Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Nanofiltration of Dye Bath Towards Zero Liquid Discharge: A Technical and Economic Evaluation

verfasst von : Li Shu, Muthu Pannirselvam, Veeriah Jegatheesan

Erschienen in: Water Scarcity and Ways to Reduce the Impact

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A dye bath effluent is the most resource-rich stream in a dye house in the textile industry with almost all salts used and 0–40% of unfixed dyes, and 10% of water in a wet process. A lot of effort has been made to breakdown dyes physically, chemically and biologically and mainly for meeting the local government discharge standard, however, salts in the dye bath are unchanged and are simply diluted and discharged to the environment. Both salts and dyes are valuable commodities. If they are recovered, less resources will be wasted and less damage will be done to the environment. This is beneficial to both the industries and the environment. Membrane filtration is an effective tool to separate chemicals according to their sizes and surface charges without altering their properties. In this chapter, we reviewed the development of Nanofiltration membrane technology (NF) in terms of lower salt rejection and membrane fouling and proposed the mechanisms of membrane pore enlargement during separating salts from dye in a dyebath for recovery, recycling and reuse. We also mentioned the industries that use dyes and pigments in their daily operations. We have concluded that membrane swelling/pore enlargement remains a challenge on NF application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2004). Savings and re-use of salts and water present in dye house effulents. Desalination, 162, 13–22.CrossRef Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2004). Savings and re-use of salts and water present in dye house effulents. Desalination, 162, 13–22.CrossRef
Zurück zum Zitat Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15–34.CrossRef Allègre, C., Moulin, P., Maisseu, M., & Charbit, F. (2006). Treatment and reuse of reactive dyeing effluents. Journal of Membrane Science, 269, 15–34.CrossRef
Zurück zum Zitat Álvarez, M. S., Moscoso, F., Rodríguez, A., Sanromán, M. A., & Deive, F. J. (2013). Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 146, 689–695.CrossRef Álvarez, M. S., Moscoso, F., Rodríguez, A., Sanromán, M. A., & Deive, F. J. (2013). Novel physico-biological treatment for the remediation of textile dyes-containing industrial effluents. Bioresource Technology, 146, 689–695.CrossRef
Zurück zum Zitat Amaral, F. M., Kato, M. T., Florêncio, L., & Gavazza, S. (2014). Color, organic matter and sulphate removal from textile effluents by anaerobic and aerobic processes. Bioresource Technology, 163, 264–369.CrossRef Amaral, F. M., Kato, M. T., Florêncio, L., & Gavazza, S. (2014). Color, organic matter and sulphate removal from textile effluents by anaerobic and aerobic processes. Bioresource Technology, 163, 264–369.CrossRef
Zurück zum Zitat Ammar, A., Dofan, I., Jegatheesan, V., Muthukumaran, S., & Shu, L. (2015). Comparison between nanofiltration and forward osmosis in the treatment of dye solutions. Desalination and Water Treatment, 54, 853–861.CrossRef Ammar, A., Dofan, I., Jegatheesan, V., Muthukumaran, S., & Shu, L. (2015). Comparison between nanofiltration and forward osmosis in the treatment of dye solutions. Desalination and Water Treatment, 54, 853–861.CrossRef
Zurück zum Zitat Aouni, A., Fersi, C., Cuartas-Uribe, B., Bes-Pía, A., Alcaina-Mirande, M. I., & Dhahbi, M. (2012). Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes. Desalination, 297, 87–96.CrossRef Aouni, A., Fersi, C., Cuartas-Uribe, B., Bes-Pía, A., Alcaina-Mirande, M. I., & Dhahbi, M. (2012). Reactive dyes rejection and textile effluent treatment study using ultrafiltration and nanofiltration processes. Desalination, 297, 87–96.CrossRef
Zurück zum Zitat Bakheet, B., Yuan, S., Li, Z., Wang, H., Zuo, J., Komarneni, S., et al. (2013). Electro-peroxone treatment of orange II dye wastewater. Water Research, 47, 6234–6243.CrossRef Bakheet, B., Yuan, S., Li, Z., Wang, H., Zuo, J., Komarneni, S., et al. (2013). Electro-peroxone treatment of orange II dye wastewater. Water Research, 47, 6234–6243.CrossRef
Zurück zum Zitat Balapure, K., Jain, K., Bhatt, N., & Madamwar, D. (2016). Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. International Biodeterioration & Bidegradation, 106, 97–105.CrossRef Balapure, K., Jain, K., Bhatt, N., & Madamwar, D. (2016). Exploring bioremediation strategies to enhance the mineralization of textile industrial wastewater through sequential anaerobic-microaerophilic process. International Biodeterioration & Bidegradation, 106, 97–105.CrossRef
