Skip to main content

2017 | OriginalPaper | Buchkapitel

17. Nanocomposites Potential for Aero Applications

verfasst von : Naveen K. Mahenderkar, T. Ram Prabhu, Anil Kumar

Erschienen in: Aerospace Materials and Material Technologies

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter briefly summarizes the types of nanocomposites, their fabrication and properties. Emphasis is placed on the strengthening mechanisms for metal, polymer and ceramic matrix nanocomposites. A brief introduction to the types of reinforcement and matrix materials is given, and finally the current developments and future trends of nanocomposites are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302CrossRef Witkin D, Lee Z, Rodriguez R, Nutt S, Lavernia E (2003) Al–Mg alloy engineered with bimodal grain size for high strength and increased ductility. Scr Mater 49:297–302CrossRef
2.
Zurück zum Zitat Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53:481–486CrossRef Ye J, Han BQ, Lee Z, Ahn B, Nutt SR, Schoenung JM (2005) A tri-modal aluminum based composite with super-high strength. Scr Mater 53:481–486CrossRef
3.
Zurück zum Zitat Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mat Sci Eng A 531:112–118CrossRef Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mat Sci Eng A 531:112–118CrossRef
4.
Zurück zum Zitat Kumar H, Chaudhari GP (2014) Creep behaviour of AS41 alloy matrix nano-composites. Mater Sci Eng A 607:435–444CrossRef Kumar H, Chaudhari GP (2014) Creep behaviour of AS41 alloy matrix nano-composites. Mater Sci Eng A 607:435–444CrossRef
5.
Zurück zum Zitat Zhang Z, Chen DL (2008) Contribution of orowan strengthening effect in particulate- reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484:148–152CrossRef Zhang Z, Chen DL (2008) Contribution of orowan strengthening effect in particulate- reinforced metal matrix nanocomposites. Mater Sci Eng A 483–484:148–152CrossRef
6.
Zurück zum Zitat Hassan SF, Tan MJ, Gupta M (2008) High-temperature tensile properties of Mg/Al2O3 nanocomposite. Mater Sci Eng A 486:56–62CrossRef Hassan SF, Tan MJ, Gupta M (2008) High-temperature tensile properties of Mg/Al2O3 nanocomposite. Mater Sci Eng A 486:56–62CrossRef
7.
Zurück zum Zitat Kapoor R, Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2010) Influence of fraction of high angle boundaries on the mechanical behaviour of an ultrafine grained Al–Mg alloy. Mater Sci Eng A 527:5246–5254CrossRef Kapoor R, Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2010) Influence of fraction of high angle boundaries on the mechanical behaviour of an ultrafine grained Al–Mg alloy. Mater Sci Eng A 527:5246–5254CrossRef
8.
Zurück zum Zitat Tun KS, Gupta M (2007) Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol 67:2657–2664CrossRef Tun KS, Gupta M (2007) Improving mechanical properties of magnesium using nano-yttria reinforcement and microwave assisted powder metallurgy method. Compos Sci Technol 67:2657–2664CrossRef
9.
Zurück zum Zitat Li Y, Zhao YH, Ortalan V, Liu W, Zhang ZH, Vogt RG, Browning ND, Lavernia EJ, Schoenung JM (2009) Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A 527:305–316CrossRef Li Y, Zhao YH, Ortalan V, Liu W, Zhang ZH, Vogt RG, Browning ND, Lavernia EJ, Schoenung JM (2009) Investigation of aluminum-based nanocomposites with ultra-high strength. Mater Sci Eng A 527:305–316CrossRef
10.
Zurück zum Zitat Nguyen QB, Gupta M (2010) Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions. J Alloys Compd 490:382–387CrossRef Nguyen QB, Gupta M (2010) Enhancing compressive response of AZ31B using nano-Al2O3 and copper additions. J Alloys Compd 490:382–387CrossRef
11.
Zurück zum Zitat Saheb N, Iqbal Z, Khalil A, Hakeem AS, Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nano Mater 2012:1–13 Saheb N, Iqbal Z, Khalil A, Hakeem AS, Aqeeli N, Laoui T, Al-Qutub A, Kirchner R (2012) Spark plasma sintering of metals and metal matrix nanocomposites: a review. J Nano Mater 2012:1–13
12.
