Skip to main content
Erschienen in: Journal of Materials Science 16/2020

29.02.2020 | Review

Nanocomposites based on graphene analogous materials and conducting polymers: a review

verfasst von: Matthew J. Dunlop, Rabin Bissessur

Erschienen in: Journal of Materials Science | Ausgabe 16/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Interest in nanocomposite materials has grown rapidly over the past decade. In this time, graphene, graphene analogs, and polymers have increasingly found use as components in nanocomposite materials. Combining multiple materials at the nanoscale provides an opportunity to produce nanocomposites with unique and in many cases enhanced properties. Conductivity is one such property, which can be enhanced through the interaction of multiple materials at the nanoscale. In this review, we highlight nanocomposites derived from graphene analogous materials (MoS2, WS2, BN, MXenes) and electronically conducting polymers (polyaniline, polypyrrole, polythiophene, and derivatives). Methods of nanocomposite preparations including solution or nanodispersion mixing, melt mixing, and in situ polymerization are discussed, as well as specific applications of nanocomposite materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Salavati-Niasari M, Ghanbari D (2011) Polymeric nanocomposite materials. In: Reddy B (ed) Diverse industrial applications of nanocomposites. InTech, London, pp 501–520 Salavati-Niasari M, Ghanbari D (2011) Polymeric nanocomposite materials. In: Reddy B (ed) Diverse industrial applications of nanocomposites. InTech, London, pp 501–520
2.
Zurück zum Zitat Gilman JW et al (1999) Recent advances in flame retardant polymer nanocomposites. National Institute of Standards and Technology, Gaithersburg, pp 273–283 Gilman JW et al (1999) Recent advances in flame retardant polymer nanocomposites. National Institute of Standards and Technology, Gaithersburg, pp 273–283
3.
Zurück zum Zitat Gilman JW, Kashiwagi T, Lomakin S, Giannelis E, Manias E, Lichtenhan J, Jones P (1998) In: fire retardancy of polymers: the use of intumescence. The Royal Society of Chemistry, Cambridge, pp 203–221 Gilman JW, Kashiwagi T, Lomakin S, Giannelis E, Manias E, Lichtenhan J, Jones P (1998) In: fire retardancy of polymers: the use of intumescence. The Royal Society of Chemistry, Cambridge, pp 203–221
4.
Zurück zum Zitat Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42 Zhan G-D, Kuntz JD, Wan J, Mukherjee AK (2003) Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat Mater 2:38–42
5.
Zurück zum Zitat Li Y-X, Gong Z-L, Yang Y (2007) Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources 174:528–532 Li Y-X, Gong Z-L, Yang Y (2007) Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. J Power Sources 174:528–532
7.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669 Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV et al (2004) Electric field effect in atomically thin carbon films. Science 306:666–669
8.
Zurück zum Zitat Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204 Zhang Y, Tan Y-W, Stormer HL, Kim P (2005) Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438:201–204
9.
Zurück zum Zitat Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379 Novoselov KS, Jiang Z, Zhang Y, Morozov SV, Stormer HL, Zeitler U et al (2007) Room-temperature quantum Hall effect in graphene. Science 315:1379
10.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200 Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200
11.
Zurück zum Zitat Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907 Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8:902–907
12.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388 Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388
13.
Zurück zum Zitat Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors, a review. Microchim Acta 184:1–44 Xu J, Wang Y, Hu S (2017) Nanocomposites of graphene and graphene oxides: synthesis, molecular functionalization and application in electrochemical sensors and biosensors, a review. Microchim Acta 184:1–44
14.
Zurück zum Zitat Wong SI, Sunarso J, Wong BT, Lin H, Yu A, Jia B (2018) Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directions. J Power Sources 396:182–206 Wong SI, Sunarso J, Wong BT, Lin H, Yu A, Jia B (2018) Towards enhanced energy density of graphene-based supercapacitors: current status, approaches, and future directions. J Power Sources 396:182–206
15.
Zurück zum Zitat Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722 Lei W, Si W, Xu Y, Gu Z, Hao Q (2014) Conducting polymer composites with graphene for use in chemical sensors and biosensors. Microchim Acta 181:707–722
17.
Zurück zum Zitat Bae J, Park JY, Kwon OS, Lee C-S (2017) Energy efficient capacitors based on graphene/conducting polymer hybrids. J Ind Eng Chem 51:1–11 Bae J, Park JY, Kwon OS, Lee C-S (2017) Energy efficient capacitors based on graphene/conducting polymer hybrids. J Ind Eng Chem 51:1–11
18.