Zurück zum Zitat Bella, F., Lamberti, A., Sacco, A., Bianco, A., & Chiodoni, R. Bongiovanni. (2014). Novel electrode and electrolyte membranes: Towrds flexible dye-sensitized solar cell combining vertical aligned TiO2 nanotube array and light-cured polymer network. Journal of Membrane Science, 470, 125–131.CrossRef Bella, F., Lamberti, A., Sacco, A., Bianco, A., & Chiodoni, R. Bongiovanni. (2014). Novel electrode and electrolyte membranes: Towrds flexible dye-sensitized solar cell combining vertical aligned TiO2 nanotube array and light-cured polymer network. Journal of Membrane Science, 470, 125–131.CrossRef
Zurück zum Zitat Chafi, C., Gourich, B., Essadki, A. H., Vial, C., & Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes using chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285–292.CrossRef Chafi, C., Gourich, B., Essadki, A. H., Vial, C., & Fabregat, A. (2011). Comparison of electrocoagulation using iron and aluminium electrodes using chemical coagulation for the removal of a highly soluble acid dye. Desalination, 281, 285–292.CrossRef
Zurück zum Zitat Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30.CrossRef Charumathi, D., & Das, N. (2012). Packed bed column studies for the removal of synthetic dyes from textile wastewater using immobilised dead C. tropicalis. Desalination, 285, 22–30.CrossRef
Zurück zum Zitat Chattopadhyay, S. N., Pan, N. C., & Day, A. (2006). Reuse of reactive dyes for dyeing of jute fabric. Bioresource Technology, 97, 77–83.CrossRef Chattopadhyay, S. N., Pan, N. C., & Day, A. (2006). Reuse of reactive dyes for dyeing of jute fabric. Bioresource Technology, 97, 77–83.CrossRef
Zurück zum Zitat Chen, G., Chai, X., Yue, P., & Mi, Y. (1997). Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. Journal of Membrane Science, 127, 93–99.CrossRef Chen, G., Chai, X., Yue, P., & Mi, Y. (1997). Treatment of textile desizing wastewater by pilot scale nanofiltration membrane separation. Journal of Membrane Science, 127, 93–99.CrossRef
Zurück zum Zitat Chidambaram, T., Oren, Y., & Noel, M. (2015). Fouling of nanofiltration membrane by dyes during brine recovery from textile dye bath wastewater. Chemical Engineering Journal, 262, 155–168.CrossRef Chidambaram, T., Oren, Y., & Noel, M. (2015). Fouling of nanofiltration membrane by dyes during brine recovery from textile dye bath wastewater. Chemical Engineering Journal, 262, 155–168.CrossRef
Zurück zum Zitat Chipperfield, D. (2012). Colour in mass concrete and pigment. Barcelona, Spain: Actar. Chipperfield, D. (2012). Colour in mass concrete and pigment. Barcelona, Spain: Actar.
Zurück zum Zitat Cruz-González, K., Torres-Lopez, O., García-León, A. M., Brillas, E., Hernández-Ramírez, A., & Peralta-Hernández, J. (2012). Optimization of electro-Fenton/BDD process for decolorization of model azo dye wastewater by means of response surface methodology. Desalination, 286, 63–68.CrossRef Cruz-González, K., Torres-Lopez, O., García-León, A. M., Brillas, E., Hernández-Ramírez, A., & Peralta-Hernández, J. (2012). Optimization of electro-Fenton/BDD process for decolorization of model azo dye wastewater by means of response surface methodology. Desalination, 286, 63–68.CrossRef
Zurück zum Zitat Daraei, P., Madaeni, S. S., Salehi, E., Ghaemi, N., Ghari, H. S., Khadivi, M. A., et al. (2013). Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. Journal of Membrane Science, 436, 97–108.CrossRef Daraei, P., Madaeni, S. S., Salehi, E., Ghaemi, N., Ghari, H. S., Khadivi, M. A., et al. (2013). Novel thin film composite membrane fabricated by mixed matrix nanoclay/chitosan on PVDF microfiltration support: Preparation, characterization and performance in dye removal. Journal of Membrane Science, 436, 97–108.CrossRef
Zurück zum Zitat Denyer, P., Shu, L., & Jegatheesan, V. (2007). Evidence of changes in membrane pore characteristics due to filtration of dye bath liquors. Desalination, 204, 296–306.CrossRef Denyer, P., Shu, L., & Jegatheesan, V. (2007). Evidence of changes in membrane pore characteristics due to filtration of dye bath liquors. Desalination, 204, 296–306.CrossRef
Zurück zum Zitat Deowan, S. A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S. A., Gabriele, B., et al. (2016). Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. Journal of Membrane Science, 510, 524–532.CrossRef Deowan, S. A., Galiano, F., Hoinkis, J., Johnson, D., Altinkaya, S. A., Gabriele, B., et al. (2016). Novel low-fouling membrane bioreactor (MBR) for industrial wastewater treatment. Journal of Membrane Science, 510, 524–532.CrossRef
