Skip to main content
Erschienen in: Journal of Materials Science 10/2021

04.01.2021 | Composites & nanocomposites

Nanofiller-assisted Na+-conducting polymer nanocomposite for ultracapacitor: structural, dielectric and electrochemical properties

verfasst von: Vashu Kamboj, Anil Arya, Shweta Tanwar, Vijay Kumar, A. L. Sharma

Erschienen in: Journal of Materials Science | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report the preparation of ZrO2 nanofiller-incorporated polymer nanocomposite electrolyte based on the PEO-NaPF6 matrix via standard solution cast method. The structure and morphology of polymeric films have been examined with X-ray diffraction and field emission scanning electron microscopy. Different interactions between the polymer, salt and nanofiller have been examined by Fourier transform infrared technique. The temperature-dependent (40–100 °C) electrical conductivity has been examined from complex impedance spectroscopy (CIS). The highest ionic conductivity is exhibited by 5 wt% nanofiller-based electrolyte and recorded ~ 2 × 10–4 S cm−1 at 100 °C. The voltage stability window of polymeric film checked from linear sweep voltammetry is about ~ 4 V, and ion transference number close to unity confirms the major contribution from ion conduction. The dielectric properties have been explored in terms of complex permittivity, loss tangent and complex conductivity. The dielectric plots have been further fitted with an associated equation to evaluate principal dielectric parameters. The optimized polymer electrolyte possesses the lowest relaxation time and the highest dielectric constant that suggests the highest ionic conductivity, which is in good correlation with impedance results. The dc conductivity is also highest for the optimum system, and relaxation time decreases with an increase in temperature. The thermal stability of polymer electrolytes is about 200 °C, as examined by thermogravimetric analysis (TGA). The ion transport parameters n, μ, D have been evaluated via FTIR, impedance spectroscopy and Bandara and Mellander (B–M) approach. Finally, the optimized polymer nanocomposite film has been used as an electrolyte-cum-separator for the fabrication of a solid-state symmetric supercapacitor. The electrochemical parameters specific capacitance, energy density, power density have been examined from cyclic voltammetry and galvanostatic charge–discharge technique. It may be concluded that nanofiller incorporation is an effective strategy to enhance the properties of electrolyte and has the potential to adopt as an electrolyte-cum-separator for ultracapacitor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater 19:1–13 Simon P, Gogotsi Y (2020) Perspectives for electrochemical capacitors and related devices. Nat Mater 19:1–13
3.
Zurück zum Zitat Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825 Sharma K, Arora A, Tripathi SK (2019) Review of supercapacitors: materials and devices. J Energy Storage 21:801–825
4.
Zurück zum Zitat Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30(16):165402 Arya A, Sharma AL (2018) Structural, electrical properties and dielectric relaxations in Na+-ion-conducting solid polymer electrolyte. J Phys Condens Matter 30(16):165402
5.
Zurück zum Zitat Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539 Zhong C, Deng Y, Hu W, Qiao J, Zhang L, Zhang J (2015) A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem Soc Rev 44(21):7484–7539
6.
Zurück zum Zitat Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279 Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279
7.
Zurück zum Zitat Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002 Arya A, Sharma AL (2017) Insights into the use of polyethylene oxide in energy storage/conversion devices: a critical review. J Phys D Appl Phys 50(44):443002
8.
Zurück zum Zitat Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg 2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23(4):997–1059 Arya A, Sharma AL (2019) Electrolyte for energy storage/conversion (Li+, Na+, Mg 2+) devices based on PVC and their associated polymer: a comprehensive review. J Solid State Electrochem 23(4):997–1059
9.
Zurück zum Zitat Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540 Arya A, Sharma AL (2017) Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23(3):497–540
10.
Zurück zum Zitat Anantha PS, Hariharan K (2005) Physical and ionic transport studies on poly (ethylene oxide)–NaNO3 polymer electrolyte system. Solid State Ionics 176(1–2):155–162 Anantha PS, Hariharan K (2005) Physical and ionic transport studies on poly (ethylene oxide)–NaNO3 polymer electrolyte system. Solid State Ionics 176(1–2):155–162
11.
