Skip to main content
Erschienen in: Journal of Materials Science 16/2017

04.05.2017 | Composites

Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement

verfasst von: Suhao Li, Zheling Li, Timothy L. Burnett, Thomas J. A. Slater, Teruo Hashimoto, Robert J. Young

Erschienen in: Journal of Materials Science | Ausgabe 16/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The microstructure and mechanisms of reinforcement have been investigated in nanocomposites consisting of graphene nanoplatelets (GNPs) in natural rubber (NR). Nanocomposites with four different loadings of three different sized GNPs were prepared and were bench-marked against nanocomposites loaded with N330 carbon black. The microstructure of the nanocomposites was characterised through a combination of scanning electron microscopy, polarised Raman spectroscopy and X-ray computed tomography (CT), where it was shown that the GNPs were well dispersed with a preferred orientation parallel to the surface of the nanocomposite sheets. The mechanical properties of the nanocomposites were evaluated using tensile testing, and it was shown that, for a given loading, there was a three times greater increase in stiffness for the GNPs than for the carbon black. Stress transfer from the NR to the GNPs was evaluated from stress-induced Raman bands shifts indicating that the effective Young’s modulus of the GNPs in the NR was of the order of 100 MPa, similar to the value evaluated using the rule of mixtures from the stress–strain data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Donnet JB, Voet A (1976) Carbon black: physics, chemistry and elastomer reinforcement. Marcel Dekker, New York Donnet JB, Voet A (1976) Carbon black: physics, chemistry and elastomer reinforcement. Marcel Dekker, New York
4.
Zurück zum Zitat Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites–stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120. doi:10.1038/nmat1059 CrossRef Koerner H, Price G, Pearce NA, Alexander M, Vaia RA (2004) Remotely actuated polymer nanocomposites–stress-recovery of carbon-nanotube-filled thermoplastic elastomers. Nat Mater 3:115–120. doi:10.​1038/​nmat1059 CrossRef
8.
Zurück zum Zitat Joly S, Garnaud G, Ollitrault R, Bokobza L, Mark JE (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14:4202–4208. doi:10.1021/cm020093e CrossRef Joly S, Garnaud G, Ollitrault R, Bokobza L, Mark JE (2002) Organically modified layered silicates as reinforcing fillers for natural rubber. Chem Mater 14:4202–4208. doi:10.​1021/​cm020093e CrossRef
9.
Zurück zum Zitat Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2:8446–8485. doi:10.1039/c4tc01037j CrossRef Ponnamma D, Sadasivuni KK, Grohens Y, Guo Q, Thomas S (2014) Carbon nanotube based elastomer composites—an approach towards multifunctional materials. J Mater Chem C 2:8446–8485. doi:10.​1039/​c4tc01037j CrossRef
10.
12.
13.
Zurück zum Zitat Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi:10.1038/nature04233 CrossRef Novoselov KS, Geim AK, Morozov SV, Jiang D, Katsnelson MI, Grigorieva IV, Dubonos SV, Firsov AA (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200. doi:10.​1038/​nature04233 CrossRef
20.
Zurück zum Zitat Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS, Mobius ME, Young RJ, Coleman JN (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260. doi:10.1126/science.aag2879 CrossRef Boland CS, Khan U, Ryan G, Barwich S, Charifou R, Harvey A, Backes C, Li Z, Ferreira MS, Mobius ME, Young RJ, Coleman JN (2016) Sensitive electromechanical sensors using viscoelastic graphene-polymer nanocomposites. Science 354:1257–1260. doi:10.​1126/​science.​aag2879 CrossRef
22.
