Skip to main content
Erschienen in: Advances in Manufacturing 1/2017

Open Access 27.09.2016

Nano-machining of materials: understanding the process through molecular dynamics simulation

verfasst von: Dan-Dan Cui, Liang-Chi Zhang

Erschienen in: Advances in Manufacturing | Ausgabe 1/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Molecular dynamics (MD) simulation has been widely applied in various complex, dynamic processes at atomistic scale, because an MD simulation can provide some deformation details of materials in nano-processing and thus help to investigate the critical and important issues which cannot be fully revealed by experiments. Extensive research with the aid of MD simulation has provided insights for the development of nanotechnology. This paper reviews the fundamentals of nano-machining from the aspect of material structural effects, such as single crystalline, polycrystalline and amorphous materials. The classic MD simulations of nano-indentation and nano-cutting which have aimed to investigate the machining mechanism are discussed with respect to the effects of tool geometry, material properties and machining parameters. On nano-milling, the discussion focuses on the understanding of the grooving quality in relation to milling conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chae J, Park S, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313–332CrossRef Chae J, Park S, Freiheit T (2006) Investigation of micro-cutting operations. Int J Mach Tools Manuf 46:313–332CrossRef
2.
Zurück zum Zitat Malekian M, Park SS, Jun MB (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209:4903–4914CrossRef Malekian M, Park SS, Jun MB (2009) Tool wear monitoring of micro-milling operations. J Mater Process Technol 209:4903–4914CrossRef
3.
Zurück zum Zitat Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J Ser A Solid Mech Mater Eng 42:546–559CrossRef Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J Ser A Solid Mech Mater Eng 42:546–559CrossRef
4.
Zurück zum Zitat Cheong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11:173CrossRef Cheong WCD, Zhang LC (2000) Molecular dynamics simulation of phase transformations in silicon monocrystals due to nano-indentation. Nanotechnology 11:173CrossRef
5.
Zurück zum Zitat Tang C, Zhang LC (2004) A molecular dynamics analysis of the mechanical effect of water on the deformation of silicon monocrystals subjected to nano-indentation. Nanotechnology 16:15CrossRef Tang C, Zhang LC (2004) A molecular dynamics analysis of the mechanical effect of water on the deformation of silicon monocrystals subjected to nano-indentation. Nanotechnology 16:15CrossRef
6.
Zurück zum Zitat Kim D, Oh S (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17:2259CrossRef Kim D, Oh S (2006) Atomistic simulation of structural phase transformations in monocrystalline silicon induced by nanoindentation. Nanotechnology 17:2259CrossRef
7.
Zurück zum Zitat Minor AM, Asif SS, Shan Z et al (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5:697–702CrossRef Minor AM, Asif SS, Shan Z et al (2006) A new view of the onset of plasticity during the nanoindentation of aluminium. Nat Mater 5:697–702CrossRef
8.
Zurück zum Zitat Kim KJ, Yoon JH, Cho MH et al (2006) Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Σ = 5 (210) grain boundary. Mater Lett 60:3367–3372CrossRef Kim KJ, Yoon JH, Cho MH et al (2006) Molecular dynamics simulation of dislocation behavior during nanoindentation on a bicrystal with a Σ = 5 (210) grain boundary. Mater Lett 60:3367–3372CrossRef
9.
Zurück zum Zitat Li J, Guo J, Luo H et al (2016) Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl Surf Sci 364:190–200CrossRef Li J, Guo J, Luo H et al (2016) Study of nanoindentation mechanical response of nanocrystalline structures using molecular dynamics simulations. Appl Surf Sci 364:190–200CrossRef
10.
Zurück zum Zitat Szlufarska I, Kalia RK, Nakano A et al (2007) A molecular dynamics study of nanoindentation of amorphous silicon carbide. J Appl Phys 102:23509CrossRef Szlufarska I, Kalia RK, Nakano A et al (2007) A molecular dynamics study of nanoindentation of amorphous silicon carbide. J Appl Phys 102:23509CrossRef
11.
Zurück zum Zitat Qiu C, Zhu P, Fang F et al (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305:101–110CrossRef Qiu C, Zhu P, Fang F et al (2014) Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Appl Surf Sci 305:101–110CrossRef
12.
Zurück zum Zitat Bei H, George EP, Hay J et al (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95:045501CrossRef Bei H, George EP, Hay J et al (2005) Influence of indenter tip geometry on elastic deformation during nanoindentation. Phys Rev Lett 95:045501CrossRef
13.
