., CO2 adsorption behavior of amine-functionalized ZIF-8, graphene oxide, and ZIF-8/graphene oxide composites under dry and wet conditions. Microporous Mesoporous Mater. 267, 53–67 (2018)CrossRef
51.
Zurück zum Zitat N. Hsan, P. Dutta, S. Kumar, R. Bera, N. Das, Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromol. 125, 300–306 (2019)CrossRef N. Hsan, P. Dutta, S. Kumar, R. Bera, N. Das, Chitosan grafted graphene oxide aerogel: Synthesis, characterization and carbon dioxide capture study. Int. J. Biol. Macromol. 125, 300–306 (2019)CrossRef
52.
Zurück zum Zitat R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)CrossRef R. Gusain, K. Gupta, P. Joshi, O.P. Khatri, Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv. Coll. Interface. Sci. 272, 102009 (2019)CrossRef
53.
Zurück zum Zitat K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021)CrossRef K. Gupta, P. Joshi, R. Gusain, O.P. Khatri, Recent advances in adsorptive removal of heavy metal and metalloid ions by metal oxide-based nanomaterials. Coord. Chem. Rev. 445, 214100 (2021)CrossRef
54.
Zurück zum Zitat R. Gusain, O.P. Khatri, Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. J. Mater. Chem. A 1(18), 5612–5619 (2013)CrossRef R. Gusain, O.P. Khatri, Ultrasound assisted shape regulation of CuO nanorods in ionic liquids and their use as energy efficient lubricant additives. J. Mater. Chem. A 1(18), 5612–5619 (2013)CrossRef
55.
Zurück zum Zitat Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chem. Soc. Rev. 41(14), 4909–4927 (2012)CrossRef Y. Ren, Z. Ma, P.G. Bruce, Ordered mesoporous metal oxides: synthesis and applications. Chem. Soc. Rev. 41(14), 4909–4927 (2012)CrossRef
56.
Zurück zum Zitat M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy et al., A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12), 1604 (2020)CrossRef M.S.S. Danish, A. Bhattacharya, D. Stepanova, A. Mikhaylov, M.L. Grilli, M. Khosravy et al., A systematic review of metal oxide applications for energy and environmental sustainability. Metals 10(12), 1604 (2020)CrossRef
57.
Zurück zum Zitat A. Azmi, A. Ruhaimi, M. Aziz, Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture. Mater. Today Chem. 16, 100273 (2020)CrossRef A. Azmi, A. Ruhaimi, M. Aziz, Efficient 3-aminopropyltrimethoxysilane functionalised mesoporous ceria nanoparticles for CO2 capture. Mater. Today Chem. 16, 100273 (2020)CrossRef
58.
Zurück zum Zitat J.C. Védrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. Chemsuschem 12(3), 577–588 (2019)CrossRef J.C. Védrine, Metal oxides in heterogeneous oxidation catalysis: State of the art and challenges for a more sustainable world. Chemsuschem 12(3), 577–588 (2019)CrossRef
59.
Zurück zum Zitat Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao et al., Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas. Fuel 243, 298–305 (2019)CrossRef Y. Guo, C. Tan, P. Wang, J. Sun, W. Li, C. Zhao et al., Magnesium-based basic mixtures derived from earth-abundant natural minerals for CO2 capture in simulated flue gas. Fuel 243, 298–305 (2019)CrossRef
60.
Zurück zum Zitat P. Li, R. Chen, Y. Lin, W. Li, General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chem. Eng. J. 404, 126459 (2021)CrossRef P. Li, R. Chen, Y. Lin, W. Li, General approach to facile synthesis of MgO-based porous ultrathin nanosheets enabling high-efficiency CO2 capture. Chem. Eng. J. 404, 126459 (2021)CrossRef
61.
Zurück zum Zitat Y. Hu, Y. Guo, J. Sun, H. Li, W. Liu, Progress in MgO sorbents for cyclic CO2 capture: a comprehensive review. J. Mater. Chem. A 7(35), 20103–20120 (2019)CrossRef Y. Hu, Y. Guo, J. Sun, H. Li, W. Liu, Progress in MgO sorbents for cyclic CO2 capture: a comprehensive review. J. Mater. Chem. A 7(35), 20103–20120 (2019)CrossRef
62.
Zurück zum Zitat F.E.C. Othman, N. Yusof, S. Samitsu, N. Abdullah, M.F. Hamid, K. Nagai, et al. Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides. J. CO2 Utilization 45, 101434 (2021) F.E.C. Othman, N. Yusof, S. Samitsu, N. Abdullah, M.F. Hamid, K. Nagai, et al. Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: Effects of different type of metal oxides. J. CO2 Utilization 45, 101434 (2021)
63.