Zurück zum Zitat Wang M, Xu Y-X (2016) Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chin Chem Lett 27:1437–1444 Wang M, Xu Y-X (2016) Design and construction of three-dimensional graphene/conducting polymer for supercapacitors. Chin Chem Lett 27:1437–1444
19.
Zurück zum Zitat Fei Shen F, Pankratov D, Chi Q (2017) Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem 4:133–144 Fei Shen F, Pankratov D, Chi Q (2017) Graphene-conducting polymer nanocomposites for enhancing electrochemical capacitive energy storage. Curr Opin Electrochem 4:133–144
20.
Zurück zum Zitat Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5:32078–32087 Mural PKS, Sharma M, Madras G, Bose S (2015) A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv 5:32078–32087
21.
Zurück zum Zitat Dhakal DR, Lamichhane P, Mishra K, Nelson TL, Vaidyanathan RK (2019) Influence of graphene reinforcement in conductive polymer: synthesis and characterization. Polym Adv Technol 30:2172–2182 Dhakal DR, Lamichhane P, Mishra K, Nelson TL, Vaidyanathan RK (2019) Influence of graphene reinforcement in conductive polymer: synthesis and characterization. Polym Adv Technol 30:2172–2182
22.
Zurück zum Zitat Mittal V (2014) Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 299:906–931 Mittal V (2014) Functional polymer nanocomposites with graphene: a review. Macromol Mater Eng 299:906–931
23.
Zurück zum Zitat Nazar LF, Wu H, Power WP (1995) Synthesis and properties of a new (PEO)x[Na(H2O)]0.25MoO3. J Mater Chem 5:1985–1993 Nazar LF, Wu H, Power WP (1995) Synthesis and properties of a new (PEO)x[Na(H2O)]0.25MoO3. J Mater Chem 5:1985–1993
24.
Zurück zum Zitat Beyou E, Akbar S, Chaumont P, Cassagnau P (2013) Polymer nanocomposites containing functionalised multiwalled carbon nanotubes: a particular attention to polyolefin based materials. In: Suzuki S (ed) Syntheses and applications of carbon nanotubes and their composites. InTech, London, pp 77–114 Beyou E, Akbar S, Chaumont P, Cassagnau P (2013) Polymer nanocomposites containing functionalised multiwalled carbon nanotubes: a particular attention to polyolefin based materials. In: Suzuki S (ed) Syntheses and applications of carbon nanotubes and their composites. InTech, London, pp 77–114
25.
Zurück zum Zitat Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25 Potts JR, Dreyer DR, Bielawski CW, Ruoff RS (2011) Graphene-based polymer nanocomposites. Polymer 52:5–25
26.
Zurück zum Zitat Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204 Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204
27.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450 Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450
28.
Zurück zum Zitat Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78 Ma G, Peng H, Mu J, Huang H, Zhou X, Lei Z (2013) In situ intercalative polymerization of pyrrole in graphene analogue of MoS2 as advanced electrode material in supercapacitor. J Power Sources 229:72–78
29.
Zurück zum Zitat Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128 Zhou K, Liu J, Zeng W, Hu Y, Gui Z (2015) In situ synthesis, morphology, and fundamental properties of polymer/MoS2 nanocomposites. Compos Sci Technol 107:120–128
30.
Zurück zum Zitat Ren X, Shi C, Zhang P, Jiang Y, Liu J, Zhang Q (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol–gel. Mater Sci Eng, B 177:929–934 Ren X, Shi C, Zhang P, Jiang Y, Liu J, Zhang Q (2012) An investigation of V2O5/polypyrrole composite cathode materials for lithium-ion batteries synthesized by sol–gel. Mater Sci Eng, B 177:929–934
31.
Zurück zum Zitat Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543 Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47:3538–3543
32.
Zurück zum Zitat Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP (2010) Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci: Part A 48:425–433 Liu J, Yang W, Tao L, Li D, Boyer C, Davis TP (2010) Thermosensitive graphene nanocomposites formed using pyrene-terminal polymers made by RAFT polymerization. J Polym Sci: Part A 48:425–433
33.
Zurück zum Zitat Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 26(12):10068–10075 Liu J, Tao L, Yang W, Li D, Boyer C, Wuhrer R, Braet F, Davis TP (2010) Synthesis, characterization, and multilayer assembly of pH sensitive graphene-polymer nanocomposites. Langmuir 26(12):10068–10075
34.
Zurück zum Zitat Wang J, Wu Z, Hu K, Chen X, Yin H (2015) High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J Alloy Compd 619:38–43 Wang J, Wu Z, Hu K, Chen X, Yin H (2015) High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in supercapacitor. J Alloy Compd 619:38–43
35.