Zurück zum Zitat Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450. doi:10.1021/cm100477v CrossRef Kim H, Miura Y, Macosko CW (2010) Graphene/polyurethane nanocomposites for improved gas barrier and electrical conductivity. Chem Mater 22:3441–3450. doi:10.​1021/​cm100477v CrossRef
24.
Zurück zum Zitat Sadasivuni K, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740. doi:10.1007/s00396-013-2908-y CrossRef Sadasivuni K, Saiter A, Gautier N, Thomas S, Grohens Y (2013) Effect of molecular interactions on the performance of poly(isobutylene-co-isoprene)/graphene and clay nanocomposites. Colloid Polym Sci 291:1729–1740. doi:10.​1007/​s00396-013-2908-y CrossRef
25.
Zurück zum Zitat Chen B, Ma N, Bai X, Zhang H, Zhang Y (2012) Effects of graphene oxide on surface energy, mechanical, damping and thermal properties of ethylene-propylene-diene rubber/petroleum resin blends. RSC Adv 2:4683–4689. doi:10.1039/c2ra01212j CrossRef Chen B, Ma N, Bai X, Zhang H, Zhang Y (2012) Effects of graphene oxide on surface energy, mechanical, damping and thermal properties of ethylene-propylene-diene rubber/petroleum resin blends. RSC Adv 2:4683–4689. doi:10.​1039/​c2ra01212j CrossRef
26.
Zurück zum Zitat Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468. doi:10.1039/C2JM31293J CrossRef Zhan Y, Lavorgna M, Buonocore G, Xia H (2012) Enhancing electrical conductivity of rubber composites by constructing interconnected network of self-assembled graphene with latex mixing. J Mater Chem 22:10464–10468. doi:10.​1039/​C2JM31293J CrossRef
27.
Zurück zum Zitat Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602. doi:10.1002/mame.201000358 CrossRef Zhan Y, Wu J, Xia H, Yan N, Fei G, Yuan G (2011) Dispersion and exfoliation of graphene in rubber by an ultrasonically-assisted latex mixing and in situ reduction process. Macromol Mater Eng 296:590–602. doi:10.​1002/​mame.​201000358 CrossRef
28.
Zurück zum Zitat Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055. doi:10.1021/ma300706k CrossRef Potts JR, Shankar O, Du L, Ruoff RS (2012) Processing–morphology–property relationships and composite theory analysis of reduced graphene oxide/natural rubber nanocomposites. Macromolecules 45:6045–6055. doi:10.​1021/​ma300706k CrossRef
29.
Zurück zum Zitat Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G, Ambrosio L (2014) Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 6:2230–2234. doi:10.1021/am405768m CrossRef Scherillo G, Lavorgna M, Buonocore GG, Zhan YH, Xia HS, Mensitieri G, Ambrosio L (2014) Tailoring assembly of reduced graphene oxide nanosheets to control gas barrier properties of natural rubber nanocomposites. ACS Appl Mater Interfaces 6:2230–2234. doi:10.​1021/​am405768m CrossRef
32.
Zurück zum Zitat Das A, Kasaliwal GR, Jurk R, Boldt R, Fischer D, Stöckelhuber KW, Heinrich G (2012) Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compos Sci Technol 72:1961–1967. doi:10.1016/j.compscitech.2012.09.005 CrossRef Das A, Kasaliwal GR, Jurk R, Boldt R, Fischer D, Stöckelhuber KW, Heinrich G (2012) Rubber composites based on graphene nanoplatelets, expanded graphite, carbon nanotubes and their combination: a comparative study. Compos Sci Technol 72:1961–1967. doi:10.​1016/​j.​compscitech.​2012.​09.​005 CrossRef
34.
Zurück zum Zitat Yang H, Liu P, Zhang T, Duan Y, Zhang J (2014) Fabrication of natural rubber nanocomposites with high graphene contents via vacuum-assisted self-assembly. RSC Adv 4:27687–27690. doi:10.1039/c4ra02950j CrossRef Yang H, Liu P, Zhang T, Duan Y, Zhang J (2014) Fabrication of natural rubber nanocomposites with high graphene contents via vacuum-assisted self-assembly. RSC Adv 4:27687–27690. doi:10.​1039/​c4ra02950j CrossRef
35.