Zurück zum Zitat Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., et al. (2011). Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination, 275, 74–81.CrossRef Errais, E., Duplay, J., Darragi, F., M’Rabet, I., Aubert, A., Huber, F., et al. (2011). Efficient anionic dye adsorption on natural untreated clay: Kinetic study and thermodynamic parameters. Desalination, 275, 74–81.CrossRef
Zurück zum Zitat Firmino, P. I. M., da Silva, M. E. R., Cervantes, F. J., dos Santos, A. B. (2010). Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology, 101, 7773–7779.CrossRef Firmino, P. I. M., da Silva, M. E. R., Cervantes, F. J., dos Santos, A. B. (2010). Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology, 101, 7773–7779.CrossRef
Zurück zum Zitat Franca, R. D. G., Vieira, A., Mata, A. M. T., Carvalho, G. S., Pinheiro, H. M., & Lourenço, N. D. (2015). Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Water Research, 85, 327–336.CrossRef Franca, R. D. G., Vieira, A., Mata, A. M. T., Carvalho, G. S., Pinheiro, H. M., & Lourenço, N. D. (2015). Effect of an azo dye on the performance of an aerobic granular sludge sequencing batch reactor treating a simulated textile wastewater. Water Research, 85, 327–336.CrossRef
Zurück zum Zitat Greluk, M., & Hubicki, Z. (2011). Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination, 278, 219–226.CrossRef Greluk, M., & Hubicki, Z. (2011). Efficient removal of Acid Orange 7 dye from water using the strongly basic anion exchange resin Amberlite IRA-958. Desalination, 278, 219–226.CrossRef
Zurück zum Zitat Hai, F. I., Yamamoto, K., Nakajima, F., & Fukushi, K. (2012). Application of a GAC-coated hollow fiber module to couple enzymatic degradation of dye on membrane to whole cell biodegradation within a membrane bioreactor. Journal of Membrane Science, 389, 67–75.CrossRef Hai, F. I., Yamamoto, K., Nakajima, F., & Fukushi, K. (2012). Application of a GAC-coated hollow fiber module to couple enzymatic degradation of dye on membrane to whole cell biodegradation within a membrane bioreactor. Journal of Membrane Science, 389, 67–75.CrossRef
Zurück zum Zitat Hall, A. J. (1965). The standard handbook of textiles. London: Temple Press Books LTD. Hall, A. J. (1965). The standard handbook of textiles. London: Temple Press Books LTD.
Zurück zum Zitat Han, G., Liang, C., Chung, T., Weber, M., Staudt, C., & Maletzko, C. (2016). Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 91, 361–370.CrossRef Han, G., Liang, C., Chung, T., Weber, M., Staudt, C., & Maletzko, C. (2016). Combination of forward osmosis (FO) process with coagulation/flocculation (CF) for potential treatment of textile wastewater. Water Research, 91, 361–370.CrossRef
Zurück zum Zitat Harris, R. M. (1999). Coloring technology for plastics. NY, the United State of America: Plastic Design Library. Harris, R. M. (1999). Coloring technology for plastics. NY, the United State of America: Plastic Design Library.
Zurück zum Zitat He, Y., Wang, X., Xu, J., Yan, J., Ge, Q., Gu, X., et al. (2013). Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents. Bioresource Technology, 133, 150–157.CrossRef He, Y., Wang, X., Xu, J., Yan, J., Ge, Q., Gu, X., et al. (2013). Application of integrated ozone biological aerated filters and membrane filtration in water reuse of textile effluents. Bioresource Technology, 133, 150–157.CrossRef
Zurück zum Zitat Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83, 171–180.CrossRef Hessel, C., Allegre, C., Maisseu, M., Charbit, F., & Moulin, P. (2007). Guidelines and legislation for dye house effluents. Journal of Environmental Management, 83, 171–180.CrossRef
Zurück zum Zitat Huang, L., Sun, G., Yang, T., Zhang, B., He, Y., & Wang, X. (2013). A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater. Desalination, 309, 91–96.CrossRef Huang, L., Sun, G., Yang, T., Zhang, B., He, Y., & Wang, X. (2013). A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater. Desalination, 309, 91–96.CrossRef
Zurück zum Zitat Huang, J., & Zhang, K. (2011). Thigh high flux poly(m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination. Desalination, 282, 19–26.CrossRef Huang, J., & Zhang, K. (2011). Thigh high flux poly(m-phenylene isophthalamide) nanofiltration membrane for dye purification and desalination. Desalination, 282, 19–26.CrossRef
Zurück zum Zitat Ismail, A. F., & Lau, W. J. (2009). Influence of feed conditions on the rejection of salt and dye in aqueous solution by different characteristics of hollow fiber nanofiltration membrane. Desalination and Water Treatment, 6, 281–288.CrossRef Ismail, A. F., & Lau, W. J. (2009). Influence of feed conditions on the rejection of salt and dye in aqueous solution by different characteristics of hollow fiber nanofiltration membrane. Desalination and Water Treatment, 6, 281–288.CrossRef