Zurück zum Zitat Hua H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253 Hua H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484:247–253
36.
Zurück zum Zitat Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912 Choi EY, Han TH, Hong J, Kim JE, Lee SH, Kim HW, Kim SO (2010) Noncovalent functionalization of graphene with end-functional polymers. J Mater Chem 20:1907–1912
37.
Zurück zum Zitat Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839 Cao Y, Feng J, Wu P (2010) Preparation of organically dispersible graphene nanosheet powders through a lyophilization method and their poly(lactic acid) composites. Carbon 48:3834–3839
38.
Zurück zum Zitat Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41:1905–1908 Wakabayashi K, Pierre C, Dikin DA, Ruoff RS, Ramanathan T, Brinson LC, Torkelson JM (2008) Polymer-graphite nanocomposites: effective dispersion and major property enhancement via solid-state shear pulverization. Macromolecules 41:1905–1908
39.
Zurück zum Zitat Wu J, Tang Q, Sun H, Lin J, Ao H, Huang M, Yuang H (2008) Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-sssembly. Langmuir 24:4800–4805 Wu J, Tang Q, Sun H, Lin J, Ao H, Huang M, Yuang H (2008) Conducting film from graphite oxide nanoplatelets and poly(acrylic acid) by layer-by-layer self-sssembly. Langmuir 24:4800–4805
40.
Zurück zum Zitat Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196:3331–3341 Posudievsky OY, Kozarenko OA, Dyadyun VS, Jorgensen SW, Spearot JA, Koshechko VG, Pokhodenko VD (2011) Characteristics of mechanochemically prepared host–guest hybrid nanocomposites of vanadium oxide and conducting polymers. J Power Sources 196:3331–3341
41.
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453 Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453
42.
Zurück zum Zitat Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58:1244–1315 Tang Q, Zhou Z (2013) Graphene-analogous low-dimensional materials. Prog Mater Sci 58:1244–1315
43.
Zurück zum Zitat Yang D, Westreich P, Frindt RF (1999) Transition metal dichalcogenide/polymer nanocomposites. Nanostruct Mater 12:467–470 Yang D, Westreich P, Frindt RF (1999) Transition metal dichalcogenide/polymer nanocomposites. Nanostruct Mater 12:467–470
44.
Zurück zum Zitat Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798 Xu M, Liang T, Shi M, Chen H (2013) Graphene-like two-dimensional materials. Chem Rev 113:3766–3798
45.
Zurück zum Zitat Jiang J-W (2015) Graphene versus MoS2: a short review. Front Phys 10:106801-1–106801-16 Jiang J-W (2015) Graphene versus MoS2: a short review. Front Phys 10:106801-1–106801-16
46.
Zurück zum Zitat Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456 Johari P, Shenoy VB (2012) Tuning the electronic properties of semiconducting transition metal dichalcogenides by applying mechanical strains. ACS Nano 6(6):5449–5456
47.
Zurück zum Zitat Kanatzidis M, Bissessur R, DeGroot DC, Schindler JL, Kannewurf CR (1993) New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in MoS2. Chem Mater 5:595–596 Kanatzidis M, Bissessur R, DeGroot DC, Schindler JL, Kannewurf CR (1993) New intercalation compounds of conjugated polymers. Encapsulation of polyaniline in MoS2. Chem Mater 5:595–596
48.
Zurück zum Zitat Bissessur R, White W (2006) Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater Chem Phys 99:214–219 Bissessur R, White W (2006) Novel alkyl substituted polyanilines/molybdenum disulfide nanocomposites. Mater Chem Phys 99:214–219
49.
Zurück zum Zitat Divigalpitiya WMR, Frindt RF, Morrison SR (1989) Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 246:369–371 Divigalpitiya WMR, Frindt RF, Morrison SR (1989) Inclusion systems of organic molecules in restacked single-layer molybdenum disulfide. Science 246:369–371
50.
Zurück zum Zitat Wang H, Jiang H, Hu Y, Li N, Zhao X, Li C (2017) 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J Mater Chem A 5:5383–5389 Wang H, Jiang H, Hu Y, Li N, Zhao X, Li C (2017) 2D MoS2/polyaniline heterostructures with enlarged interlayer spacing for superior lithium and sodium storage. J Mater Chem A 5:5383–5389
51.