Zurück zum Zitat W.N.R. Wan Isahak, Z.A.C. Ramli, M.W. Mohamed Hisham, M.A. Yarmo (eds.), Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent. AIP Conference Proceedings; 2013: American Institute of Physics W.N.R. Wan Isahak, Z.A.C. Ramli, M.W. Mohamed Hisham, M.A. Yarmo (eds.), Magnesium oxide nanoparticles on green activated carbon as efficient CO2 adsorbent. AIP Conference Proceedings; 2013: American Institute of Physics
64.
Zurück zum Zitat R. Chang, X. Wu, O. Cheung, W. Liu, Synthetic solid oxide sorbents for CO2 capture: state-of-the art and future perspectives. J. Mater. Chem. A (2022) R. Chang, X. Wu, O. Cheung, W. Liu, Synthetic solid oxide sorbents for CO2 capture: state-of-the art and future perspectives. J. Mater. Chem. A (2022)
65.
Zurück zum Zitat B.W. Hwang, J.H. Lim, H.J. Chae, H.-J. Ryu, D. Lee, J.B. Lee et al., CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process. Process Saf. Environ. Prot. 116, 219–227 (2018)CrossRef B.W. Hwang, J.H. Lim, H.J. Chae, H.-J. Ryu, D. Lee, J.B. Lee et al., CO2 capture and regeneration properties of MgO-based sorbents promoted with alkali metal nitrates at high pressure for the sorption enhanced water gas shift process. Process Saf. Environ. Prot. 116, 219–227 (2018)CrossRef
66.
Zurück zum Zitat J.-S. Kwak, K.-R. Oh, K.-Y. Kim, J.-M. Lee, Y.-U. Kwon, CO 2 absorption and desorption characteristics of MgO-based absorbent promoted by triple eutectic alkali carbonate. Phys. Chem. Chem. Phys. 21(37), 20805–20813 (2019)CrossRef J.-S. Kwak, K.-R. Oh, K.-Y. Kim, J.-M. Lee, Y.-U. Kwon, CO 2 absorption and desorption characteristics of MgO-based absorbent promoted by triple eutectic alkali carbonate. Phys. Chem. Chem. Phys. 21(37), 20805–20813 (2019)CrossRef
67.
Zurück zum Zitat L.K.G. Bhatta, U.M. Bhatta, K. Venkatesh, Metal oxides for carbon dioxide capture, in Inamuddin, Asiri A.M., Lichtfouse, E. (eds.), Sustainable Agriculture Reviews 38: Carbon Sequestration Vol 2 Materials and Chemical Methods. Cham: Springer International Publishing, p. 63–83 (2019) L.K.G. Bhatta, U.M. Bhatta, K. Venkatesh, Metal oxides for carbon dioxide capture, in Inamuddin, Asiri A.M., Lichtfouse, E. (eds.), Sustainable Agriculture Reviews 38: Carbon Sequestration Vol 2 Materials and Chemical Methods. Cham: Springer International Publishing, p. 63–83 (2019)
68.
Zurück zum Zitat N.H. Florin, A.T. Harris, Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem. Eng. Sci. 64(2), 187–191 (2009)CrossRef N.H. Florin, A.T. Harris, Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2 capture-and-release cycles. Chem. Eng. Sci. 64(2), 187–191 (2009)CrossRef
69.
Zurück zum Zitat O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem. 29, 100281 (2021)CrossRef O. Folorunso, N. Kumar, Y. Hamam, R. Sadiku, S.S. Ray, Recent progress on 2D metal carbide/nitride (MXene) nanocomposites for lithium-based batteries. FlatChem. 29, 100281 (2021)CrossRef
70.
Zurück zum Zitat M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)CrossRef M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman et al., Two-dimensional transition metal carbides. ACS Nano 6(2), 1322–1331 (2012)CrossRef
71.
Zurück zum Zitat M.W. Barsoum, Y. Gogotsi, Removing roadblocks and opening new opportunities for MXenes. Ceramics Int. (2022) M.W. Barsoum, Y. Gogotsi, Removing roadblocks and opening new opportunities for MXenes. Ceramics Int. (2022)
72.
Zurück zum Zitat L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021)CrossRef L. Wang, M. Han, C.E. Shuck, X. Wang, Y. Gogotsi, Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021)CrossRef
73.