Zurück zum Zitat Jegatheesan, V., Pramanik, B. K., Chen, J., Navaratna, D., Chang, C., & Shu, L. (2016). Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, 204, 202–212.CrossRef Jegatheesan, V., Pramanik, B. K., Chen, J., Navaratna, D., Chang, C., & Shu, L. (2016). Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresource Technology, 204, 202–212.CrossRef
Zurück zum Zitat Jin, L., Sun, Q., Xu, Q., & Xu, Y. (2015). Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology, 197, 348–355.CrossRef Jin, L., Sun, Q., Xu, Q., & Xu, Y. (2015). Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Bioresource Technology, 197, 348–355.CrossRef
Zurück zum Zitat Kabra, A. N., Khandare, Rahul V., & Govindwar, S. P. (2013). Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Research, 47, 1035–1048.CrossRef Kabra, A. N., Khandare, Rahul V., & Govindwar, S. P. (2013). Development of a bioreactor for remediation of textile effluent and dye mixture: A plant-bacterial synergistic strategy. Water Research, 47, 1035–1048.CrossRef
Zurück zum Zitat Kadam, A. A., Lade, H. S., Lee, D. S., & Govindwar, S. P. (2015). Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid state fermentation: Hybrid treatment strategy. Bioresource Technology, 176, 38–46.CrossRef Kadam, A. A., Lade, H. S., Lee, D. S., & Govindwar, S. P. (2015). Zinc chloride as a coagulant for textile dyes and treatment of generated dye sludge under the solid state fermentation: Hybrid treatment strategy. Bioresource Technology, 176, 38–46.CrossRef
Zurück zum Zitat Kajekar, A., Dodamani, B. M., Isloor, A. M., Karim, Z. A., & Cheer, N. B. (2015). Preparation and characterisation of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination, 365, 117–125.CrossRef Kajekar, A., Dodamani, B. M., Isloor, A. M., Karim, Z. A., & Cheer, N. B. (2015). Preparation and characterisation of novel PSf/PVP/PANI-nanofiber nanocomposite hollow fiber ultrafiltration membranes and their possible applications for hazardous dye rejection. Desalination, 365, 117–125.CrossRef
Zurück zum Zitat Kebria, M. Z. S., Jahanshahi, M., & Rahimpour, A. (2015). SiO2 modified polytheleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination, 367, 255–264.CrossRef Kebria, M. Z. S., Jahanshahi, M., & Rahimpour, A. (2015). SiO2 modified polytheleneimine-based nanofiltration membranes for dye removal from aqueous and organic solutions. Desalination, 367, 255–264.CrossRef
Zurück zum Zitat Kertèsz, S., Cakl, J., & Jiránková, H. (2014). Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 343, 106–112.CrossRef Kertèsz, S., Cakl, J., & Jiránková, H. (2014). Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination, 343, 106–112.CrossRef
Zurück zum Zitat Khorramfar, S., Mahmoodi, N. M., Arami, M., & Bahrami, H. (2011). Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination, 279, 183–189.CrossRef Khorramfar, S., Mahmoodi, N. M., Arami, M., & Bahrami, H. (2011). Oxidation of dyes from colored wastewater using activated carbon/hydrogen peroxide. Desalination, 279, 183–189.CrossRef
Zurück zum Zitat Kong, F., Wang, A., & Ren, H. (2015). Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber. Bioresource Technology, 198, 437–444.CrossRef Kong, F., Wang, A., & Ren, H. (2015). Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber. Bioresource Technology, 198, 437–444.CrossRef
Zurück zum Zitat Kurt, E., Koseoglu-Imer, D. Y., Dizge, N., Chellam, S., & Koyuncu, I. (2012). Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination, 302, 24–32.CrossRef Kurt, E., Koseoglu-Imer, D. Y., Dizge, N., Chellam, S., & Koyuncu, I. (2012). Pilot-scale evaluation of nanofiltration and reverse osmosis for process reuse of segregated textile dyewash wastewater. Desalination, 302, 24–32.CrossRef
Zurück zum Zitat Lau, W., & Ismail, A. F. (2009). Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—A review. Desalination, 245, 321–348.CrossRef Lau, W., & Ismail, A. F. (2009). Polymeric nanofiltration membranes for textile dye wastewater treatment: Preparation, performance evaluation, transport modelling, and fouling control—A review. Desalination, 245, 321–348.CrossRef
Zurück zum Zitat Lee, S. S., Bai, H., Liu, Z., & Sun, D. D. (2013). Novel-structured electronspun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Research, 47, 4059–4073.CrossRef Lee, S. S., Bai, H., Liu, Z., & Sun, D. D. (2013). Novel-structured electronspun TiO2/CuO composite nanofibers for high efficient photocatalytic cogeneration of clean water and energy from dye wastewater. Water Research, 47, 4059–4073.CrossRef
Zurück zum Zitat Lee, K., Beak, H., & Choo, K. (2015). Membrane photoreactor treatment of 1,4-dioxane-containing textile wastewater effluent: Performance, modelling, and fouling control. Water Research, 86, 58–65.CrossRef Lee, K., Beak, H., & Choo, K. (2015). Membrane photoreactor treatment of 1,4-dioxane-containing textile wastewater effluent: Performance, modelling, and fouling control. Water Research, 86, 58–65.CrossRef