Zurück zum Zitat Jun Q, Linan A, Blau PJ (2006) Sliding friction and wear characteristics of Al2O3–Al nanocomposites. Paper No. IJTC2006-12326 in: Proceedings of STLE/ASME Intenational Joint Tribology Conference, IJTC 2006, 23–25 October 2006, San Antonio, TX, USA, pp 59–60 Jun Q, Linan A, Blau PJ (2006) Sliding friction and wear characteristics of Al2O3–Al nanocomposites. Paper No. IJTC2006-12326 in: Proceedings of STLE/ASME Intenational Joint Tribology Conference, IJTC 2006, 23–25 October 2006, San Antonio, TX, USA, pp 59–60
13.
Zurück zum Zitat Rohatgi PK, Schultz B (2007) Lightweight metal matrix nanocomposites—stretching the boundaries of metals. Mater Matters 2:16 Rohatgi PK, Schultz B (2007) Lightweight metal matrix nanocomposites—stretching the boundaries of metals. Mater Matters 2:16
14.
Zurück zum Zitat Zhou S, Zhang X, Ding Z, Min C, Xu G, Zhu W (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A 38:301–306CrossRef Zhou S, Zhang X, Ding Z, Min C, Xu G, Zhu W (2007) Fabrication and tribological properties of carbon nanotubes reinforced Al composites prepared by pressureless infiltration technique. Compos A 38:301–306CrossRef
15.
Zurück zum Zitat Beni HA, Alizadeh M, Ghaffari M, Amini R (2014) Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB. Compos B 58:438–442CrossRef Beni HA, Alizadeh M, Ghaffari M, Amini R (2014) Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB. Compos B 58:438–442CrossRef
16.
Zurück zum Zitat Mazahery A, Shabani OS (2013) Plasticity and microstructure of A356 matrix nano composites, J. King Saud Univ. – Eng. Sci. 25:41–48 Mazahery A, Shabani OS (2013) Plasticity and microstructure of A356 matrix nano composites, J. King Saud Univ. – Eng. Sci. 25:41–48
17.
Zurück zum Zitat Gan YX (2012) Structural assessment of nanocomposites. Micron 43:782–817CrossRef Gan YX (2012) Structural assessment of nanocomposites. Micron 43:782–817CrossRef
18.
Zurück zum Zitat Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRef Casati R, Vedani M (2014) Metal matrix composites reinforced by nano-particles—a review. Metals 4:65–83CrossRef
19.
Zurück zum Zitat Sadeghian Z, Lotfi B, Enayati MH, Beiss P (2011) Microstructural and mechanical evaluation of Al-TIB2 nanostructure composite fabricated by mechanical alloying. J Alloys Compd 509:7758–7763CrossRef Sadeghian Z, Lotfi B, Enayati MH, Beiss P (2011) Microstructural and mechanical evaluation of Al-TIB2 nanostructure composite fabricated by mechanical alloying. J Alloys Compd 509:7758–7763CrossRef
20.
Zurück zum Zitat Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured al-5356/B4C composite. Mater Sci Eng A 528:4395–4407CrossRef Vintila R, Charest A, Drew RAL, Brochu M (2011) Synthesis and consolidation via spark plasma sintering of nanostructured al-5356/B4C composite. Mater Sci Eng A 528:4395–4407CrossRef
21.
Zurück zum Zitat Mazaheri Y, Karimzadeh F, Enayati MH (2011) A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. J Mater Process Technol 211:1614–1619CrossRef Mazaheri Y, Karimzadeh F, Enayati MH (2011) A novel technique for development of A356/Al2O3 surface nanocomposite by friction stir processing. J Mater Process Technol 211:1614–1619CrossRef
22.
Zurück zum Zitat Prabhu B (2005) Microstructural and mechanical characterization of Al–Al2O3 nanocomposites synthesized by high-energy milling. M.S. Thesis, University of Central Florida, Orlando, FL, USA Prabhu B (2005) Microstructural and mechanical characterization of Al–Al2O3 nanocomposites synthesized by high-energy milling. M.S. Thesis, University of Central Florida, Orlando, FL, USA
23.
Zurück zum Zitat Choi HJ, Shin JH, Min BH, Bae DH (2010) Deformation behaviour of Al–Si alloy based nanocomposites reinforced with carbon nanotubes. Compos A 41:327–329CrossRef Choi HJ, Shin JH, Min BH, Bae DH (2010) Deformation behaviour of Al–Si alloy based nanocomposites reinforced with carbon nanotubes. Compos A 41:327–329CrossRef
24.