Zurück zum Zitat V. Parey, B.M. Abraham, S.H. Mir, J.K. Singh, High-throughput screening of atomic defects in Mxenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces. 13(30), 35585–35594 (2021)CrossRef V. Parey, B.M. Abraham, S.H. Mir, J.K. Singh, High-throughput screening of atomic defects in Mxenes for CO2 capture, activation, and dissociation. ACS Appl. Mater. Interfaces. 13(30), 35585–35594 (2021)CrossRef
74.
Zurück zum Zitat Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ 7(3), 394–410 (2022)CrossRef Y. Chen, C. Liu, S. Guo, T. Mu, L. Wei, Y. Lu, CO2 capture and conversion to value-added products promoted by MXene-based materials. Green Energy Environ 7(3), 394–410 (2022)CrossRef
75.
Zurück zum Zitat Á. Morales-García, A. Fernández-Fernández, F. Viñes, F. Illas, CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)CrossRef Á. Morales-García, A. Fernández-Fernández, F. Viñes, F. Illas, CO2 abatement using two-dimensional MXene carbides. J. Mater. Chem. A 6(8), 3381–3385 (2018)CrossRef
76.
Zurück zum Zitat B. Wang, A. Zhou, F. Liu, J. Cao, L. Wang, Q. Hu, Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceramics 7(3), 237–245 (2018)CrossRef B. Wang, A. Zhou, F. Liu, J. Cao, L. Wang, Q. Hu, Carbon dioxide adsorption of two-dimensional carbide MXenes. J. Adv. Ceramics 7(3), 237–245 (2018)CrossRef
77.
Zurück zum Zitat I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.-Å. Näslund et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31(2), 1805472 (2019)CrossRef I. Persson, J. Halim, H. Lind, T.W. Hansen, J.B. Wagner, L.-Å. Näslund et al., 2D transition metal carbides (MXenes) for carbon capture. Adv. Mater. 31(2), 1805472 (2019)CrossRef
78.
Zurück zum Zitat Á. Morales-García, M. Mayans-Llorach, F. Viñes, F. Illas, Thickness biased capture of CO2 on carbide MXenes. Phys. Chem. Chem. Phys. 21(41), 23136–23142 (2019)CrossRef Á. Morales-García, M. Mayans-Llorach, F. Viñes, F. Illas, Thickness biased capture of CO2 on carbide MXenes. Phys. Chem. Chem. Phys. 21(41), 23136–23142 (2019)CrossRef
79.
Zurück zum Zitat Z. Guo, Y. Li, B. Sa, Y. Fang, J. Lin, Y. Huang et al., M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 521, 146436 (2020)CrossRef Z. Guo, Y. Li, B. Sa, Y. Fang, J. Lin, Y. Huang et al., M2C-type MXenes: Promising catalysts for CO2 capture and reduction. Appl. Surf. Sci. 521, 146436 (2020)CrossRef
80.
Zurück zum Zitat R. Morales-Salvador, Á. Morales-García, F. Viñes, F. Illas, Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20(25), 17117–17124 (2018)CrossRef R. Morales-Salvador, Á. Morales-García, F. Viñes, F. Illas, Two-dimensional nitrides as highly efficient potential candidates for CO2 capture and activation. Phys. Chem. Chem. Phys. 20(25), 17117–17124 (2018)CrossRef
81.
Zurück zum Zitat F.-Q. Liu, X. Liu, L. Sun, R. Li, C.-X. Yin, B. Wu, MXene-supported stable adsorbents for superior CO2 capture. J. Materials Chem. A 9(21), 12763–12771 (2021)CrossRef F.-Q. Liu, X. Liu, L. Sun, R. Li, C.-X. Yin, B. Wu, MXene-supported stable adsorbents for superior CO2 capture. J. Materials Chem. A 9(21), 12763–12771 (2021)CrossRef
82.
Zurück zum Zitat A.A. Shamsabadi, A.P. Isfahani, S.K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2020)CrossRef A.A. Shamsabadi, A.P. Isfahani, S.K. Salestan, A. Rahimpour, B. Ghalei, E. Sivaniah et al., Pushing rubbery polymer membranes to be economic for CO2 separation: embedment with Ti3C2Tx MXene nanosheets. ACS Appl. Mater. Interfaces 12(3), 3984–3992 (2020)CrossRef
83.
Zurück zum Zitat S. Ghosh, S. Ramaprabhu, High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Utilization 21, 89–99 (2017) S. Ghosh, S. Ramaprabhu, High-pressure investigation of ionic functionalized graphitic carbon nitride nanostructures for CO2 capture. J. CO2 Utilization 21, 89–99 (2017)
84.