Zurück zum Zitat Li, X., Chen, Y., Hu, X., Zhang, Y., & Hu, L. (2014). Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. Journal of Membrane Science, 471, 118–129.CrossRef Li, X., Chen, Y., Hu, X., Zhang, Y., & Hu, L. (2014). Desalination of dye solution utilizing PVA/PVDF hollow fiber composite membrane modified with TiO2 nanoparticles. Journal of Membrane Science, 471, 118–129.CrossRef
Zurück zum Zitat Li, C., & He, J. (2013). Advanced treatment of spend acid dyebath and reuse of water, salt and surfactant therein. Journal of Cleaner Production, 59, 86–92.CrossRef Li, C., & He, J. (2013). Advanced treatment of spend acid dyebath and reuse of water, salt and surfactant therein. Journal of Cleaner Production, 59, 86–92.CrossRef
Zurück zum Zitat Li, Y., Yang, H., Shen, J., Mu, Y., & Yu, H. (2016). Enhancement of azo dye decolourization in a MFC-MEC coupled system. Bioresource Technology, 202, 93–100.CrossRef Li, Y., Yang, H., Shen, J., Mu, Y., & Yu, H. (2016). Enhancement of azo dye decolourization in a MFC-MEC coupled system. Bioresource Technology, 202, 93–100.CrossRef
Zurück zum Zitat Li, S., Zhang, H., Feng, J., Xu, R., & Liu, X. (2011). Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination, 280, 95–102.CrossRef Li, S., Zhang, H., Feng, J., Xu, R., & Liu, X. (2011). Facile preparation of poly(acrylic acid-acrylamide) hydrogels by frontal polymerization and their use in removal of cationic dyes from aqueous solution. Desalination, 280, 95–102.CrossRef
Zurück zum Zitat Liang, P., Rivallin, M., Cerneaux, S., Lacour, S., Petit, E., & Cretin, M. (2016). Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation: A successful feasibility study. Journal of Membrane Science, 510, 182–190.CrossRef Liang, P., Rivallin, M., Cerneaux, S., Lacour, S., Petit, E., & Cretin, M. (2016). Coupling cathodic Electro-Fenton reaction to membrane filtration for AO7 dye degradation: A successful feasibility study. Journal of Membrane Science, 510, 182–190.CrossRef
Zurück zum Zitat Liang, C., Sun, S., Li, F., Ong, Y., & Chung, T. (2014). Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469, 306–315.CrossRef Liang, C., Sun, S., Li, F., Ong, Y., & Chung, T. (2014). Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration. Journal of Membrane Science, 469, 306–315.CrossRef
Zurück zum Zitat Lin, C., Gung, C., Sun, J., & Suen, S. (2014). Preparation of polyethersulfone/plant-waste-particles mixed matrix membranes for adsorptive removal of cationic dyes from water. Journal of Membrane Science, 471, 285–298.CrossRef Lin, C., Gung, C., Sun, J., & Suen, S. (2014). Preparation of polyethersulfone/plant-waste-particles mixed matrix membranes for adsorptive removal of cationic dyes from water. Journal of Membrane Science, 471, 285–298.CrossRef
Zurück zum Zitat Lin, J., Tang, C. Y., Ye, W., Shi Sun, S. P., Hamdan, S. H., Volodin, A., et al. (2015a). Unraveling flux behaviour of superhydrophilic loose nanofiltratin membranes during textile wastewater treatment. Journal of Membrane Science, 493, 690–702.CrossRef Lin, J., Tang, C. Y., Ye, W., Shi Sun, S. P., Hamdan, S. H., Volodin, A., et al. (2015a). Unraveling flux behaviour of superhydrophilic loose nanofiltratin membranes during textile wastewater treatment. Journal of Membrane Science, 493, 690–702.CrossRef
Zurück zum Zitat Lin, J., Ye, W., Zeng, H., Yang, H., Shen, J., Darvishmanesh, S., et al. (2015b). Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. Journal of Membrane Science, 477, 183–193.CrossRef Lin, J., Ye, W., Zeng, H., Yang, H., Shen, J., Darvishmanesh, S., et al. (2015b). Fractionation of direct dyes and salts in aqueous solution using loose nanofiltration membranes. Journal of Membrane Science, 477, 183–193.CrossRef
Zurück zum Zitat Lotit, A. M., Sactis, M. D., & Iaconi, C. D. (2014). Textile wastewater treatment: Aerobic granular sludge vs activated sludge systems. Water Research, 54, 337–346.CrossRef Lotit, A. M., Sactis, M. D., & Iaconi, C. D. (2014). Textile wastewater treatment: Aerobic granular sludge vs activated sludge systems. Water Research, 54, 337–346.CrossRef
Zurück zum Zitat Ma, S., Meng, J., Li, J., Zhang, Y., & Ni, L. (2014). Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation on dyes in water. Journal of Membrane Science, 453, 221–229.CrossRef Ma, S., Meng, J., Li, J., Zhang, Y., & Ni, L. (2014). Synthesis of catalytic polypropylene membranes enabling visible-light-driven photocatalytic degradation on dyes in water. Journal of Membrane Science, 453, 221–229.CrossRef