Zurück zum Zitat Morsi K, Esawi AMK, Lanka S, Sayed A, Taher M (2010) Sparkplasma extrusion (SPE) of ball-milled aluminium and carbon nanotube reinforced aluminium composite powders. Compos A 41:322–326CrossRef Morsi K, Esawi AMK, Lanka S, Sayed A, Taher M (2010) Sparkplasma extrusion (SPE) of ball-milled aluminium and carbon nanotube reinforced aluminium composite powders. Compos A 41:322–326CrossRef
25.
Zurück zum Zitat Jafari M, Abbasi MH, Enayati MH, Karimzadeh F (2012) Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods. Adv Powder Technol. 23:205–210 Jafari M, Abbasi MH, Enayati MH, Karimzadeh F (2012) Mechanical properties of nanostructured Al2024–MWCNT composite prepared by optimized mechanical milling and hot pressing methods. Adv Powder Technol. 23:205–210
26.
Zurück zum Zitat Korayem MH, Mahmudi R, Poole WJ (2013) Work hardening behaviour of Mg-based nano-composites strengthened by Al2O3 nano-particles. Mater Sci Eng A 567:89–94CrossRef Korayem MH, Mahmudi R, Poole WJ (2013) Work hardening behaviour of Mg-based nano-composites strengthened by Al2O3 nano-particles. Mater Sci Eng A 567:89–94CrossRef
27.
Zurück zum Zitat Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2008) CNTs/TiC reinforced titanium matrix nanocomposites via powder metallurgy and its microstructural and mechanical properties. J Nanomater (doi:10.1155/2008/127538) Kondoh K, Threrujirapapong T, Imai H, Umeda J, Fugetsu B (2008) CNTs/TiC reinforced titanium matrix nanocomposites via powder metallurgy and its microstructural and mechanical properties. J Nanomater (doi:10.​1155/​2008/​127538)
28.
Zurück zum Zitat Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55:5115–5121CrossRef Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg–Y2O3 nanocomposites. Acta Mater 55:5115–5121CrossRef
29.
Zurück zum Zitat Luo JJ, Daniel IM (2003) Characterization and modeling of mechanical behaviour of polymer/clay nanocomposites. Compos Sci Technol 63:1607–1616CrossRef Luo JJ, Daniel IM (2003) Characterization and modeling of mechanical behaviour of polymer/clay nanocomposites. Compos Sci Technol 63:1607–1616CrossRef
30.
Zurück zum Zitat Park C, Park O, Lim J, Kim H (2001) The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer 42:7465–7475CrossRef Park C, Park O, Lim J, Kim H (2001) The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer 42:7465–7475CrossRef
31.
Zurück zum Zitat Gorga RE, Cohen RE (2004) Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotube. J Polym Sci Part B Polym Phys 42:2690–2702CrossRef Gorga RE, Cohen RE (2004) Toughness enhancements in poly (methyl methacrylate) by addition of oriented multiwall carbon nanotube. J Polym Sci Part B Polym Phys 42:2690–2702CrossRef
32.
Zurück zum Zitat Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci 6:205–212CrossRef Schmidt D, Shah D, Giannelis EP (2002) New advances in polymer/layered silicate nanocomposites. Curr Opin Solid State Mater Sci 6:205–212CrossRef
33.
Zurück zum Zitat Thostenson E, Li C, Chou T (2005) Review—nanocomposites in context. J Compos Sci Tech 65:491–516CrossRef Thostenson E, Li C, Chou T (2005) Review—nanocomposites in context. J Compos Sci Tech 65:491–516CrossRef
34.
Zurück zum Zitat Liu, J., Fan, S. and Dai, H., 2004, “Recent advances in methods of forming carbon nanotubes”, MRS Bulletin, Pp. 244–250 Liu, J., Fan, S. and Dai, H., 2004, “Recent advances in methods of forming carbon nanotubes”, MRS Bulletin, Pp. 244–250
35.
Zurück zum Zitat Shaffer MSP, Windle AH (1999) Analogies between polymer solutions and carbon nanotube dispersions. Macromolecules 32:6864–6866CrossRef Shaffer MSP, Windle AH (1999) Analogies between polymer solutions and carbon nanotube dispersions. Macromolecules 32:6864–6866CrossRef
36.