Zurück zum Zitat Y. Oh, V.-D. Le, U.N. Maiti, J.O. Hwang, W.J. Park, J. Lim et al., Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 9(9), 9148–9157 (2015)CrossRef Y. Oh, V.-D. Le, U.N. Maiti, J.O. Hwang, W.J. Park, J. Lim et al., Selective and regenerative carbon dioxide capture by highly polarizing porous carbon nitride. ACS Nano 9(9), 9148–9157 (2015)CrossRef
85.
Zurück zum Zitat S.A. Anuar, K.N. Ahmad, A. Al-Amiery, M.S. Masdar, W.N.R. Wan Isahak, Facile preparation of carbon nitride-ZnO hybrid adsorbent for CO2 capture: the significant role of amine source to metal oxide ratio. Catalysts 11(10), 1253 (2021)CrossRef S.A. Anuar, K.N. Ahmad, A. Al-Amiery, M.S. Masdar, W.N.R. Wan Isahak, Facile preparation of carbon nitride-ZnO hybrid adsorbent for CO2 capture: the significant role of amine source to metal oxide ratio. Catalysts 11(10), 1253 (2021)CrossRef
86.
Zurück zum Zitat B. Szczęśniak, S. Borysiuk, J. Choma, M. Jaroniec, Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7(6), 1457–1473 (2020)CrossRef B. Szczęśniak, S. Borysiuk, J. Choma, M. Jaroniec, Mechanochemical synthesis of highly porous materials. Mater. Horiz. 7(6), 1457–1473 (2020)CrossRef
87.
Zurück zum Zitat A.K. Mishra, S. Ramaprabhu, Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. J. Appl. Phys. 116(6), 064306 (2014)CrossRef A.K. Mishra, S. Ramaprabhu, Enhanced CO2 capture in Fe3O4-graphene nanocomposite by physicochemical adsorption. J. Appl. Phys. 116(6), 064306 (2014)CrossRef
88.
Zurück zum Zitat J. Xiao, Y. Wang, T.C. Zhang, S. Yuan, rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J. Alloy. Compd. 857, 157534 (2021)CrossRef J. Xiao, Y. Wang, T.C. Zhang, S. Yuan, rGO/N-porous carbon composites for enhanced CO2 capture and energy storage performances. J. Alloy. Compd. 857, 157534 (2021)CrossRef
89.
Zurück zum Zitat S. Jin, Y. Guo, J. Wang, L. Wang, Q. Hu, A. Zhou, Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)CrossRef S. Jin, Y. Guo, J. Wang, L. Wang, Q. Hu, A. Zhou, Carbon dioxide adsorption of two-dimensional Mo2C MXene. Diam. Relat. Mater. 128, 109277 (2022)CrossRef
90.
Zurück zum Zitat S. Marchesini, C.M. McGilvery, J. Bailey, C. Petit, Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption. ACS Nano 11(10), 10003–10011 (2017)CrossRef S. Marchesini, C.M. McGilvery, J. Bailey, C. Petit, Template-free synthesis of highly porous boron nitride: insights into pore network design and impact on gas sorption. ACS Nano 11(10), 10003–10011 (2017)CrossRef
91.
Zurück zum Zitat S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J. Mater. Chem. A 6(4), 1832–1839 (2018)CrossRef S. Chen, P. Li, S. Xu, X. Pan, Q. Fu, X. Bao, Carbon doping of hexagonal boron nitride porous materials toward CO2 capture. J. Mater. Chem. A 6(4), 1832–1839 (2018)CrossRef
92.
Zurück zum Zitat R. Shankar, M. Sachs, L. Francàs, D. Lubert-Perquel, G. Kerherve, A. Regoutz et al., Porous boron nitride for combined CO2 capture and photoreduction. J. Mater. Chem. A 7(41), 23931–23940 (2019)CrossRef R. Shankar, M. Sachs, L. Francàs, D. Lubert-Perquel, G. Kerherve, A. Regoutz et al., Porous boron nitride for combined CO2 capture and photoreduction. J. Mater. Chem. A 7(41), 23931–23940 (2019)CrossRef
93.
Zurück zum Zitat D. Wang, Y. Xue, C. Wang, J. Ji, Z. Zhou, C. Tang, Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers. J. Mater. Sci. 54(14), 10168–10178 (2019)CrossRef D. Wang, Y. Xue, C. Wang, J. Ji, Z. Zhou, C. Tang, Improved capture of carbon dioxide and methane via adding micropores within porous boron nitride fibers. J. Mater. Sci. 54(14), 10168–10178 (2019)CrossRef
94.