Zurück zum Zitat Mahmoodi, N. M. (2011). Photocatalytic ozonation of dyes using copper ferrite nanoparticles prepared by co-precipitation method. Desalination, 279, 332–337.CrossRef Mahmoodi, N. M. (2011). Photocatalytic ozonation of dyes using copper ferrite nanoparticles prepared by co-precipitation method. Desalination, 279, 332–337.CrossRef
Zurück zum Zitat Mahmoodi, N. M., Khorramfar, S., & Najafi, F. (2011a). Amine-functionalized silica nanoparticles: Preparation, characterization and anionic dye removal ability. Desalination, 279, 61–68.CrossRef Mahmoodi, N. M., Khorramfar, S., & Najafi, F. (2011a). Amine-functionalized silica nanoparticles: Preparation, characterization and anionic dye removal ability. Desalination, 279, 61–68.CrossRef
Zurück zum Zitat Mahmoodi, N. M., Salehi, R., & Arami, M. (2011b). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272, 187–195.CrossRef Mahmoodi, N. M., Salehi, R., & Arami, M. (2011b). Binary system dye removal from colored textile wastewater using activated carbon: Kinetic and isotherm studies. Desalination, 272, 187–195.CrossRef
Zurück zum Zitat Malachova, K., Rybkova, Z., Sezimova, H., Cerven, J., & Novotny, C. (2013). Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Research, 47, 7143–7148.CrossRef Malachova, K., Rybkova, Z., Sezimova, H., Cerven, J., & Novotny, C. (2013). Biodegradation and detoxification potential of rotating biological contactor (RBC) with Irpex lacteus for remediation of dye-containing wastewater. Water Research, 47, 7143–7148.CrossRef
Zurück zum Zitat Manekar, P., Patkar, G., Aswale, P., Mahure, M., & Nandy, T. (2014). Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresource Technology, 157, 44–51.CrossRef Manekar, P., Patkar, G., Aswale, P., Mahure, M., & Nandy, T. (2014). Detoxifying of high strength textile effluent through chemical and bio-oxidation processes. Bioresource Technology, 157, 44–51.CrossRef
Zurück zum Zitat Maurya, S. K., Parashuram, K., Singh, P. S., Ray, P., & Reddy, A. V. R. (2012). Preparation of polysulfone-polyamide thin film composite hollow fiber nanofiltration membranes and their performance in the treatment of aquous dye solutions. Desalination, 304, 11–19.CrossRef Maurya, S. K., Parashuram, K., Singh, P. S., Ray, P., & Reddy, A. V. R. (2012). Preparation of polysulfone-polyamide thin film composite hollow fiber nanofiltration membranes and their performance in the treatment of aquous dye solutions. Desalination, 304, 11–19.CrossRef
Zurück zum Zitat Neta, J. J. S., Moreira, G. C., Silva, C. J., Reis, C., & Reis, E. L. (2011). Use of polyurethane foam for the removal of the Derect Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination, 281, 55–60.CrossRef Neta, J. J. S., Moreira, G. C., Silva, C. J., Reis, C., & Reis, E. L. (2011). Use of polyurethane foam for the removal of the Derect Red 80 and Reactive Blue 21 dyes in aqueous medium. Desalination, 281, 55–60.CrossRef
Zurück zum Zitat Ong, Y. K., Li, F. Y., Sun, S., Zhao, B., Liang, C., & Chung, T. (2014). Nanofiltration ollow filber membrens for textile wastewater treatment: Lab-scale and pilot-scqale studies. Chemical Engineering Science, 114, 51–57.CrossRef Ong, Y. K., Li, F. Y., Sun, S., Zhao, B., Liang, C., & Chung, T. (2014). Nanofiltration ollow filber membrens for textile wastewater treatment: Lab-scale and pilot-scqale studies. Chemical Engineering Science, 114, 51–57.CrossRef
Zurück zum Zitat Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 13–143.CrossRef Ozdemir, S., Cirik, K., Akman, D., Sahinkaya, E., & Cinar, O. (2013). Treatment of azo dye-containing synthetic textile dye effluent using sulfidogenic anaerobic baffled reactor. Bioresource Technology, 146, 13–143.CrossRef
Zurück zum Zitat Patel, T. M., & Nath, K. (2013). Alleviation of flux decline in cross flow nanofiltration of two-component dye and salt mixture by low frequency ultrasonic irradiation. Desalination, 317, 132–141.CrossRef Patel, T. M., & Nath, K. (2013). Alleviation of flux decline in cross flow nanofiltration of two-component dye and salt mixture by low frequency ultrasonic irradiation. Desalination, 317, 132–141.CrossRef
Zurück zum Zitat Porter, J. J. (1998). Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes. Journal of Membrane Science, 151, 45–53.CrossRef Porter, J. J. (1998). Recovery of polyvinyl alcohol and hot water from the textile wastewater using thermally stable membranes. Journal of Membrane Science, 151, 45–53.CrossRef
Zurück zum Zitat Praneeth, K., Manjunath, D., Bhargava, S. K., Tardio, J., & Sridhar, S. (2014). Economic treatment of reverse osmosis reject of textile industry effluent by electrodialysis—Evaporation integrated process. Desalination, 333, 82–91.CrossRef Praneeth, K., Manjunath, D., Bhargava, S. K., Tardio, J., & Sridhar, S. (2014). Economic treatment of reverse osmosis reject of textile industry effluent by electrodialysis—Evaporation integrated process. Desalination, 333, 82–91.CrossRef