Zurück zum Zitat Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy. 42(10):7212–7219 Polu AR, Rhee HW (2017) Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy. 42(10):7212–7219
12.
Zurück zum Zitat Gupta R, Kumar V, Goyal PK, Kumar S (2012) Optical characterization of poly (methyl methacrylate) implanted with low energy ions. Appl Surf Sci 263:334–338 Gupta R, Kumar V, Goyal PK, Kumar S (2012) Optical characterization of poly (methyl methacrylate) implanted with low energy ions. Appl Surf Sci 263:334–338
13.
Zurück zum Zitat Young WS, Kuan WF, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci Part B Polym Phys 52(1):1–16 Young WS, Kuan WF, Epps TH (2014) Block copolymer electrolytes for rechargeable lithium batteries. J Polym Sci Part B Polym Phys 52(1):1–16
14.
Zurück zum Zitat Young WS, Epps TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45(11):4689–4697 Young WS, Epps TH (2012) Ionic conductivities of block copolymer electrolytes with various conducting pathways: sample preparation and processing considerations. Macromolecules 45(11):4689–4697
15.
Zurück zum Zitat Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143 Mindemark J, Lacey MJ, Bowden T, Brandell D (2018) Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog Polym Sci 81:114–143
16.
Zurück zum Zitat Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G (2018) Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective. Small 14(36):1800821 Zhang J, Yang J, Dong T, Zhang M, Chai J, Dong S, Wu T, Zhou X, Cui G (2018) Aliphatic polycarbonate-based solid-state polymer electrolytes for advanced lithium batteries: advances and perspective. Small 14(36):1800821
17.
Zurück zum Zitat Ren S, Chang H, He L, Dang Z, Fang Y, Zhang L, Li H, Hu Y, Lin Y (2013) Preparation and ionic conductive properties of all-solid polymer electrolytes based on multiarm star block polymers. J Appl Polym Sci 129(3):1131–1142 Ren S, Chang H, He L, Dang Z, Fang Y, Zhang L, Li H, Hu Y, Lin Y (2013) Preparation and ionic conductive properties of all-solid polymer electrolytes based on multiarm star block polymers. J Appl Polym Sci 129(3):1131–1142
18.
Zurück zum Zitat Ji J, Li B, Zhong WH (2011) An ultraelastic poly (ethylene oxide)/soy protein film with fully amorphous structure. Macromolecules 45(1):602–606 Ji J, Li B, Zhong WH (2011) An ultraelastic poly (ethylene oxide)/soy protein film with fully amorphous structure. Macromolecules 45(1):602–606
19.
Zurück zum Zitat Chen S, Feng F, Che H, Yin Y, Ma ZF (2021) High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem Eng J 406:126736 Chen S, Feng F, Che H, Yin Y, Ma ZF (2021) High performance solid-state sodium batteries enabled by boron contained 3D composite polymer electrolyte. Chem Eng J 406:126736
20.
Zurück zum Zitat Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35(25):8210–8219 Falco M, Simari C, Ferrara C, Nair JR, Meligrana G, Bella F, Nicotera I, Mustarelli P, Winter M, Gerbaldi C (2019) Understanding the effect of UV-induced cross-linking on the physicochemical properties of highly performing PEO/LiTFSI-based polymer electrolytes. Langmuir 35(25):8210–8219
21.
Zurück zum Zitat Falco M, Castro L, Nair JR, Bella F, Bardé F, Meligrana G, Gerbaldi C (2019) UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl Energy Mater 2(3):1600–1607 Falco M, Castro L, Nair JR, Bella F, Bardé F, Meligrana G, Gerbaldi C (2019) UV-cross-linked composite polymer electrolyte for high-rate, ambient temperature lithium batteries. ACS Appl Energy Mater 2(3):1600–1607
22.
Zurück zum Zitat Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947 Piana G, Bella F, Geobaldo F, Meligrana G, Gerbaldi C (2019) PEO/LAGP hybrid solid polymer electrolytes for ambient temperature lithium batteries by solvent-free, “one pot” preparation. J Energy Storage 26:100947
23.