Zurück zum Zitat Zhang X, Yang Y, Li Z, Wang X, Wang W, Yi Z, Qiang L, Wang Q, Hu Z-a (2019) Polyaniline-intercalated molybdenum disulfide composites for supercapacitors with high rate capability. J Phys Chem Solids 130:84–92 Zhang X, Yang Y, Li Z, Wang X, Wang W, Yi Z, Qiang L, Wang Q, Hu Z-a (2019) Polyaniline-intercalated molybdenum disulfide composites for supercapacitors with high rate capability. J Phys Chem Solids 130:84–92
52.
Zurück zum Zitat Zeng R, Li Z, Li L, Li Y, Huang J, Xiao Y, Yuan K, Chen Y (2019) Covalent connection of polyaniline with MoS2 nanosheets toward ultrahigh rate capability supercapacitors. ACS Sustain Chem Eng 7:11540–11549 Zeng R, Li Z, Li L, Li Y, Huang J, Xiao Y, Yuan K, Chen Y (2019) Covalent connection of polyaniline with MoS2 nanosheets toward ultrahigh rate capability supercapacitors. ACS Sustain Chem Eng 7:11540–11549
53.
Zurück zum Zitat Huang K-J, Wang L, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594 Huang K-J, Wang L, Liu Y-J, Wang H-B, Liu Y-M, Wang L-L (2013) Synthesis of polyaniline/2-dimensional graphene analog MoS2 composites for high-performance supercapacitor. Electrochim Acta 109:587–594
54.
Zurück zum Zitat Yang T, Yang R, Chen H, Nan F, Ge T, Jiao K (2015) Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl Mater Interfaces 7:2867–2872 Yang T, Yang R, Chen H, Nan F, Ge T, Jiao K (2015) Electrocatalytic activity of molybdenum disulfide nanosheets enhanced by self-doped polyaniline for highly sensitive and synergistic determination of adenine and guanine. ACS Appl Mater Interfaces 7:2867–2872
55.
Zurück zum Zitat Yang T, Chen H, Yang R, Jiang Y, Li W, Jiao K (2015) A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A. Microchim Acta 182:2623–2628 Yang T, Chen H, Yang R, Jiang Y, Li W, Jiao K (2015) A glassy carbon electrode modified with a nanocomposite consisting of molybdenum disulfide intercalated into self-doped polyaniline for the detection of bisphenol A. Microchim Acta 182:2623–2628
56.
Zurück zum Zitat Dutta S, Chowdhury AD, Biswas S, Park EY, Agnihotri N, De A, De S (2018) Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2-polyaniline nanocomposites. Biochem Eng J 140:130–139 Dutta S, Chowdhury AD, Biswas S, Park EY, Agnihotri N, De A, De S (2018) Development of an effective electrochemical platform for highly sensitive DNA detection using MoS2-polyaniline nanocomposites. Biochem Eng J 140:130–139
58.
Zurück zum Zitat Soni A, Pandey CM, Pandey MK, Sumana G (2019) Highly efficient polyaniline–MoS2 hybrid nanostructures based biosensor for cancer biomarker detection. Anal Chim Acta 1055:26–35 Soni A, Pandey CM, Pandey MK, Sumana G (2019) Highly efficient polyaniline–MoS2 hybrid nanostructures based biosensor for cancer biomarker detection. Anal Chim Acta 1055:26–35
59.
Zurück zum Zitat Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS2–PANI for advanced photocatalytic application. Int Nano Lett 9:127–139 Saha S, Chaudhary N, Mittal H, Gupta G, Khanuja M (2019) Inorganic–organic nanohybrid of MoS2–PANI for advanced photocatalytic application. Int Nano Lett 9:127–139
60.
Zurück zum Zitat Ren L, Zhang G, Lei J, Hu D, Dou S, Gu H, Li H, Zhang X (2019) Growth of PANI thin layer on MoS2 nanosheet with high electrocapacitive property for symmetric supercapacitor. J Alloy Compd 798:227–234 Ren L, Zhang G, Lei J, Hu D, Dou S, Gu H, Li H, Zhang X (2019) Growth of PANI thin layer on MoS2 nanosheet with high electrocapacitive property for symmetric supercapacitor. J Alloy Compd 798:227–234
62.
Zurück zum Zitat Wang L, Schindler J, Thomas JA, Kannewurf CR, Kanatzidis MG (1995) Entrapment of polypyrrole chains between MoS2 layers via an in situ oxidative polymerization encapsulation reaction. Chem Mater 7:1753–1755 Wang L, Schindler J, Thomas JA, Kannewurf CR, Kanatzidis MG (1995) Entrapment of polypyrrole chains between MoS2 layers via an in situ oxidative polymerization encapsulation reaction. Chem Mater 7:1753–1755
63.