Zurück zum Zitat Gong X, Liu J, Baskaran S (2000) Surfactant assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052CrossRef Gong X, Liu J, Baskaran S (2000) Surfactant assisted processing of carbon nanotube/polymer composites. Chem Mater 12:1049–1052CrossRef
37.
Zurück zum Zitat Jin L, Bower C (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199CrossRef Jin L, Bower C (1998) Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl Phys Lett 73:1197–1199CrossRef
38.
Zurück zum Zitat Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef Karousis N, Tagmatarchis N, Tasis D (2010) Current progress on the chemical modification of carbon nanotubes. Chem Rev 110:5366–5397CrossRef
39.
Zurück zum Zitat Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite. Science 265:1212–1214CrossRef Ajayan PM, Stephan O, Colliex C, Trauth D (1994) Aligned carbon nanotube arrays formed by cutting a polymer resin nanotube composite. Science 265:1212–1214CrossRef
40.
Zurück zum Zitat Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Tech 61:1899–1912 Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Tech 61:1899–1912
41.
Zurück zum Zitat Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123–5125CrossRef Cadek M, Coleman JN, Barron V, Hedicke K, Blau WJ (2002) Morphological and mechanical properties of carbon-nanotube-reinforced semicrystalline and amorphous polymer composites. Appl Phys Lett 81:5123–5125CrossRef
42.
Zurück zum Zitat Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371CrossRef Gojny FH, Wichmann MHG, Kopke U, Fiedler B, Schulte K (2004) Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content. Compos Sci Technol 64:2363–2371CrossRef
43.
Zurück zum Zitat Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86:2079–2084CrossRef Kearns JC, Shambaugh RL (2002) Polypropylene fibers reinforced with carbon nanotubes. J Appl Polym Sci 86:2079–2084CrossRef
44.
Zurück zum Zitat Larrondo L, Manley R, St J (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys 19:909–920CrossRef Larrondo L, Manley R, St J (1981) Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. J Polym Sci Polym Phys 19:909–920CrossRef
45.
Zurück zum Zitat Tibbetts GG, Finegan JC, McHugh JJ, Ting J-M, Glasgow DG, Lake ML (2000) Applications research on vapor-grown carbon fibers. In: Tomanek E, Enbody RJ (eds) Science and application of nanotubes, Kluwer Academic/Plenum Publishers, New York, USA, pp 35–51 Tibbetts GG, Finegan JC, McHugh JJ, Ting J-M, Glasgow DG, Lake ML (2000) Applications research on vapor-grown carbon fibers. In: Tomanek E, Enbody RJ (eds) Science and application of nanotubes, Kluwer Academic/Plenum Publishers, New York, USA, pp 35–51
46.
Zurück zum Zitat Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K et al (2000) Vapor-grown carbon fibers (VGCFs)—basic properties and their battery applications. Carbon 39:1287–1297CrossRef Endo M, Kim YA, Hayashi T, Nishimura K, Matusita T, Miyashita K et al (2000) Vapor-grown carbon fibers (VGCFs)—basic properties and their battery applications. Carbon 39:1287–1297CrossRef
47.
Zurück zum Zitat Mazumder SK (ed) (2002) Composites manufacturing: materials, product, and process engineering. CRC Press LLC, Boca Raton, FL, USA Mazumder SK (ed) (2002) Composites manufacturing: materials, product, and process engineering. CRC Press LLC, Boca Raton, FL, USA
48.
Zurück zum Zitat Ornaghi HJ Jr, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887–896 Ornaghi HJ Jr, Bolner AS, Fiorio R, Zattera AJ, Amico SC (2010) Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. J Appl Polym Sci 118:887–896
49.
Zurück zum Zitat Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structureeproperty relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef Jancar J, Douglas JF, Starr FW, Kumar SK, Cassagnau P, Lesser AJ, Sternstein SS, Buehler MJ (2010) Current issues in research on structureeproperty relationships in polymer nanocomposites. Polymer 51:3321–3343CrossRef
50.
Zurück zum Zitat Niihara K (1991) New design concept of structural ceramics: ceramic nanocomposites. J Ceram Soc Jpn 99:974CrossRef Niihara K (1991) New design concept of structural ceramics: ceramic nanocomposites. J Ceram Soc Jpn 99:974CrossRef
51.
Zurück zum Zitat Gao L, Jin XH, Zheng S (2004) Ceramic nanocomposites. Chemical Engineering Publishers, Beijing, China Gao L, Jin XH, Zheng S (2004) Ceramic nanocomposites. Chemical Engineering Publishers, Beijing, China
52.