Zurück zum Zitat Zhou Q, Li Q, Liu S, Yin X, Huang B, Sheng M (2021) High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries. J Power Sources 482:228929 Zhou Q, Li Q, Liu S, Yin X, Huang B, Sheng M (2021) High Li-ion conductive composite polymer electrolytes for all-solid-state Li-metal batteries. J Power Sources 482:228929
24.
Zurück zum Zitat Scalia A, Bella F, Lamberti A, Gerbaldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 166:789–795 Scalia A, Bella F, Lamberti A, Gerbaldi C, Tresso E (2019) Innovative multipolymer electrolyte membrane designed by oxygen inhibited UV-crosslinking enables solid-state in plane integration of energy conversion and storage devices. Energy 166:789–795
25.
Zurück zum Zitat Pritam AA, Sharma AL (2020) Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 26(2):745–766 Pritam AA, Sharma AL (2020) Selection of best composition of Na+ ion conducting PEO-PEI blend solid polymer electrolyte based on structural, electrical, and dielectric spectroscopic analysis. Ionics 26(2):745–766
26.
Zurück zum Zitat Saykar NG, Sharma AL (2019) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136(16):47361 Saykar NG, Sharma AL (2019) Impact of shape (nanofiller vs. nanorod) of TiO2 nanoparticle on free-standing solid polymeric separator for energy storage/conversion devices. J Appl Polym Sci 136(16):47361
27.
Zurück zum Zitat Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22(9):2725–2745 Arya A, Sharma AL (2018) Optimization of salt concentration and explanation of two peak percolation in blend solid polymer nanocomposite films. J Solid State Electrochem 22(9):2725–2745
28.
Zurück zum Zitat Zhang Q, Lu Y, Yu H, Yang G, Liu Q, Wang Z, Chen L, Hu YS (2020) PEO-NaPF6 blended polymer electrolyte for solid state sodium battery. J Electrochem Soc 167(7):070523 Zhang Q, Lu Y, Yu H, Yang G, Liu Q, Wang Z, Chen L, Hu YS (2020) PEO-NaPF6 blended polymer electrolyte for solid state sodium battery. J Electrochem Soc 167(7):070523
29.
Zurück zum Zitat Luo H, Liang X, Wang L, Zheng A, Liu C, Feng J (2014) Highly mobile segments in crystalline poly (ethylene oxide) 8: NaPF6 electrolytes studied by solid-state NMR spectroscopy. J Chem Phys 140(7):074901 Luo H, Liang X, Wang L, Zheng A, Liu C, Feng J (2014) Highly mobile segments in crystalline poly (ethylene oxide) 8: NaPF6 electrolytes studied by solid-state NMR spectroscopy. J Chem Phys 140(7):074901
30.
Zurück zum Zitat Xue Y, Li X, Quesnel DJ (2017) Electrochemical and mechanical properties of sodium-ion conducting cross-linked polymer gel electrolyte. Int J Electrochem Sci 12:10674–10686 Xue Y, Li X, Quesnel DJ (2017) Electrochemical and mechanical properties of sodium-ion conducting cross-linked polymer gel electrolyte. Int J Electrochem Sci 12:10674–10686
31.
Zurück zum Zitat Fahmi EM, Ahmad A, Rahman MYA, Hamzah H (2012) Effect of NiO nanofiller concentration on the properties of PEO-NiO-LiClO 4 composite polymer electrolyte. J Solid State Electrochem 16(7):2487–2491 Fahmi EM, Ahmad A, Rahman MYA, Hamzah H (2012) Effect of NiO nanofiller concentration on the properties of PEO-NiO-LiClO 4 composite polymer electrolyte. J Solid State Electrochem 16(7):2487–2491
32.
Zurück zum Zitat Sivakumar R, Akila K, Anandan S (2010) New type of inorganic–organic hybrid (heteropolytungsticacid–polyepichlorohydrin) polymer electrolyte with TiO2 nanofiller for solid state dye sensitized solar cells. Curr Appl Phys 10(5):1255–1260 Sivakumar R, Akila K, Anandan S (2010) New type of inorganic–organic hybrid (heteropolytungsticacid–polyepichlorohydrin) polymer electrolyte with TiO2 nanofiller for solid state dye sensitized solar cells. Curr Appl Phys 10(5):1255–1260
33.