Zurück zum Zitat Bissessur R, Liu PKY (2006) Direct insertion of polypyrrole into molybdenum disulfide. Solid State Ion 177:191–196 Bissessur R, Liu PKY (2006) Direct insertion of polypyrrole into molybdenum disulfide. Solid State Ion 177:191–196
64.
Zurück zum Zitat Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS2 intercalation composites for supercapacitor electrodes. Ceram Int 43:9877–9883 Lian M, Wu X, Wang Q, Zhang W, Wang Y (2017) Hydrothermal synthesis of polypyrrole/MoS2 intercalation composites for supercapacitor electrodes. Ceram Int 43:9877–9883
65.
Zurück zum Zitat Acharya U, Bober P, Trchovà M, Alexander Zhigunov A, Stejskal J, Pfleger J (2018) Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer 150:130–137 Acharya U, Bober P, Trchovà M, Alexander Zhigunov A, Stejskal J, Pfleger J (2018) Synergistic conductivity increase in polypyrrole/molybdenum disulfide composite. Polymer 150:130–137
67.
Zurück zum Zitat Hong J, Bissessur R, Dahn DC (2016) Exfoliated polypyrrole–MoS2 nanocomposites: preparation and characterization. In: McBride J (ed) Molybdenum disulfide: synthesis, properties and industrial applications. Nova Science, Hauppauge, pp 83–106 Hong J, Bissessur R, Dahn DC (2016) Exfoliated polypyrrole–MoS2 nanocomposites: preparation and characterization. In: McBride J (ed) Molybdenum disulfide: synthesis, properties and industrial applications. Nova Science, Hauppauge, pp 83–106
68.
Zurück zum Zitat Lin B-Z, Ding C, Xu B-H, Chen Z-J, Chen Y-L (2009) Preparation and characterization of polythiophene/molybdenum disulfide intercalation material. Mater Res Bull 44:719–723 Lin B-Z, Ding C, Xu B-H, Chen Z-J, Chen Y-L (2009) Preparation and characterization of polythiophene/molybdenum disulfide intercalation material. Mater Res Bull 44:719–723
69.
Zurück zum Zitat Türkaslan BE, Dikmen S, Öksüz L, Öksüz AU (2015) Plasma nanocoating of thiophene onto MoS2 nanotubes. Appl Surf Sci 357:1558–1564 Türkaslan BE, Dikmen S, Öksüz L, Öksüz AU (2015) Plasma nanocoating of thiophene onto MoS2 nanotubes. Appl Surf Sci 357:1558–1564
70.
Zurück zum Zitat Murugan AV, Quintin M, Marie-Helene Delville M-H, Campet G, Gopinath CS, Vijayamohanan K (2006) Exfoliation-induced nanoribbon formation of poly(3,4-ethylenedioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries. J Power Sources 156:615–619 Murugan AV, Quintin M, Marie-Helene Delville M-H, Campet G, Gopinath CS, Vijayamohanan K (2006) Exfoliation-induced nanoribbon formation of poly(3,4-ethylenedioxythiophene) PEDOT between MoS2 layers as cathode material for lithium batteries. J Power Sources 156:615–619
71.
Zurück zum Zitat Braga D, Lezama IG, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223 Braga D, Lezama IG, Berger H, Morpurgo AF (2012) Quantitative determination of the band gap of WS2 with ambipolar ionic liquid-gated transistors. Nano Lett 12:5218–5223
72.
Zurück zum Zitat Xu B-H, Lin B-Z, Chen Z-J, Li X-L, Qin-Qin Wang Q-Q (2009) Preparation and electrical conductivity of polypyrrole/WS2 layered nanocomposites. J Colloid Interface Sci 330:220–226 Xu B-H, Lin B-Z, Chen Z-J, Li X-L, Qin-Qin Wang Q-Q (2009) Preparation and electrical conductivity of polypyrrole/WS2 layered nanocomposites. J Colloid Interface Sci 330:220–226
73.
Zurück zum Zitat Lane BCS, Bissessur R, Abd-El-Aziz AS, Alsaedi WH, Dahn DC, McDermott E, Martin A (2016) Exfoliated nanocomposites based on polyaniline and tungsten disulfide. In: Yilmaz F (ed) Conductive polymers. InTech, London, pp 201–222 Lane BCS, Bissessur R, Abd-El-Aziz AS, Alsaedi WH, Dahn DC, McDermott E, Martin A (2016) Exfoliated nanocomposites based on polyaniline and tungsten disulfide. In: Yilmaz F (ed) Conductive polymers. InTech, London, pp 201–222
74.