Zurück zum Zitat Quan, X., Zhang, X., & Xu, H. (2015). In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Research, 78, 74–83.CrossRef Quan, X., Zhang, X., & Xu, H. (2015). In-situ formation and immobilization of biogenic nanopalladium into anaerobic granular sludge enhances azo dyes degradation. Water Research, 78, 74–83.CrossRef
Zurück zum Zitat Ranganathan, K., Karunagaran, K., & Sharma, D. C. (2007). Recycling of wastewaters of textile dyeing industries using advanced analysis—Case studies. Resource, Conservation and Recycling, 50, 306–318.CrossRef Ranganathan, K., Karunagaran, K., & Sharma, D. C. (2007). Recycling of wastewaters of textile dyeing industries using advanced analysis—Case studies. Resource, Conservation and Recycling, 50, 306–318.CrossRef
Zurück zum Zitat Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 276, 13–27.CrossRef Rauf, M. A., Meetani, M. A., & Hisaindee, S. (2011). An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination, 276, 13–27.CrossRef
Zurück zum Zitat Rosales, E., Pazos, M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156.CrossRef Rosales, E., Pazos, M., Sanromán, M. A., & Tavares, T. (2012). Application of zeolite-Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination, 284, 150–156.CrossRef
Zurück zum Zitat Sala, M., & Gutiérrez-Bouzán, M. C. (2014). Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale. Journal of Cleaner Production, 65, 458–464.CrossRef Sala, M., & Gutiérrez-Bouzán, M. C. (2014). Electrochemical treatment of industrial wastewater and effluent reuse at laboratory and semi-industrial scale. Journal of Cleaner Production, 65, 458–464.CrossRef
Zurück zum Zitat Salima, A., Benaouda, B., Noureddine, B., Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbon to hazardous cationic dyes removal from industrial effluents. Water Research, 47, 3375–3388.CrossRef Salima, A., Benaouda, B., Noureddine, B., Duclaux, L. (2013). Application of Ulva lactuca and Systoceira stricta algae-based activated carbon to hazardous cationic dyes removal from industrial effluents. Water Research, 47, 3375–3388.CrossRef
Zurück zum Zitat Salleh, M. A. M., Mahmoud, D. K., Wan, W. A., Karim, A., Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.CrossRef Salleh, M. A. M., Mahmoud, D. K., Wan, W. A., Karim, A., Idris, A. (2011). Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination, 280, 1–13.CrossRef
Zurück zum Zitat Samhaber, W. M., & Nguyen, M. T. (2014). Application and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents. Beistein Journal of Nanotechnology, 5, 476–484.CrossRef Samhaber, W. M., & Nguyen, M. T. (2014). Application and costs of nanofiltration in combination with photocatalysis for the treatment of dye house effluents. Beistein Journal of Nanotechnology, 5, 476–484.CrossRef
Zurück zum Zitat Shu, L. (2000). Membrane processing of dye wastewater: Dye aggregation, membrane performance and mathematical modelling. University of New South Wales. Shu, L. (2000). Membrane processing of dye wastewater: Dye aggregation, membrane performance and mathematical modelling. University of New South Wales.
Zurück zum Zitat Shu, L., Wu, S., Jegatheesan, V. (2013). Directly observe sodium chloride aggregates waltzing through dilute solutions. In L. Shu, V. Jegatheesan, A. Pandey, J. Virkutyte, H. Djati Utomo (Eds.), Solutions to environmental challenges through innovations in research (pp. 213–223). New Delhi, India: Asiatech Publishers, Inc. Shu, L., Wu, S., Jegatheesan, V. (2013). Directly observe sodium chloride aggregates waltzing through dilute solutions. In L. Shu, V. Jegatheesan, A. Pandey, J. Virkutyte, H. Djati Utomo (Eds.), Solutions to environmental challenges through innovations in research (pp. 213–223). New Delhi, India: Asiatech Publishers, Inc.
Zurück zum Zitat Shu, L., Waite, T. D., Bliss, P. J., Fane, A. G., Jegatheesan, V. (2005). Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent. Desalination, 172(3), 235–243.CrossRef Shu, L., Waite, T. D., Bliss, P. J., Fane, A. G., Jegatheesan, V. (2005). Nanofiltration for the possible reuse of water and recovery of sodium chloride salt from textile effluent. Desalination, 172(3), 235–243.CrossRef
Zurück zum Zitat Shu, L., Obagbemi, I. J., Jegatheesan, V., Liyanaarachchi, S., Baskaran, K. (2015). Effect of multiple cations in the feed solution on the performance of forward osmosis. Desalination and Water Treatment, 54(4–5), 845–852. Shu, L., Obagbemi, I. J., Jegatheesan, V., Liyanaarachchi, S., Baskaran, K. (2015). Effect of multiple cations in the feed solution on the performance of forward osmosis. Desalination and Water Treatment, 54(4–5), 845–852.