Zurück zum Zitat Shih C, Yang M, Li J (1991) Effect of tip radius on nanoindentation. J Mater Res 6:2623–2628CrossRef Shih C, Yang M, Li J (1991) Effect of tip radius on nanoindentation. J Mater Res 6:2623–2628CrossRef
14.
Zurück zum Zitat Cheong WCD, Zhang LC, Tanaka H (2001) Some essentials of simulating nano-surfacing processes using the molecular dynamics method. In: Key Engineering Materials, Trans Tech Publ, 2001, pp. 31–42 Cheong WCD, Zhang LC, Tanaka H (2001) Some essentials of simulating nano-surfacing processes using the molecular dynamics method. In: Key Engineering Materials, Trans Tech Publ, 2001, pp. 31–42
15.
Zurück zum Zitat Zhang LC, Cheong WCD (2003) Molecular dynamics simulation of phase transformations in monocrystalline silicon. High Press Surf Sci Eng 57:285 Zhang LC, Cheong WCD (2003) Molecular dynamics simulation of phase transformations in monocrystalline silicon. High Press Surf Sci Eng 57:285
16.
Zurück zum Zitat Cheong WCD, Zhang LC (2003) Monocrystalline silicon subjected to multi-asperity sliding: nano-wear mechanisms, subsurface damage and effect of asperity interaction. Int J Mater Prod Technol 18:398–407CrossRef Cheong WCD, Zhang LC (2003) Monocrystalline silicon subjected to multi-asperity sliding: nano-wear mechanisms, subsurface damage and effect of asperity interaction. Int J Mater Prod Technol 18:398–407CrossRef
17.
Zurück zum Zitat Zhang LC, Johnson K, Cheong WCD (2001) A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribol Lett 10:23–28CrossRef Zhang LC, Johnson K, Cheong WCD (2001) A molecular dynamics study of scale effects on the friction of single-asperity contacts. Tribol Lett 10:23–28CrossRef
18.
Zurück zum Zitat Davis JR (1990) Properties and selection: nonferrous alloys and special-purpose materials. ASM Intl 2:1770 Davis JR (1990) Properties and selection: nonferrous alloys and special-purpose materials. ASM Intl 2:1770
19.
Zurück zum Zitat Pei Q, Lu C, Fang F, Wu H (2006) Nanometric cutting of copper: a molecular dynamics study. Comput Mater Sci 37:434–441CrossRef Pei Q, Lu C, Fang F, Wu H (2006) Nanometric cutting of copper: a molecular dynamics study. Comput Mater Sci 37:434–441CrossRef
20.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff L (1999) Some aspects of machining with negative-rake tools simulating grinding: a molecular dynamics simulation approach. Philos Mag B 79:955–968CrossRef Komanduri R, Chandrasekaran N, Raff L (1999) Some aspects of machining with negative-rake tools simulating grinding: a molecular dynamics simulation approach. Philos Mag B 79:955–968CrossRef
21.
Zurück zum Zitat Han X (2006) Investigation micro-mechanism of dry polishing using molecular dynamics simulation method. In: 1st IEEE international conference on nano/micro engineered and molecular systems 2006. NEMS’06, pp. 936–941 Han X (2006) Investigation micro-mechanism of dry polishing using molecular dynamics simulation method. In: 1st IEEE international conference on nano/micro engineered and molecular systems 2006. NEMS’06, pp. 936–941
22.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff L (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219:84–97CrossRef Komanduri R, Chandrasekaran N, Raff L (1998) Effect of tool geometry in nanometric cutting: a molecular dynamics simulation approach. Wear 219:84–97CrossRef
23.
Zurück zum Zitat Han X, Lin B, Yu S et al (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129:105–108CrossRef Han X, Lin B, Yu S et al (2002) Investigation of tool geometry in nanometric cutting by molecular dynamics simulation. J Mater Process Technol 129:105–108CrossRef
24.
Zurück zum Zitat Komanduri R, Ch and Rasekaran N, Raff L (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81:1989–2019 Komanduri R, Ch and Rasekaran N, Raff L (2001) Molecular dynamics simulation of the nanometric cutting of silicon. Philos Mag B 81:1989–2019
25.