Zurück zum Zitat Mohapatra SR, Thakur AK (2010) Mechanism of ion transport in YSZ-dispersed polymer nanocomposite films: an analysis by vibrational spectroscopy approach. Ionics 16(5):437–445 Mohapatra SR, Thakur AK (2010) Mechanism of ion transport in YSZ-dispersed polymer nanocomposite films: an analysis by vibrational spectroscopy approach. Ionics 16(5):437–445
34.
Zurück zum Zitat Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24(8):2295–2319 Arya A, Sadiq M, Sharma AL (2018) Effect of variation of different nanofillers on structural, electrical, dielectric, and transport properties of blend polymer nanocomposites. Ionics 24(8):2295–2319
35.
Zurück zum Zitat Kumar A, Madaan M, Arya A, Tanwar S, Sharma AL (2020) Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC. J Mater Sci Mater Electron 31:10873–10888 Kumar A, Madaan M, Arya A, Tanwar S, Sharma AL (2020) Ion transport, dielectric, and electrochemical properties of sodium ion-conducting polymer nanocomposite: application in EDLC. J Mater Sci Mater Electron 31:10873–10888
36.
Zurück zum Zitat Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121(21):5422–5432 Das S, Ghosh A (2017) Charge carrier relaxation in different plasticized PEO/PVDF-HFP blend solid polymer electrolytes. J Phys Chem B 121(21):5422–5432
37.
Zurück zum Zitat Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142(1):172–181 Choudhary S, Sengwa RJ (2013) Effects of preparation methods on structure, ionic conductivity and dielectric relaxation of solid polymeric electrolytes. Mater Chem Phys 142(1):172–181
38.
Zurück zum Zitat Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351 Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341–351
39.
Zurück zum Zitat Roy A, Dutta B, Bhattacharya S (2016) Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv 6(70):65434–65442 Roy A, Dutta B, Bhattacharya S (2016) Correlation of the average hopping length to the ion conductivity and ion diffusivity obtained from the space charge polarization in solid polymer electrolytes. RSC Adv 6(70):65434–65442
40.
Zurück zum Zitat Hashmi SA, Upadhyaya HM, Thakur AK, Verma AL (2000) Experimental investigations on poly (ethylene oxide) based sodium ion conducting composite polymer electrolytes dispersed with SnO 2. Ionics 6(3–4):248–259 Hashmi SA, Upadhyaya HM, Thakur AK, Verma AL (2000) Experimental investigations on poly (ethylene oxide) based sodium ion conducting composite polymer electrolytes dispersed with SnO 2. Ionics 6(3–4):248–259
41.
Zurück zum Zitat Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN) 8LiClO4. J Polym Sci Part B Polym Phys 46(23):2577–2592 Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN) 8LiClO4. J Polym Sci Part B Polym Phys 46(23):2577–2592
42.
Zurück zum Zitat Rao MC, Koutavarapu R, Kumar KV (2019) Structural and electrochemical properties of ZrO2 doped PVP-Na+ based nanocomposite polymer films. Mater Sci Semicond Process 89:41–50 Rao MC, Koutavarapu R, Kumar KV (2019) Structural and electrochemical properties of ZrO2 doped PVP-Na+ based nanocomposite polymer films. Mater Sci Semicond Process 89:41–50
43.
Zurück zum Zitat Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211 Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2014) Investigations on PEO/PVP/NaBr complexed polymer blend electrolytes for electrochemical cell applications. J Membr Sci 454:200–211
44.
Zurück zum Zitat Manjunatha H, Damle R, Pravin K, Kumaraswamy GN (2018) Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation. Ionics 24(10):3027–3037 Manjunatha H, Damle R, Pravin K, Kumaraswamy GN (2018) Modification in the transport and morphological properties of solid polymer electrolyte system by low-energy ion irradiation. Ionics 24(10):3027–3037
45.