Zurück zum Zitat Stejskal J, Acharya U, Bober P, Hajná M, Miroslava Trchová M, Mičušík M, Omastovác M, Paštid I, Nemanja Gavrilov N (2019) Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Appl Surf Sci 492:497–503 Stejskal J, Acharya U, Bober P, Hajná M, Miroslava Trchová M, Mičušík M, Omastovác M, Paštid I, Nemanja Gavrilov N (2019) Surface modification of tungsten disulfide with polypyrrole for enhancement of the conductivity and its impact on hydrogen evolution reaction. Appl Surf Sci 492:497–503
75.
Zurück zum Zitat Arsenault N, Bissessur R, Dahn DC (2019) Tungsten disulfide polythiophene nanocomposites. In: Aliofkhazraei M (ed) Advances in nanostructured composites, vol 2. CRC Press, Boca Raton, pp 53–68 Arsenault N, Bissessur R, Dahn DC (2019) Tungsten disulfide polythiophene nanocomposites. In: Aliofkhazraei M (ed) Advances in nanostructured composites, vol 2. CRC Press, Boca Raton, pp 53–68
76.
Zurück zum Zitat Luccio TD, Borriello C, Bruno A, Maglione MG, Minarini C, Nenna G (2013) Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Phys Status Solidi A 210(11):2278–2283 Luccio TD, Borriello C, Bruno A, Maglione MG, Minarini C, Nenna G (2013) Preparation and characterization of novel nanocomposites of WS2 nanotubes and polyfluorene conductive polymer. Phys Status Solidi A 210(11):2278–2283
77.
Zurück zum Zitat Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939 Lin Y, Connell JW (2012) Advances in 2D boron nitride nanostructures: nanosheets, nanoribbons, nanomeshes, and hybrids with graphene. Nanoscale 4:6908–6939
78.
Zurück zum Zitat Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993 Golberg D, Bando Y, Huang Y, Terao T, Mitome M, Tang C, Zhi C (2010) Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–2993
79.
Zurück zum Zitat Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28(5):335–340 Blase X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28(5):335–340
80.
Zurück zum Zitat Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2005) Characteristics of boron nitride nanotube–polyaniline composites. Angew Chem Int Ed 44:7929–7932 Zhi C, Bando Y, Tang C, Honda S, Sato K, Kuwahara H, Golberg D (2005) Characteristics of boron nitride nanotube–polyaniline composites. Angew Chem Int Ed 44:7929–7932
81.
Zurück zum Zitat Zhi C, Zhang L, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2008) New crystalline phase induced by boron nitride nanotubes in polyaniline. J Phys Chem C 112:17592–17595 Zhi C, Zhang L, Bando Y, Terao T, Tang C, Kuwahara H, Golberg D (2008) New crystalline phase induced by boron nitride nanotubes in polyaniline. J Phys Chem C 112:17592–17595
82.
Zurück zum Zitat Wu J, Yin L (2011) Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater Interfaces 3:4354–4362 Wu J, Yin L (2011) Platinum nanoparticle modified polyaniline-functionalized boron nitride nanotubes for amperometric glucose enzyme biosensor. ACS Appl Mater Interfaces 3:4354–4362
83.
Zurück zum Zitat Çakmakçı E, Madakbaş S (2013) Preparation and characterization of polyaniline/hexagonal boron nitride composites. High Temp Mater Proc 32(6):557–561 Çakmakçı E, Madakbaş S (2013) Preparation and characterization of polyaniline/hexagonal boron nitride composites. High Temp Mater Proc 32(6):557–561
85.
Zurück zum Zitat Shahabuddin S, Khanam R, Khalid M, Sarih NM, Ching JJ, Mohamad S, Saidur R (2018) Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution. Arabian Journal of Chemistry 11:1000–1016 Shahabuddin S, Khanam R, Khalid M, Sarih NM, Ching JJ, Mohamad S, Saidur R (2018) Synthesis of 2D boron nitride doped polyaniline hybrid nanocomposites for photocatalytic degradation of carcinogenic dyes from aqueous solution. Arabian Journal of Chemistry 11:1000–1016
86.
Zurück zum Zitat Zhi Y-R, Yu B, Yuen ACY, Liang J, Wang L-Q, Yang W, Lu H-D, Yeoh G-H (2018) Surface manipulation of thermal-exfoliated hexagonal boron nitride with polyaniline for improving thermal stability and fire safety performance of polymeric material. ACS Omega 3:14942–14952 Zhi Y-R, Yu B, Yuen ACY, Liang J, Wang L-Q, Yang W, Lu H-D, Yeoh G-H (2018) Surface manipulation of thermal-exfoliated hexagonal boron nitride with polyaniline for improving thermal stability and fire safety performance of polymeric material. ACS Omega 3:14942–14952
87.