Zurück zum Zitat Zhao HW, Zhang L, Zhang P et al (2012) Influence of geometry in nanometric cutting single-crystal copper via MD simulation. Adv Mater Res 421:123–128CrossRef Zhao HW, Zhang L, Zhang P et al (2012) Influence of geometry in nanometric cutting single-crystal copper via MD simulation. Adv Mater Res 421:123–128CrossRef
26.
Zurück zum Zitat Fang F, Wu H, Zhou W et al (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407–410CrossRef Fang F, Wu H, Zhou W et al (2007) A study on mechanism of nano-cutting single crystal silicon. J Mater Process Technol 184:407–410CrossRef
27.
Zurück zum Zitat Zhang LC, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211:44–53CrossRef Zhang LC, Tanaka H (1997) Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211:44–53CrossRef
28.
Zurück zum Zitat Zhang LC, Tanaka H (1998) Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol Int 31:425–433CrossRef Zhang LC, Tanaka H (1998) Atomic scale deformation in silicon monocrystals induced by two-body and three-body contact sliding. Tribol Int 31:425–433CrossRef
29.
Zurück zum Zitat Movahhedy M, Altintas Y, Gadala M (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci Eng 124:178–188CrossRef Movahhedy M, Altintas Y, Gadala M (2002) Numerical analysis of metal cutting with chamfered and blunt tools. J Manuf Sci Eng 124:178–188CrossRef
30.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff L (2000) MD Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear 242:60–88CrossRef Komanduri R, Chandrasekaran N, Raff L (2000) MD Simulation of nanometric cutting of single crystal aluminum-effect of crystal orientation and direction of cutting. Wear 242:60–88CrossRef
31.
Zurück zum Zitat Li J (1961) high-angle tilt boundary—a dislocation core model. J Appl Phys 32:525–541CrossRef Li J (1961) high-angle tilt boundary—a dislocation core model. J Appl Phys 32:525–541CrossRef
32.
Zurück zum Zitat Mylvaganam K, Zhang LC (2010) Effect of nano-scratching direction on the damage in monocrystalline silicon. In: Proceedings of the 6th Australasian congress on applied mechanics, Engineers Australia, p 757 Mylvaganam K, Zhang LC (2010) Effect of nano-scratching direction on the damage in monocrystalline silicon. In: Proceedings of the 6th Australasian congress on applied mechanics, Engineers Australia, p 757
33.
Zurück zum Zitat Komanduri R, Chandrasekaran N, Raff L (2000) MD simulation of indentation and scratching of single crystal aluminum. Wear 240:113–143CrossRef Komanduri R, Chandrasekaran N, Raff L (2000) MD simulation of indentation and scratching of single crystal aluminum. Wear 240:113–143CrossRef
34.
Zurück zum Zitat Pei Q, Lu C, Lee H (2007) Large scale molecular dynamics study of nanometric machining of copper. Comput Mater Sci 41:177–185CrossRef Pei Q, Lu C, Lee H (2007) Large scale molecular dynamics study of nanometric machining of copper. Comput Mater Sci 41:177–185CrossRef
35.
Zurück zum Zitat Zhu YT, Langdon TG (2005) Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials. Mater Sci Eng A 409:234–242CrossRef Zhu YT, Langdon TG (2005) Influence of grain size on deformation mechanisms: an extension to nanocrystalline materials. Mater Sci Eng A 409:234–242CrossRef
36.
Zurück zum Zitat Van Swygenhoven H, Caro A, Farkas D (2001) A molecular dynamics study of polycrystalline FCC metals at the nanoscale: grain boundary structure and its influence on plastic deformation. Mater Sci Eng A 309:440–444CrossRef Van Swygenhoven H, Caro A, Farkas D (2001) A molecular dynamics study of polycrystalline FCC metals at the nanoscale: grain boundary structure and its influence on plastic deformation. Mater Sci Eng A 309:440–444CrossRef
37.
Zurück zum Zitat Qi Y, Krajewski PE (2007) Molecular dynamics simulations of grain boundary sliding: the effect of stress and boundary misorientation. Acta Mater 55:1555–1563CrossRef Qi Y, Krajewski PE (2007) Molecular dynamics simulations of grain boundary sliding: the effect of stress and boundary misorientation. Acta Mater 55:1555–1563CrossRef
38.
Zurück zum Zitat Zhang J, Hartmaier A, Wei Y et al (2013) Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Model Simul Mater Sci Eng 21:065001CrossRef Zhang J, Hartmaier A, Wei Y et al (2013) Mechanisms of anisotropic friction in nanotwinned Cu revealed by atomistic simulations. Model Simul Mater Sci Eng 21:065001CrossRef
39.