Zurück zum Zitat Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-crystalline Solids 358(23):3205–3211 Kumar K, Ravi M, Pavani Y, Bhavani S, Sharma AK, Narasimha Rao VVR (2012) Electrical conduction mechanism in NaCl complexed PEO/PVP polymer blend electrolytes. J Non-crystalline Solids 358(23):3205–3211
46.
Zurück zum Zitat Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51(4):045504 Arya A, Sharma AL (2018) Structural, microstructural and electrochemical properties of dispersed-type polymer nanocomposite films. J Phys D Appl Phys 51(4):045504
47.
Zurück zum Zitat Naveen Kumar K et al (2016) Enhanced electrical properties of polyethylene oxide (PEO)+ polyvinylpyrrolidone (PVP): Li+ blended polymer electrolyte films with addition of Ag nanofiller. Ionics 22(6):815–825 Naveen Kumar K et al (2016) Enhanced electrical properties of polyethylene oxide (PEO)+ polyvinylpyrrolidone (PVP): Li+ blended polymer electrolyte films with addition of Ag nanofiller. Ionics 22(6):815–825
48.
Zurück zum Zitat Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222 Jinisha B, Anilkumar KM, Manoj M, Pradeep VS, Jayalekshmi S (2017) Development of a novel type of solid polymer electrolyte for solid state lithium battery applications based on lithium enriched poly (ethylene oxide)(PEO)/poly (vinyl pyrrolidone)(PVP) blend polymer. Electrochim Acta 235:210–222
49.
Zurück zum Zitat Motaung TE, Luyt AS, Saladino ML, Martino DC, Caponetti E (2012) Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding. Express Polym Lett 6(11):871–881 Motaung TE, Luyt AS, Saladino ML, Martino DC, Caponetti E (2012) Morphology, mechanical properties and thermal degradation kinetics of PMMA-zirconia nanocomposites prepared by melt compounding. Express Polym Lett 6(11):871–881
50.
Zurück zum Zitat Motaung TE, Saladino ML, Luyt AS, Martino DC (2013) Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate. Eur Polym J 49(8):2022–2030 Motaung TE, Saladino ML, Luyt AS, Martino DC (2013) Influence of the modification, induced by zirconia nanoparticles, on the structure and properties of polycarbonate. Eur Polym J 49(8):2022–2030
51.
Zurück zum Zitat Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO)—Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262 Anilkumar KM, Jinisha B, Manoj M, Jayalekshmi S (2017) Poly(ethylene oxide) (PEO)—Poly(vinyl pyrrolidone) (PVP) blend polymer based solid electrolyte membranes for developing solid state magnesium ion cells. Eur Polym J 89:249–262
52.
Zurück zum Zitat Deepa M, Sharma N, Agnihotry SA, Chandra R (2002) FTIR investigations on ion–ion interactions in liquid and gel polymeric electrolytes: LiCF 3 SO 3-PC-PMMA. J Mater Sci 37(9):1759–1765 Deepa M, Sharma N, Agnihotry SA, Chandra R (2002) FTIR investigations on ion–ion interactions in liquid and gel polymeric electrolytes: LiCF 3 SO 3-PC-PMMA. J Mater Sci 37(9):1759–1765
53.
Zurück zum Zitat Lee KK, Park KH, Kwon D, Choi JH, Son H, Park S, Cho M (2011) Ion-pairing dynamics of Li+ and SCN− in dimethylformamide solution: chemical exchange two-dimensional infrared spectroscopy. J Chem Phys 134(6):064506 Lee KK, Park KH, Kwon D, Choi JH, Son H, Park S, Cho M (2011) Ion-pairing dynamics of Li+ and SCN− in dimethylformamide solution: chemical exchange two-dimensional infrared spectroscopy. J Chem Phys 134(6):064506
54.
Zurück zum Zitat Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 65(5):1234–1240 Selvasekarapandian S, Baskaran R, Kamishima O, Kawamura J, Hattori T (2006) Laser Raman and FTIR studies on Li+ interaction in PVAc–LiClO4 polymer electrolytes. Spectrochim Acta Part A Mol Biomol Spectrosc 65(5):1234–1240
55.