Zurück zum Zitat Suganuma K, Sasaki G, Fujita T et al (1993) Mechanical properties and microstructures of Machinable silicon carbide. J Mater Sci 28:1175CrossRef Suganuma K, Sasaki G, Fujita T et al (1993) Mechanical properties and microstructures of Machinable silicon carbide. J Mater Sci 28:1175CrossRef
53.
Zurück zum Zitat Mizutani T, Kusunose T, Sando M et al (1997) Fabrication and properties of nano-sized BN-particulate dispersed sialon ceramics. Ceram Eng Sci Proc 18:669CrossRef Mizutani T, Kusunose T, Sando M et al (1997) Fabrication and properties of nano-sized BN-particulate dispersed sialon ceramics. Ceram Eng Sci Proc 18:669CrossRef
54.
Zurück zum Zitat Oh ST, Lee JS, Sekino T et al (2001) Fabrication of Cu dispersed Al2O3 nanocomposites using Al2O3/CuO and Al2O3/Cu-nitrate mixtures. Scr Mater 44:2117CrossRef Oh ST, Lee JS, Sekino T et al (2001) Fabrication of Cu dispersed Al2O3 nanocomposites using Al2O3/CuO and Al2O3/Cu-nitrate mixtures. Scr Mater 44:2117CrossRef
55.
Zurück zum Zitat Nawa M, Sekino T, Niihara K (1994) Fabrication and mechanical behaviour of Al2O3/Mo nanocomposites. J Mater Sci 29:3185CrossRef Nawa M, Sekino T, Niihara K (1994) Fabrication and mechanical behaviour of Al2O3/Mo nanocomposites. J Mater Sci 29:3185CrossRef
56.
Zurück zum Zitat Nawa M, Yamazaki K, Sekino T et al (1994) A new type of nanocomposite in tetragonal zirconia polycrystal-molybdenum system. Mater Lett 20:299CrossRef Nawa M, Yamazaki K, Sekino T et al (1994) A new type of nanocomposite in tetragonal zirconia polycrystal-molybdenum system. Mater Lett 20:299CrossRef
57.
Zurück zum Zitat Sekino T, Niihara K (1995) Microstructural characteristics and mechanical properties for Al2O3/metal nanocomposite. Nanostruc Mater 6:663CrossRef Sekino T, Niihara K (1995) Microstructural characteristics and mechanical properties for Al2O3/metal nanocomposite. Nanostruc Mater 6:663CrossRef
58.
Zurück zum Zitat Sekino T, Niihara K (1997) Fabrication and mechanical properties of fine-tungsten-dispersed alumina-based composites. J Mater Sci 32:3943CrossRef Sekino T, Niihara K (1997) Fabrication and mechanical properties of fine-tungsten-dispersed alumina-based composites. J Mater Sci 32:3943CrossRef
59.
Zurück zum Zitat Ji Y, Yeomans JA (2002) Processing and mechanical properties of Al2O3-5 vol% Cr nanocomposites. J Eur Ceram Soc 22:1927CrossRef Ji Y, Yeomans JA (2002) Processing and mechanical properties of Al2O3-5 vol% Cr nanocomposites. J Eur Ceram Soc 22:1927CrossRef
60.
Zurück zum Zitat Sekino T, Nakajima T, Satoru U et al (1997) Reduction and sintering of nickel-dispersed-alumina composite and its properties. J Am Ceram Soc 80:1139CrossRef Sekino T, Nakajima T, Satoru U et al (1997) Reduction and sintering of nickel-dispersed-alumina composite and its properties. J Am Ceram Soc 80:1139CrossRef
61.
Zurück zum Zitat Kusunose T, Sekino T, Chao YH et al (2002) Fabrication and microstructure of silicon nitride/boron nitride nanocomposite and its properties. J Am Ceram Soc 85:2678CrossRef Kusunose T, Sekino T, Chao YH et al (2002) Fabrication and microstructure of silicon nitride/boron nitride nanocomposite and its properties. J Am Ceram Soc 85:2678CrossRef
62.
Zurück zum Zitat Li YL, Qiao GJ, Jin ZH (2002) Machinable, Al2O3/BN composite ceramics with strong mechanical properties. Mater Res Bull 38:1401CrossRef Li YL, Qiao GJ, Jin ZH (2002) Machinable, Al2O3/BN composite ceramics with strong mechanical properties. Mater Res Bull 38:1401CrossRef
63.