Zurück zum Zitat J. Liang, Q. Song, J. Lin, G. Li, Y. Fang, Z. Guo et al., In Situ Cu-loaded porous boron nitride nanofiber as an efficient adsorbent for CO2 capture. ACS Sustain. Chem. Eng. 8(19), 7454–7462 (2020)CrossRef J. Liang, Q. Song, J. Lin, G. Li, Y. Fang, Z. Guo et al., In Situ Cu-loaded porous boron nitride nanofiber as an efficient adsorbent for CO2 capture. ACS Sustain. Chem. Eng. 8(19), 7454–7462 (2020)CrossRef
95.
Zurück zum Zitat C. Yang, D. Liu, Y. Chen, C. Chen, J. Wang, Y. Fan et al., Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture. ACS Appl. Mater. Interfaces. 11(10), 10276–10282 (2019)CrossRef C. Yang, D. Liu, Y. Chen, C. Chen, J. Wang, Y. Fan et al., Three-dimensional functionalized boron nitride nanosheets/ZnO superstructures for CO2 capture. ACS Appl. Mater. Interfaces. 11(10), 10276–10282 (2019)CrossRef
96.
Zurück zum Zitat N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-Promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3(10), 9897–9909 (2020)CrossRef N. Kumar, S. Kumar, R. Gusain, N. Manyala, S. Eslava, S.S. Ray, Polypyrrole-Promoted rGO–MoS2 nanocomposites for enhanced photocatalytic conversion of CO2 and H2O to CO, CH4, and H2 products. ACS Appl. Energy Mater. 3(10), 9897–9909 (2020)CrossRef
97.
Zurück zum Zitat J. Zha, X. Zhang, Room-Temperature synthesis of two-dimensional metal-organic frameworks with controllable size and functionality for enhanced CO2 sorption. Cryst. Growth Des. 18(5), 3209–3214 (2018)CrossRef J. Zha, X. Zhang, Room-Temperature synthesis of two-dimensional metal-organic frameworks with controllable size and functionality for enhanced CO2 sorption. Cryst. Growth Des. 18(5), 3209–3214 (2018)CrossRef
98.
Zurück zum Zitat S. Stanly, E.J. Jelmy, C.P.R. Nair, H. John, Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J. Environ. Chem. Eng. 7(5), 103344 (2019)CrossRef S. Stanly, E.J. Jelmy, C.P.R. Nair, H. John, Carbon dioxide adsorption studies on modified montmorillonite clay/reduced graphene oxide hybrids at low pressure. J. Environ. Chem. Eng. 7(5), 103344 (2019)CrossRef
99.
Zurück zum Zitat M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5(1), 56 (2021) M.G. Rasul, A. Kiziltas, B. Arfaei, R. Shahbazian-Yassar, 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 5(1), 56 (2021)
100.
Zurück zum Zitat A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, Graphene analogues of BN: novel synthesis and properties. ACS Nano 4(3), 1539–1544 (2010)CrossRef A. Nag, K. Raidongia, K.P.S.S. Hembram, R. Datta, U.V. Waghmare, C.N.R. Rao, Graphene analogues of BN: novel synthesis and properties. ACS Nano 4(3), 1539–1544 (2010)CrossRef
101.
Zurück zum Zitat C. Yang, J. Wang, Y. Chen, D. Liu, S. Huang, W. Lei, One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption. Nanoscale 10(23), 10979–10985 (2018)CrossRef C. Yang, J. Wang, Y. Chen, D. Liu, S. Huang, W. Lei, One-step template-free synthesis of 3D functionalized flower-like boron nitride nanosheets for NH3 and CO2 adsorption. Nanoscale 10(23), 10979–10985 (2018)CrossRef
102.
Zurück zum Zitat Y. Li, L. Liu, H. Yu, Y. Zhao, J. Dai, Y. Zhong et al., Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Sci. Total Environ. 811, 151384 (2022)CrossRef Y. Li, L. Liu, H. Yu, Y. Zhao, J. Dai, Y. Zhong et al., Synergy of developed micropores and electronic structure defects in carbon-doped boron nitride for CO2 capture. Sci. Total Environ. 811, 151384 (2022)CrossRef
103.
Zurück zum Zitat X. Zhang, S.Y. Teng, A.C.M. Loy, B.S. How, W.D. Leong, X. Tao, Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10(6), 1012 (2020)CrossRef X. Zhang, S.Y. Teng, A.C.M. Loy, B.S. How, W.D. Leong, X. Tao, Transition metal dichalcogenides for the application of pollution reduction: a review. Nanomaterials 10(6), 1012 (2020)CrossRef
104.