Zurück zum Zitat Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19(12):1811–1823 Das A, Thakur AK, Kumar K (2013) Exploring low temperature Li+ ion conducting plastic battery electrolyte. Ionics 19(12):1811–1823
56.
Zurück zum Zitat Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on structure—property relationship in composite polymer electrolytes. J Power Sources 139(1–2):384–393 Pradhan DK, Samantaray BK, Choudhary RNP, Thakur AK (2005) Effect of plasticizer on structure—property relationship in composite polymer electrolytes. J Power Sources 139(1–2):384–393
57.
Zurück zum Zitat Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO 4. Ionics 15(3):357–367 Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO 4. Ionics 15(3):357–367
58.
Zurück zum Zitat Yang H, Bright J, Chen B, Zheng P, Gao X, Liu B, Kasani S, Zhang X, Wu N (2020) Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. J Mater Chem A 8(15):7261–7272 Yang H, Bright J, Chen B, Zheng P, Gao X, Liu B, Kasani S, Zhang X, Wu N (2020) Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber–polymer composite electrolyte for all-solid-state lithium metal batteries. J Mater Chem A 8(15):7261–7272
59.
Zurück zum Zitat Hou GM, Zhang MQ, Huang YF, Ruan WH (2016) A TiO 2/PEO composite incorporated with in situ synthesized hyper-branched poly (amine-ester) and its application as a polymer electrolyte. RSC Adv 6(86):83406–83411 Hou GM, Zhang MQ, Huang YF, Ruan WH (2016) A TiO 2/PEO composite incorporated with in situ synthesized hyper-branched poly (amine-ester) and its application as a polymer electrolyte. RSC Adv 6(86):83406–83411
60.
Zurück zum Zitat Sharma P, Kanchan DK (2014) Effect of nanofiller concentration on conductivity and dielectric properties of poly (ethylene oxide)–poly (methyl methacrylate) polymer electrolytes. Polym Int 63(2):290–295 Sharma P, Kanchan DK (2014) Effect of nanofiller concentration on conductivity and dielectric properties of poly (ethylene oxide)–poly (methyl methacrylate) polymer electrolytes. Polym Int 63(2):290–295
61.
Zurück zum Zitat Hwang BJ, Liu YC, Lin HC (1997) Conductivity of composite solid polymer electrolyte made of PEO-LiClO4-fiber. J Polym Res 4:147–151 Hwang BJ, Liu YC, Lin HC (1997) Conductivity of composite solid polymer electrolyte made of PEO-LiClO4-fiber. J Polym Res 4:147–151
62.
Zurück zum Zitat Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867 Arof AK, Amirudin S, Yusof SZ, Noor IM (2014) A method based on impedance spectroscopy to determine transport properties of polymer electrolytes. Phys Chem Chem Phys 16(5):1856–1867
63.
Zurück zum Zitat Petrowsky M, Frech R (2008) Concentration dependence of ionic transport in dilute organic electrolyte solutions. J Phys Chem B 112(28):8285–8290 Petrowsky M, Frech R (2008) Concentration dependence of ionic transport in dilute organic electrolyte solutions. J Phys Chem B 112(28):8285–8290
64.
Zurück zum Zitat Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+ I− using electrical and dielectric measurements. Solid State Ionics 189(1):63–68 Bandara TMWJ, Dissanayake MAKL, Albinsson I, Mellander BE (2011) Mobile charge carrier concentration and mobility of a polymer electrolyte containing PEO and Pr4N+ I− using electrical and dielectric measurements. Solid State Ionics 189(1):63–68
65.
Zurück zum Zitat Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25(44):6334–6365 Dang ZM, Yuan JK, Yao SH, Liao RJ (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25(44):6334–6365
66.
Zurück zum Zitat Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem Interfacial Electrochem 74(2):125–143 Hodge IM, Ingram MD, West AR (1976) Impedance and modulus spectroscopy of polycrystalline solid electrolytes. J Electroanal Chem Interfacial Electrochem 74(2):125–143
67.
Zurück zum Zitat Mal J, Choudhary RNP (1997) Diffuse phase transitions in Li modified PLZT ceramics. Phase Trans Multinational J 62(1–2):119–133 Mal J, Choudhary RNP (1997) Diffuse phase transitions in Li modified PLZT ceramics. Phase Trans Multinational J 62(1–2):119–133
68.