Zurück zum Zitat Maity CK, Hatui G, Sahoo S, Saren P, Nayak GC (2019) Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. ChemistrySelect 4:3672–3680 Maity CK, Hatui G, Sahoo S, Saren P, Nayak GC (2019) Boron nitride based ternary nanocomposites with different carbonaceous materials decorated by polyaniline for supercapacitor application. ChemistrySelect 4:3672–3680
88.
Zurück zum Zitat Cui M, Ren S, Qin S, Xue Q, Zhao H, Wang L (2018) Processable poly(2 butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating. Corros Sci 131:187–198 Cui M, Ren S, Qin S, Xue Q, Zhao H, Wang L (2018) Processable poly(2 butylaniline)/hexagonal boron nitride nanohybrids for synergetic anticorrosive reinforcement of epoxy coating. Corros Sci 131:187–198
90.
Zurück zum Zitat Sultan A, Ahmad S, Anwer T, Mohammad F (2015) Binary doped polypyrrole and polypyrrole/boron nitride nanocomposites: preparation, characterization and application in detection of liquefied petroleum gas leaks. RSC Adv 5:105980–105991 Sultan A, Ahmad S, Anwer T, Mohammad F (2015) Binary doped polypyrrole and polypyrrole/boron nitride nanocomposites: preparation, characterization and application in detection of liquefied petroleum gas leaks. RSC Adv 5:105980–105991
91.
Zurück zum Zitat Sultan A, Mohammad F (2017) Chemical sensing, thermal stability, electrochemistry and electrical conductivity of silver nanoparticles decorated and polypyrrole enwrapped boron nitride nanocomposite. Polymer 113:221–232 Sultan A, Mohammad F (2017) Chemical sensing, thermal stability, electrochemistry and electrical conductivity of silver nanoparticles decorated and polypyrrole enwrapped boron nitride nanocomposite. Polymer 113:221–232
92.
Zurück zum Zitat Velayudham S, Lee CH, Xie M, Blair D, Bauman N, Yap YK, Sarah A, Green SA, Liu H (2010) Noncovalent functionalization of boron nitride nanotubes with poly(p-phenylene ethynylene)s and polythiophene. ACS Appl Mater Inter Interfaces 2(1):104–110 Velayudham S, Lee CH, Xie M, Blair D, Bauman N, Yap YK, Sarah A, Green SA, Liu H (2010) Noncovalent functionalization of boron nitride nanotubes with poly(p-phenylene ethynylene)s and polythiophene. ACS Appl Mater Inter Interfaces 2(1):104–110
93.
Zurück zum Zitat Martinez-Rubi Y, Jakubek ZJ, Jakubinek MB, Kim KS, Fuyong Cheng F, Couillard M, Kingston C, Simard B (2015) Self-assembly and visualization of poly(3-hexyl-thiophene) chain alignment along boron nitride nanotubes. J Phys Chem C 119:26605–26610 Martinez-Rubi Y, Jakubek ZJ, Jakubinek MB, Kim KS, Fuyong Cheng F, Couillard M, Kingston C, Simard B (2015) Self-assembly and visualization of poly(3-hexyl-thiophene) chain alignment along boron nitride nanotubes. J Phys Chem C 119:26605–26610
95.
Zurück zum Zitat Giambrone N, McCrory M, Kumar A, Ram MK (2016) Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films 615:216–232 Giambrone N, McCrory M, Kumar A, Ram MK (2016) Comparative photoelectrochemical studies of regioregular polyhexylthiophene with microdiamond, nanodiamond and hexagonal boron nitride hybrid films. Thin Solid Films 615:216–232
96.
Zurück zum Zitat Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253 Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW (2011) Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23:4248–4253
97.
Zurück zum Zitat Verger L, Xu C, Natu V, Cheng H-M, Ren W, Barsoum MW (2019) Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr Opin Solid State Mater Sci 23:149–163 Verger L, Xu C, Natu V, Cheng H-M, Ren W, Barsoum MW (2019) Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr Opin Solid State Mater Sci 23:149–163
98.
Zurück zum Zitat Lu X, Zhu J, Wu W, Zhang B (2017) Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim Acta 228:282–289 Lu X, Zhu J, Wu W, Zhang B (2017) Hierarchical architecture of PANI@TiO2/Ti3C2Tx ternary composite electrode for enhanced electrochemical performance. Electrochim Acta 228:282–289
99.