Zurück zum Zitat N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving Controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces. 11(21), 19141–19155 (2019)CrossRef N. Kumar, E. Fosso-Kankeu, S.S. Ray, Achieving Controllable MoS2 nanostructures with increased interlayer spacing for efficient removal of Pb(II) from aquatic systems. ACS Appl. Mater. Interfaces. 11(21), 19141–19155 (2019)CrossRef
105.
Zurück zum Zitat S. Pandey, E. Fosso-Kankeu, M.J. Spiro, F. Waanders, N. Kumar, S.S. Ray et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)CrossRef S. Pandey, E. Fosso-Kankeu, M.J. Spiro, F. Waanders, N. Kumar, S.S. Ray et al., Equilibrium, kinetic, and thermodynamic studies of lead ion adsorption from mine wastewater onto MoS2-clinoptilolite composite. Mater. Today Chem. 18, 100376 (2020)CrossRef
106.
Zurück zum Zitat N. Aguilar, S. Aparicio, Theoretical insights into CO2 adsorption by MoS2 nanomaterials. J. Phys. Chem. C 123(43), 26338–26350 (2019)CrossRef N. Aguilar, S. Aparicio, Theoretical insights into CO2 adsorption by MoS2 nanomaterials. J. Phys. Chem. C 123(43), 26338–26350 (2019)CrossRef
107.
Zurück zum Zitat N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRef N. Kumar, B.P.A. George, H. Abrahamse, V. Parashar, J.C. Ngila, Sustainable one-step synthesis of hierarchical microspheres of PEGylated MoS2 nanosheets and MoO3 nanorods: their cytotoxicity towards lung and breast cancer cells. Appl. Surf. Sci. 396, 8–18 (2017)CrossRef
108.
Zurück zum Zitat L. Seravalli, M. Bosi, A review on chemical vapour deposition of two-dimensional MoS2 flakes. Materials 14(24), 7590 (2021)CrossRef L. Seravalli, M. Bosi, A review on chemical vapour deposition of two-dimensional MoS2 flakes. Materials 14(24), 7590 (2021)CrossRef
109.
Zurück zum Zitat R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4(5), 4721–4734 (2021)CrossRef R. Gusain, N. Kumar, F. Opoku, P.P. Govender, S.S. Ray, MoS2 Nanosheet/ZnS composites for the visible-light-assisted photocatalytic degradation of oxytetracycline. ACS Appl. Nano Mater. 4(5), 4721–4734 (2021)CrossRef
110.
Zurück zum Zitat A. Parviainen, K. Loukola-Ruskeeniemi, Environmental impact of mineralised black shales. Earth Sci. Rev. 192, 65–90 (2019)CrossRef A. Parviainen, K. Loukola-Ruskeeniemi, Environmental impact of mineralised black shales. Earth Sci. Rev. 192, 65–90 (2019)CrossRef
111.
Zurück zum Zitat T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa et al., The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Petroleum Sci. Eng., 94–95,123–54 (2012) T.E. Rufford, S. Smart, G.C.Y. Watson, B.F. Graham, J. Boxall, J.C. Diniz da Costa et al., The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. J. Petroleum Sci. Eng., 94–95,123–54 (2012)
112.
Zurück zum Zitat Q. Sun, G. Qin, Y. Ma, W. Wang, P. Li, A. Du et al., Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale 9(1), 19–24 (2017)CrossRef Q. Sun, G. Qin, Y. Ma, W. Wang, P. Li, A. Du et al., Electric field controlled CO2 capture and CO2/N2 separation on MoS2 monolayers. Nanoscale 9(1), 19–24 (2017)CrossRef
113.
Zurück zum Zitat G. Shi, L. Yu, X. Ba, X. Zhang, J. Zhou, Y. Yu, Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Trans. 46(32), 10569–10577 (2017)CrossRef G. Shi, L. Yu, X. Ba, X. Zhang, J. Zhou, Y. Yu, Copper nanoparticle interspersed MoS2 nanoflowers with enhanced efficiency for CO2 electrochemical reduction to fuel. Dalton Trans. 46(32), 10569–10577 (2017)CrossRef
114.
Zurück zum Zitat F.M. Enujekwu, Y. Zhang, C.I. Ezeh, H. Zhao, M. Xu, E. Besley et al., N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Appl. Surf. Sci. 542, 148556 (2021)CrossRef F.M. Enujekwu, Y. Zhang, C.I. Ezeh, H. Zhao, M. Xu, E. Besley et al., N-doping enabled defect-engineering of MoS2 for enhanced and selective adsorption of CO2: A DFT approach. Appl. Surf. Sci. 542, 148556 (2021)CrossRef
115.