Zurück zum Zitat Bose P, Roy A, Dutta B, Bhattacharya S (2017) Decoupling of segmental relaxation from ionic conductivity in [DEMM][TFSI] room temperature ionic liquid incorporated poly (vinylidenefluoride-co-hexafluoropropylene) membranes. Solid State Ionics 311:75–82 Bose P, Roy A, Dutta B, Bhattacharya S (2017) Decoupling of segmental relaxation from ionic conductivity in [DEMM][TFSI] room temperature ionic liquid incorporated poly (vinylidenefluoride-co-hexafluoropropylene) membranes. Solid State Ionics 311:75–82
69.
Zurück zum Zitat Fragiadakis D, Dou S, Colby RH, Runt J (2009) Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly (ethylene oxide). J Chem Phys 130(6):064907 Fragiadakis D, Dou S, Colby RH, Runt J (2009) Molecular mobility and Li+ conduction in polyester copolymer ionomers based on poly (ethylene oxide). J Chem Phys 130(6):064907
70.
Zurück zum Zitat Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Structural, dielectric and pyroelectric studies of Pb1− XCaXTiO3 thin films. Solid State Commun 127(4):299–304 Chopra S, Sharma S, Goel TC, Mendiratta RG (2003) Structural, dielectric and pyroelectric studies of Pb1− XCaXTiO3 thin films. Solid State Commun 127(4):299–304
71.
Zurück zum Zitat Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21(6):1561–1575 Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21(6):1561–1575
72.
Zurück zum Zitat Ngai KS, Ramesh S, Ramesh K, Juan JC (2018) Electrical, dielectric and electrochemical characterization of novel poly (acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate. Chem Phys Lett 692:19–27 Ngai KS, Ramesh S, Ramesh K, Juan JC (2018) Electrical, dielectric and electrochemical characterization of novel poly (acrylic acid)-based polymer electrolytes complexed with lithium tetrafluoroborate. Chem Phys Lett 692:19–27
73.
Zurück zum Zitat Roy A, Dutta B, Bhattacharya S (2017) Ion dynamics in NaBF 4 salt-complexed PVC–PEO blend polymer electrolytes: correlation between average ion hopping length and network structure. Ionics 23(12):3389–3399 Roy A, Dutta B, Bhattacharya S (2017) Ion dynamics in NaBF 4 salt-complexed PVC–PEO blend polymer electrolytes: correlation between average ion hopping length and network structure. Ionics 23(12):3389–3399
74.
Zurück zum Zitat Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17(2):135–143 Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17(2):135–143
75.
Zurück zum Zitat Pal P, Ghosh A (2016) Dynamics and relaxation of charge carriers in poly (methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. J Appl Phys 120(4):045108 Pal P, Ghosh A (2016) Dynamics and relaxation of charge carriers in poly (methylmethacrylate)-lithium salt based polymer electrolytes plasticized with ethylene carbonate. J Appl Phys 120(4):045108
77.
Zurück zum Zitat Sengwa RJ, Dhatarwal P, Choudhary S (2020) A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater Today Commun 25:101380 Sengwa RJ, Dhatarwal P, Choudhary S (2020) A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices. Mater Today Commun 25:101380
78.
Zurück zum Zitat Funke K (1997) Ion transport in fast ion conductors—spectra and models. Solid State Ionics 94(1–4):27–33 Funke K (1997) Ion transport in fast ion conductors—spectra and models. Solid State Ionics 94(1–4):27–33
79.
Zurück zum Zitat Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64(5):2456–2468 Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64(5):2456–2468
80.
Zurück zum Zitat Anantha PS, Hariharan K (2005) ac Conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater Sci Eng, B 121(1–2):12–19 Anantha PS, Hariharan K (2005) ac Conductivity analysis and dielectric relaxation behaviour of NaNO3–Al2O3 composites. Mater Sci Eng, B 121(1–2):12–19
81.