Zurück zum Zitat Ren Y, Zhu J, Wang L, Liu H, Liu Y, Wu W, Wang F (2018) Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett 214:84–87 Ren Y, Zhu J, Wang L, Liu H, Liu Y, Wu W, Wang F (2018) Synthesis of polyaniline nanoparticles deposited on two-dimensional titanium carbide for high-performance supercapacitors. Mater Lett 214:84–87
100.
Zurück zum Zitat Fu J, Yun J, Wu S, Li L, Yu L, Kim KH (2018) Architecturally robust graphene-encapsulated MXeneTi2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 10:34212–34221 Fu J, Yun J, Wu S, Li L, Yu L, Kim KH (2018) Architecturally robust graphene-encapsulated MXeneTi2CTx@polyaniline composite for high-performance pouch-type asymmetric supercapacitor. ACS Appl Mater Interfaces 10:34212–34221
101.
Zurück zum Zitat Parveen N, Mahato N, Ansari MO, Cho MH (2016) Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated. Temp Compos Part B 87:281–290 Parveen N, Mahato N, Ansari MO, Cho MH (2016) Enhanced electrochemical behavior and hydrophobicity of crystalline polyaniline@graphene nanocomposite synthesized at elevated. Temp Compos Part B 87:281–290
104.
Zurück zum Zitat Wei H, Dong J, Fang X, Zheng W, Sun Y, Qian Y, Jiang Z, Huang Y (2019) Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol 169:52–59 Wei H, Dong J, Fang X, Zheng W, Sun Y, Qian Y, Jiang Z, Huang Y (2019) Ti3C2Tx MXene/polyaniline (PANI) sandwich intercalation structure composites constructed for microwave absorption. Compos Sci Technol 169:52–59
105.
Zurück zum Zitat Zhao L, Wang K, Wei W, Wang L, Han W (2019) High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1:407–416 Zhao L, Wang K, Wei W, Wang L, Han W (2019) High-performance flexible sensing devices based on polyaniline/MXene nanocomposites. InfoMat 1:407–416
107.
Zurück zum Zitat Boota M, Anasori B, Voigt C, Zhao M-Q, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the Layers of 2D titanium carbide (MXene). Adv Mater 28:1517–1522 Boota M, Anasori B, Voigt C, Zhao M-Q, Barsoum MW, Gogotsi Y (2016) Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the Layers of 2D titanium carbide (MXene). Adv Mater 28:1517–1522
108.
109.
Zurück zum Zitat Yan J, Ma Y, Zhang C, Li X, Liu W, Yao X, Yao S, Luo S (2018) Polypyrrole-MXene coated textile-based flexible energy storage. RSC Adv 8:39742–39748 Yan J, Ma Y, Zhang C, Li X, Liu W, Yao X, Yao S, Luo S (2018) Polypyrrole-MXene coated textile-based flexible energy storage. RSC Adv 8:39742–39748
110.
Zurück zum Zitat Wu W, Wei D, Zhun J, Niu D, Wang F, Wang L, Yang L, Yang P, Wang C (2019) Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram Int 45:7328–7337 Wu W, Wei D, Zhun J, Niu D, Wang F, Wang L, Yang L, Yang P, Wang C (2019) Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram Int 45:7328–7337
112.
Zurück zum Zitat Hun X, Li Y, Wang S, Li Y, Zhao J, Zhang H, Luo X (2018) Photoelectrochemical platform for cancer cell glutathione detection based on polyaniline and nanoMoS2 composites modified gold electrode. Biosens Bioelectron 112:93–99 Hun X, Li Y, Wang S, Li Y, Zhao J, Zhang H, Luo X (2018) Photoelectrochemical platform for cancer cell glutathione detection based on polyaniline and nanoMoS2 composites modified gold electrode. Biosens Bioelectron 112:93–99
113.
Zurück zum Zitat Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Zhuang Liu Z (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26:1886–1893 Cheng L, Liu J, Gu X, Gong H, Shi X, Liu T, Wang C, Wang X, Liu G, Xing H, Bu W, Sun B, Zhuang Liu Z (2014) PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv Mater 26:1886–1893
114.
Metadaten
Titel
Nanocomposites based on graphene analogous materials and conducting polymers: a review
verfasst von
Matthew J. Dunlop
Rabin Bissessur
Publikationsdatum
29.02.2020
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2020
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-04479-9

Weitere Artikel der Ausgabe 16/2020

Journal of Materials Science 16/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.