Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

23.06.2020 | Original Article | Ausgabe 6/2021

Neural Computing and Applications 6/2021

NaNOD: A natural neighbour-based outlier detection algorithm

Zeitschrift:
Neural Computing and Applications > Ausgabe 6/2021
Autoren:
Abdul Wahid, Chandra Sekhara Rao Annavarapu
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Outlier detection is an essential task in data mining applications which include, military surveillance, tax fraud detection, telecommunication, etc. In recent years, outlier detection received significant attention compared to other problem of discoveries. The focus on this has resulted in the growth of several outlier detection algorithms, mostly concerning the strategy based on distance or density. However, each strategy has intrinsic weaknesses. The distance-based techniques have the problem of local density, while the density-based method is recognized as having an issue of a low-density pattern. Also, most of the existing outlier detection algorithms have a parameter selection problem, which leads to poor detection results. In this article, we present an unsupervised density-based outlier detection algorithm to deal with these shortcomings. The proposed algorithm uses a Natural Neighbour (NaN) concept, to obtain a parameter called Natural Value (NV) adaptively, and a Weighted Kernel Density Estimation (WKDE) method to estimate the density at the location of an object. Besides, our proposed algorithm employed two different categories of nearest neighbours, k Nearest Neighbours (kNN), and Reverse Nearest Neighbours (RNN), which make our system flexible in modelling different data patterns. A Gaussian kernel function is adopted to achieve smoothness in the measure. Further, we use an adaptive kernel width concept to enhance the discrimination power between normal and outlier samples. The formal analysis and extensive experiments carried out on both artificial and real datasets demonstrate that this technique can achieve better outlier detection performance.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 6/2021

Neural Computing and Applications 6/2021 Zur Ausgabe

Premium Partner