Zurück zum Zitat Li YL, Zhang JX, Qiao GJ et al (2005) Fabrication and properties of machinable 3Y–ZrO2/BN nanocomposites. Mater Sci Eng A 397:35CrossRef Li YL, Zhang JX, Qiao GJ et al (2005) Fabrication and properties of machinable 3Y–ZrO2/BN nanocomposites. Mater Sci Eng A 397:35CrossRef
64.
Zurück zum Zitat Wang XD, Qiao GJ, Jin ZH (2004) Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J Am Ceram Soc 87:565CrossRef Wang XD, Qiao GJ, Jin ZH (2004) Fabrication of machinable silicon carbide-boron nitride ceramic nanocomposites. J Am Ceram Soc 87:565CrossRef
65.
Zurück zum Zitat Meyyappan M (ed) (2004) Carbon nanotubes: science and application. CRC Press LLC, Boca Raton, FL, USA Meyyappan M (ed) (2004) Carbon nanotubes: science and application. CRC Press LLC, Boca Raton, FL, USA
66.
Zurück zum Zitat Giannelis EP (1996) Polymer layered silicates nanocomposites. Adv Mater 8:29–35CrossRef Giannelis EP (1996) Polymer layered silicates nanocomposites. Adv Mater 8:29–35CrossRef
67.
Zurück zum Zitat Reichert P, Kressler J, Thomann R, Mulhaupt R, Stoppelmann G (1998) Nanocomposites based on a synthetic layer silicate and polyamide-12. Acta Polym 49:116–123CrossRef Reichert P, Kressler J, Thomann R, Mulhaupt R, Stoppelmann G (1998) Nanocomposites based on a synthetic layer silicate and polyamide-12. Acta Polym 49:116–123CrossRef
68.
Zurück zum Zitat Yano K, Usuki A (1993) Synthesis and properties of polyimide-clay hybrid. J Polym Sci Part A Polym Chem 31:2493–2498CrossRef Yano K, Usuki A (1993) Synthesis and properties of polyimide-clay hybrid. J Polym Sci Part A Polym Chem 31:2493–2498CrossRef
69.
Zurück zum Zitat Yano K, Usuki A, Okada A, Kurauchi T (1991) Synthesis and properties of polyimide-clay hybrid. Polymer Prep 32:65 Yano K, Usuki A, Okada A, Kurauchi T (1991) Synthesis and properties of polyimide-clay hybrid. Polymer Prep 32:65
70.
Zurück zum Zitat Park JH, Jana S (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36:2758–2768CrossRef Park JH, Jana S (2003) Mechanism of exfoliation of nanoclay particles in epoxy-clay nanocomposites. Macromolecules 36:2758–2768CrossRef
71.
Zurück zum Zitat Singerman SA, Jackson JJ (1996) Super alloys. In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (eds) The Minerals, Metals and Materials Society, Warrendale, PA, USA, pp 579–586 Singerman SA, Jackson JJ (1996) Super alloys. In: Kissinger RD, Deye DJ, Anton DL, Cetel AD, Nathal MV, Pollock TM, Woodford DA (eds) The Minerals, Metals and Materials Society, Warrendale, PA, USA, pp 579–586
72.
Zurück zum Zitat Koo J, Pilato L (2005) Polymer nanostructured materials for high temperature applications. SAMPE Journal 41(2):7–19 Koo J, Pilato L (2005) Polymer nanostructured materials for high temperature applications. SAMPE Journal 41(2):7–19
73.
Zurück zum Zitat Transparent nanocomposites for aerospace applications. Adv Compos Bullet, Feb 2004 Transparent nanocomposites for aerospace applications. Adv Compos Bullet, Feb 2004
74.
Zurück zum Zitat Pfeiffer K-H, Peetz K (2002) All-ceramic body flap qualified for space flight on the X-38. In: 53rd International Astronautical Congress. 10–19 October, 2002, Houston, TX, USA Pfeiffer K-H, Peetz K (2002) All-ceramic body flap qualified for space flight on the X-38. In: 53rd International Astronautical Congress. 10–19 October, 2002, Houston, TX, USA
Metadaten
Titel
Nanocomposites Potential for Aero Applications
verfasst von
Naveen K. Mahenderkar
T. Ram Prabhu
Anil Kumar
Copyright-Jahr
2017
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-2134-3_17

    Premium Partner