Zurück zum Zitat M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials. Carbon 132, 104–140 (2018)CrossRef M. Inagaki, M. Toyoda, Y. Soneda, T. Morishita, Nitrogen-doped carbon materials. Carbon 132, 104–140 (2018)CrossRef
116.
Zurück zum Zitat S.S. Ray, R. Gusain, N. Kumar, Chapter ten—Two-dimensional carbon nanomaterials-based adsorbents, in Ray S.S., Gusain, R., Kumar, N. (eds.) Carbon Nanomaterial-Based Adsorbents for Water Purification: Elsevier; pp. 225–73 (2020) S.S. Ray, R. Gusain, N. Kumar, Chapter ten—Two-dimensional carbon nanomaterials-based adsorbents, in Ray S.S., Gusain, R., Kumar, N. (eds.) Carbon Nanomaterial-Based Adsorbents for Water Purification: Elsevier; pp. 225–73 (2020)
117.
Zurück zum Zitat N. Mukwevho, N. Kumar, E. Fosso-Kankeu, F. Waanders, J.R. Bunt, R.S. Sinha, Visible light-excitable ZnO/2D graphitic-C3N4 heterostructure for the photodegradation of naphthalene. Desalin. Water Treat. 163, 286–296 (2019)CrossRef N. Mukwevho, N. Kumar, E. Fosso-Kankeu, F. Waanders, J.R. Bunt, R.S. Sinha, Visible light-excitable ZnO/2D graphitic-C3N4 heterostructure for the photodegradation of naphthalene. Desalin. Water Treat. 163, 286–296 (2019)CrossRef
118.
Zurück zum Zitat H.-L. Peng, F.-Y. Zhong, J.-B. Zhang, J.-Y. Zhang, P.-K. Wu, K. Huang et al., Graphitic carbon nitride functionalized with polyethylenimine for highly effective capture of carbon dioxide. Ind. Eng. Chem. Res. 57(32), 11031–11038 (2018)CrossRef H.-L. Peng, F.-Y. Zhong, J.-B. Zhang, J.-Y. Zhang, P.-K. Wu, K. Huang et al., Graphitic carbon nitride functionalized with polyethylenimine for highly effective capture of carbon dioxide. Ind. Eng. Chem. Res. 57(32), 11031–11038 (2018)CrossRef
119.
Zurück zum Zitat Z. Li, P. Liu, C. Ou, X. Dong, Porous metal-organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustain. Chem. Eng. 8(41), 15378–15404 (2020)CrossRef Z. Li, P. Liu, C. Ou, X. Dong, Porous metal-organic frameworks for carbon dioxide adsorption and separation at low pressure. ACS Sustain. Chem. Eng. 8(41), 15378–15404 (2020)CrossRef
120.
Zurück zum Zitat W. Wang, Y. Yu, Y. Jin, X. Liu, M. Shang, X. Zheng et al., Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J. Nanobiotechnol. 20(1), 207 (2022)CrossRef W. Wang, Y. Yu, Y. Jin, X. Liu, M. Shang, X. Zheng et al., Two-dimensional metal-organic frameworks: from synthesis to bioapplications. J. Nanobiotechnol. 20(1), 207 (2022)CrossRef
121.
Zurück zum Zitat W. Fan, Y. Wang, Z. Xiao, Z. Huang, F. Dai, R. Wang et al., Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chin. Chem. Lett. 29(6), 865–868 (2018)CrossRef W. Fan, Y. Wang, Z. Xiao, Z. Huang, F. Dai, R. Wang et al., Two-dimensional cobalt metal-organic frameworks for efficient C3H6/CH4 and C3H8/CH4 hydrocarbon separation. Chin. Chem. Lett. 29(6), 865–868 (2018)CrossRef
122.
Zurück zum Zitat S. Das, T. Ben, S. Qiu, V. Valtchev, Two-Dimensional COF–three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities. ACS Appl. Mater. Interfaces. 12(47), 52899–52907 (2020)CrossRef S. Das, T. Ben, S. Qiu, V. Valtchev, Two-Dimensional COF–three-dimensional MOF dual-layer membranes with unprecedentedly high H2/CO2 selectivity and ultrahigh gas permeabilities. ACS Appl. Mater. Interfaces. 12(47), 52899–52907 (2020)CrossRef
123.