Zurück zum Zitat Ozbas B, O’Neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci Part B Polym Phys 50:910–916. doi:10.1002/polb.23080 CrossRef Ozbas B, O’Neill CD, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Multifunctional elastomer nanocomposites with functionalized graphene single sheets. J Polym Sci Part B Polym Phys 50:910–916. doi:10.​1002/​polb.​23080 CrossRef
36.
Zurück zum Zitat Ozbas B, Toki S, Hsiao BS, Chu B, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J Polym Sci Part B Polym Phys 50:718–723. doi:10.1002/polb.23060 CrossRef Ozbas B, Toki S, Hsiao BS, Chu B, Register RA, Aksay IA, Prud’homme RK, Adamson DH (2012) Strain-induced crystallization and mechanical properties of functionalized graphene sheet-filled natural rubber. J Polym Sci Part B Polym Phys 50:718–723. doi:10.​1002/​polb.​23060 CrossRef
37.
Zurück zum Zitat Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681. doi:10.1002/pi.4689 CrossRef Xing W, Wu J, Huang G, Li H, Tang M, Fu X (2014) Enhanced mechanical properties of graphene/natural rubber nanocomposites at low content. Polym Int 63:1674–1681. doi:10.​1002/​pi.​4689 CrossRef
38.
Zurück zum Zitat Schopp S, Thomann R, Ratzsch KF, Kerling S, Altstadt V, Mulhaupt R (2014) Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending. Macromol Mater Eng 299:319–329. doi:10.1002/mame.201300127 CrossRef Schopp S, Thomann R, Ratzsch KF, Kerling S, Altstadt V, Mulhaupt R (2014) Functionalized graphene and carbon materials as components of styrene-butadiene rubber nanocomposites prepared by aqueous dispersion blending. Macromol Mater Eng 299:319–329. doi:10.​1002/​mame.​201300127 CrossRef
39.
Zurück zum Zitat Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8:8819–8830. doi:10.1021/Nn503454h CrossRef Boland CS, Khan U, Backes C, O’Neill A, McCauley J, Duane S, Shanker R, Liu Y, Jurewicz I, Dalton AB, Coleman JN (2014) Sensitive, high-strain, high-rate bodily motion sensors based on graphene-rubber composites. ACS Nano 8:8819–8830. doi:10.​1021/​Nn503454h CrossRef
45.
Zurück zum Zitat Zhang X, Aliasghari S, Nemcova A, Burnett TL, Kubena I, Smid M, Thompson GE, Skeldon P, Withers PJ (2016) X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings. ACS Appl Mater Interfaces 8:8801–8810. doi:10.1021/acsami.6b00274 CrossRef Zhang X, Aliasghari S, Nemcova A, Burnett TL, Kubena I, Smid M, Thompson GE, Skeldon P, Withers PJ (2016) X-ray computed tomographic investigation of the porosity and morphology of plasma electrolytic oxidation coatings. ACS Appl Mater Interfaces 8:8801–8810. doi:10.​1021/​acsami.​6b00274 CrossRef
46.
Zurück zum Zitat Evans JE, Friedrich H, Bals S, Bradley RS, Dahmen T, De Backer A, de Jonge N, Elbaum M, Goris B, Houben L, Leary RK, Midgley PA, Slusallek P, Trampert P, Van Aert S, Van Tendeloo G, Withers PJ, Wolf SG (2016) Advanced tomography techniques for inorganic, organic, and biological materials. MRS Bull 41:516–524. doi:10.1557/mrs.2016.134 CrossRef Evans JE, Friedrich H, Bals S, Bradley RS, Dahmen T, De Backer A, de Jonge N, Elbaum M, Goris B, Houben L, Leary RK, Midgley PA, Slusallek P, Trampert P, Van Aert S, Van Tendeloo G, Withers PJ, Wolf SG (2016) Advanced tomography techniques for inorganic, organic, and biological materials. MRS Bull 41:516–524. doi:10.​1557/​mrs.​2016.​134 CrossRef
47.
Zurück zum Zitat Young RJ, Lovell PA (2013) Introduction to polymers, 3rd edn. CRC Press, Boca Baton Young RJ, Lovell PA (2013) Introduction to polymers, 3rd edn. CRC Press, Boca Baton
48.
Metadaten
Titel
Nanocomposites of graphene nanoplatelets in natural rubber: microstructure and mechanisms of reinforcement
verfasst von
Suhao Li
Zheling Li
Timothy L. Burnett
Thomas J. A. Slater
Teruo Hashimoto
Robert J. Young
Publikationsdatum
04.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1144-0

Weitere Artikel der Ausgabe 16/2017

Journal of Materials Science 16/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.