Zurück zum Zitat Ye Y, Biswas R, Morris J et al (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390CrossRef Ye Y, Biswas R, Morris J et al (2003) Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390CrossRef
40.
Zurück zum Zitat Fang TH, Weng CI (2000) Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11:148CrossRef Fang TH, Weng CI (2000) Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11:148CrossRef
41.
Zurück zum Zitat Zhu PZ, Hu YZ, Ma TB et al (2010) Study of AFM-based nanometric cutting process using molecular dynamics. Appl Surf Sci 256:7160–7165CrossRef Zhu PZ, Hu YZ, Ma TB et al (2010) Study of AFM-based nanometric cutting process using molecular dynamics. Appl Surf Sci 256:7160–7165CrossRef
42.
Zurück zum Zitat Li J, Liu B, Luo H et al (2016) A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Comput Mater Sci 118:66–76CrossRef Li J, Liu B, Luo H et al (2016) A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Comput Mater Sci 118:66–76CrossRef
43.
Zurück zum Zitat Chen J, Liang Y, Chen M et al (2012) Multi-path nanometric cutting of molecular dynamics simulation. J Comput Theor Nanosci 9:1303–1308CrossRef Chen J, Liang Y, Chen M et al (2012) Multi-path nanometric cutting of molecular dynamics simulation. J Comput Theor Nanosci 9:1303–1308CrossRef
44.
Zurück zum Zitat Oluwajobi A, Chen X (2012) Multi-pass nanometric machining simulation using the molecular dynamics (MD). Key Eng Mater 496:241–246CrossRef Oluwajobi A, Chen X (2012) Multi-pass nanometric machining simulation using the molecular dynamics (MD). Key Eng Mater 496:241–246CrossRef
45.
Zurück zum Zitat Cui DD, Zhang LC, Mylvaganam K et al (2015) Nano-milling on monocrystalline copper: a molecular dynamics simulation. Mach Sci Technol Cui DD, Zhang LC, Mylvaganam K et al (2015) Nano-milling on monocrystalline copper: a molecular dynamics simulation. Mach Sci Technol
46.
Zurück zum Zitat Cui DD, Mylvaganam K, Zhang LC (2012) Atomic-scale grooving on copper: end-milling versus peripheral-milling. In: Advanced materials research, Trans Tech Publ, pp 546–551 Cui DD, Mylvaganam K, Zhang LC (2012) Atomic-scale grooving on copper: end-milling versus peripheral-milling. In: Advanced materials research, Trans Tech Publ, pp 546–551
47.
Zurück zum Zitat Cui DD, Zhang LC, Mylvaganam K (2014) Nano-milling on copper: grooving quality and critical depth of cut. J Comput Theor Nanosci 11:964–970CrossRef Cui DD, Zhang LC, Mylvaganam K (2014) Nano-milling on copper: grooving quality and critical depth of cut. J Comput Theor Nanosci 11:964–970CrossRef
48.
Zurück zum Zitat Bao W, Tansel I (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173CrossRef Bao W, Tansel I (2000) Modeling micro-end-milling operations. Part I: analytical cutting force model. Int J Mach Tools Manuf 40:2155–2173CrossRef
49.
Zurück zum Zitat Wang Z, Jiao N, Tung S et al (2011) Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces. Appl Surf Sci 257:3627–3631CrossRef Wang Z, Jiao N, Tung S et al (2011) Atomic force microscopy-based repeated machining theory for nanochannels on silicon oxide surfaces. Appl Surf Sci 257:3627–3631CrossRef
50.
Zurück zum Zitat Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J 42:546–559CrossRef Zhang LC, Tanaka H (1999) On the mechanics and physics in the nano-indentation of silicon monocrystals. JSME Int J 42:546–559CrossRef
Metadaten
Titel
Nano-machining of materials: understanding the process through molecular dynamics simulation
verfasst von
Dan-Dan Cui
Liang-Chi Zhang
Publikationsdatum
27.09.2016
Verlag
Shanghai University
Erschienen in
Advances in Manufacturing / Ausgabe 1/2017
Print ISSN: 2095-3127
Elektronische ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-016-0155-4

Weitere Artikel der Ausgabe 1/2017

Advances in Manufacturing 1/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.