Zurück zum Zitat Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357(21):3654–3660 Ramesh S, Liew CW, Arof AK (2011) Ion conducting corn starch biopolymer electrolytes doped with ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Non-Cryst Solids 357(21):3654–3660
82.
Zurück zum Zitat Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241 Chilaka N, Ghosh S (2014) Dielectric studies of poly (ethylene glycol)-polyurethane/poly (methylmethacrylate)/montmorillonite composite. Electrochim Acta 134:232–241
83.
Zurück zum Zitat Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353 Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353
84.
Zurück zum Zitat Bruce PG, Gray FM (1995) Polymer electrolytes. II. General principles. In: Solid state electrochemistry (p. 119). Cambridge University Press, Cambridge Bruce PG, Gray FM (1995) Polymer electrolytes. II. General principles. In: Solid state electrochemistry (p. 119). Cambridge University Press, Cambridge
85.
Zurück zum Zitat Dam T, Jena SS, Pradhan DK (2016) The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO 20-LiCF 3 SO 3 based ion conducting polymer clay composites. Phys Chem Chem Phys 18(29):19955–19965 Dam T, Jena SS, Pradhan DK (2016) The ionic transport mechanism and coupling between the ion conduction and segmental relaxation processes of PEO 20-LiCF 3 SO 3 based ion conducting polymer clay composites. Phys Chem Chem Phys 18(29):19955–19965
86.
Zurück zum Zitat Fuentes I, Andrio A, Teixidor F, Viñas C, Compañ V (2017) Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Phys Chem Chem Phys 19(23):15177–15186 Fuentes I, Andrio A, Teixidor F, Viñas C, Compañ V (2017) Enhanced conductivity of sodium versus lithium salts measured by impedance spectroscopy. Sodium cobaltacarboranes as electrolytes of choice. Phys Chem Chem Phys 19(23):15177–15186
87.
Zurück zum Zitat Popov I, Ishai PB, Khamzin A, Feldman Y (2016) The mechanism of the dielectric relaxation in water. Phys Chem Chem Phys 18(20):13941–13953 Popov I, Ishai PB, Khamzin A, Feldman Y (2016) The mechanism of the dielectric relaxation in water. Phys Chem Chem Phys 18(20):13941–13953
88.
Zurück zum Zitat Namikawa H (1975) Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. J Non-Cryst Solids 18(2):173–195 Namikawa H (1975) Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. J Non-Cryst Solids 18(2):173–195
89.
Zurück zum Zitat Das S, Ghosh A (2020) Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: effect of TiO2 and ZnO nanoparticles on electrochemical behavior. J Appl Polym Sci 137(22):48757 Das S, Ghosh A (2020) Symmetric electric double-layer capacitor containing imidazolium ionic liquid-based solid polymer electrolyte: effect of TiO2 and ZnO nanoparticles on electrochemical behavior. J Appl Polym Sci 137(22):48757
90.
Zurück zum Zitat Sarkar S, Arya A, Gaur UK, Gaur A (2020) Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors. Biomass Bioenerg 142:105730 Sarkar S, Arya A, Gaur UK, Gaur A (2020) Investigations on porous carbon derived from sugarcane bagasse as an electrode material for supercapacitors. Biomass Bioenerg 142:105730
91.
Zurück zum Zitat Lu C, Chen X (2019) In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chem Commun 55(58):8470–8473 Lu C, Chen X (2019) In situ synthesized PEO/NBR composite ionogels for high-performance all-solid-state supercapacitors. Chem Commun 55(58):8470–8473
92.
Zurück zum Zitat Karaman B, Cevik E, Bozkurt A (2019) Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics 25:1773–1781 Karaman B, Cevik E, Bozkurt A (2019) Novel flexible Li-doped PEO/copolymer electrolytes for supercapacitor application. Ionics 25:1773–1781
Metadaten
Titel
Nanofiller-assisted Na+-conducting polymer nanocomposite for ultracapacitor: structural, dielectric and electrochemical properties
verfasst von
Vashu Kamboj
Anil Arya
Shweta Tanwar
Vijay Kumar
A. L. Sharma
Publikationsdatum
04.01.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-020-05667-3

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Science 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.