Zurück zum Zitat Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine et al., Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)CrossRef Z. Kang, Y. Peng, Y. Qian, D. Yuan, M.A. Addicoat, T. Heine et al., Mixed matrix membranes (MMMs) comprising exfoliated 2D covalent organic frameworks (COFs) for efficient CO2 separation. Chem. Mater. 28(5), 1277–1285 (2016)CrossRef
124.
Zurück zum Zitat Y.B. Apriliyanto, N. Darmawan, N. Faginas-Lago, A. Lombardi, Two-dimensional diamine-linked covalent organic frameworks for CO2/N2 capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22(44), 25918–25929 (2020)CrossRef Y.B. Apriliyanto, N. Darmawan, N. Faginas-Lago, A. Lombardi, Two-dimensional diamine-linked covalent organic frameworks for CO2/N2 capture and separation: theoretical modeling and simulations. Phys. Chem. Chem. Phys. 22(44), 25918–25929 (2020)CrossRef
125.
Zurück zum Zitat Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai, Q. Wang et al., Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539, 213–223 (2017)CrossRef Y. Cheng, X. Wang, C. Jia, Y. Wang, L. Zhai, Q. Wang et al., Ultrathin mixed matrix membranes containing two-dimensional metal-organic framework nanosheets for efficient CO2/CH4 separation. J. Membr. Sci. 539, 213–223 (2017)CrossRef
126.
Zurück zum Zitat N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, S. Besghaier, M. Chlendi, F.I. Franco Duro et al., CO2 adsorption of materials synthesized from clay minerals: a review. Minerals [Internet] 9(9) (2019) N. Chouikhi, J.A. Cecilia, E. Vilarrasa-García, S. Besghaier, M. Chlendi, F.I. Franco Duro et al., CO2 adsorption of materials synthesized from clay minerals: a review. Minerals [Internet] 9(9) (2019)
127.
Zurück zum Zitat M. Atilhan, S. Atilhan, R. Ullah, B. Anaya, T. Cagin, C.T. Yavuz et al., High-pressure methane, carbon dioxide, and nitrogen adsorption on amine-impregnated porous montmorillonite nanoclays. J. Chem. Eng. Data 61(8), 2749–2760 (2016)CrossRef M. Atilhan, S. Atilhan, R. Ullah, B. Anaya, T. Cagin, C.T. Yavuz et al., High-pressure methane, carbon dioxide, and nitrogen adsorption on amine-impregnated porous montmorillonite nanoclays. J. Chem. Eng. Data 61(8), 2749–2760 (2016)CrossRef
128.
Zurück zum Zitat X. Tan, H.A. Tahini, S.C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture. ACS Appl. Mater. Interfaces. 9(23), 19825–19830 (2017)CrossRef X. Tan, H.A. Tahini, S.C. Smith, Borophene as a promising material for charge-modulated switchable CO2 capture. ACS Appl. Mater. Interfaces. 9(23), 19825–19830 (2017)CrossRef
129.
Zurück zum Zitat T. Liu, Y. Chen, M. Zhang, L. Yuan, C. Zhang, J. Wang et al., A first-principles study of gas molecule adsorption on borophene. AIP Adv. 7(12), 125007 (2017)CrossRef T. Liu, Y. Chen, M. Zhang, L. Yuan, C. Zhang, J. Wang et al., A first-principles study of gas molecule adsorption on borophene. AIP Adv. 7(12), 125007 (2017)CrossRef
130.
Zurück zum Zitat T. Kaewmaraya, L. Ngamwongwan, P. Moontragoon, W. Jarernboon, D. Singh, R. Ahuja et al., Novel green phosphorene as a superior chemical gas sensing material. J. Hazard. Mater. 401, 123340 (2021)CrossRef T. Kaewmaraya, L. Ngamwongwan, P. Moontragoon, W. Jarernboon, D. Singh, R. Ahuja et al., Novel green phosphorene as a superior chemical gas sensing material. J. Hazard. Mater. 401, 123340 (2021)CrossRef
131.
Zurück zum Zitat S. Zhou, M. Wang, S. Wei, S. Cao, Z. Wang, S. Liu et al., First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics. 16, 100301 (2021)CrossRef S. Zhou, M. Wang, S. Wei, S. Cao, Z. Wang, S. Liu et al., First-row transition-metal-doped graphyne for ultrahigh-performance CO2 capture and separation over N2/CH4/H2. Materials Today Physics. 16, 100301 (2021)CrossRef
Metadaten
Titel
Nano-engineered 2D Materials for CO2 Capture
verfasst von
Neeraj Kumar
Rashi Gusain
Suprakas Sinha Ray
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-28756-5_14

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.