Zurück zum Zitat Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes—A review. International Biodeterioration & Bidegradation, 104, 21–31.CrossRef Singh, R. L., Singh, P. K., & Singh, R. P. (2015). Enzymatic decolorization and degradation of azo dyes—A review. International Biodeterioration & Bidegradation, 104, 21–31.CrossRef
Zurück zum Zitat Spagni, A., Grilli, S., Casu, S., & Mattioli, D. (2010). Treatment of a simulated textile wastewater containing the azo-dye reactive orange 16 in an anaerobic-biofilm anoxic-aerobic membrane bioreactor. International Biodeterioration & Bidegradation, 64, 676–681.CrossRef Spagni, A., Grilli, S., Casu, S., & Mattioli, D. (2010). Treatment of a simulated textile wastewater containing the azo-dye reactive orange 16 in an anaerobic-biofilm anoxic-aerobic membrane bioreactor. International Biodeterioration & Bidegradation, 64, 676–681.CrossRef
Zurück zum Zitat Spagni, A., Grilli, S., Casu, S., & Mattioli, D. (2012). Decolorisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresource Technology, 117, 180–185.CrossRef Spagni, A., Grilli, S., Casu, S., & Mattioli, D. (2012). Decolorisation of textile wastewater in a submerged anaerobic membrane bioreactor. Bioresource Technology, 117, 180–185.CrossRef
Zurück zum Zitat Su, C., Pukdee-Asa, M., Ratanatamskul, C., & Lu, M. (2011). Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278, 211–218.CrossRef Su, C., Pukdee-Asa, M., Ratanatamskul, C., & Lu, M. (2011). Effect of operating parameters on decolorization and COD removal of three reactive dyes by Fenton’s reagent using fluidized-bed reactor. Desalination, 278, 211–218.CrossRef
Zurück zum Zitat Sundrarajan, M., & Joseph, G. V. K. (2007). Decolorisation of exhausted reactive dye bath using ozonator for reuse. International Journal of Environmental Science and Technology, 4, 263–270.CrossRef Sundrarajan, M., & Joseph, G. V. K. (2007). Decolorisation of exhausted reactive dye bath using ozonator for reuse. International Journal of Environmental Science and Technology, 4, 263–270.CrossRef
Zurück zum Zitat Trotman, E. R. (1984). Dyeing and chemical technology of textile fibres. Edward. Trotman, E. R. (1984). Dyeing and chemical technology of textile fibres. Edward.
Zurück zum Zitat Wang, L., Ji, S., Wang, N., Zhang, R., Zhang, G., & Li, J. (2014). One-step self-assembly fabrication of amphiphilic hyperbranced polymer composite membrane from aqueous emulsion for dye desalination. Journal of Membrane Science, 452, 143–151.CrossRef Wang, L., Ji, S., Wang, N., Zhang, R., Zhang, G., & Li, J. (2014). One-step self-assembly fabrication of amphiphilic hyperbranced polymer composite membrane from aqueous emulsion for dye desalination. Journal of Membrane Science, 452, 143–151.CrossRef
Zurück zum Zitat Wang, H., Shen, Y., Shen, C., Wen, Y., & Li, H. (2012). Enhanced adsorption of dye on magnetic Fe3O4 via HCl-assisted sonication pretreatment. Desalination, 284, 122–127.CrossRef Wang, H., Shen, Y., Shen, C., Wen, Y., & Li, H. (2012). Enhanced adsorption of dye on magnetic Fe3O4 via HCl-assisted sonication pretreatment. Desalination, 284, 122–127.CrossRef
Zurück zum Zitat Wu, J., Ma, L., Chen, Y., Cheng, Y., Liu, Y., & Zha, X. (2016). Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways. Water Research, 92, 140–148.CrossRef Wu, J., Ma, L., Chen, Y., Cheng, Y., Liu, Y., & Zha, X. (2016). Catalytic ozonation of organic pollutants from bio-treated dyeing and finishing wastewater using recycled waste iron shavings as a catalyst: Removal and pathways. Water Research, 92, 140–148.CrossRef
Zurück zum Zitat Xu, L., Du, L., Wang, C., & Xu, W. (2012). Nanofiltration coupled with electrolytic oxidation in treating simulated dye wastewater. Journal of Membrane Science, 409–410, 329–334.CrossRef Xu, L., Du, L., Wang, C., & Xu, W. (2012). Nanofiltration coupled with electrolytic oxidation in treating simulated dye wastewater. Journal of Membrane Science, 409–410, 329–334.CrossRef
Zurück zum Zitat Yu, S., Liu, M., Ma, M., Qi, M., Lü, Z., & Gao, C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science, 350, 83–91.CrossRef Yu, S., Liu, M., Ma, M., Qi, M., Lü, Z., & Gao, C. (2010). Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes. Journal of Membrane Science, 350, 83–91.CrossRef
Zurück zum Zitat Yurtsever, A., Sahinkaya, E., Aktaș, Ö., Uçar, D., Çinar, Ö., & Wang, Z. (2015). Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology, 192, 564–573.CrossRef Yurtsever, A., Sahinkaya, E., Aktaș, Ö., Uçar, D., Çinar, Ö., & Wang, Z. (2015). Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresource Technology, 192, 564–573.CrossRef
Zurück zum Zitat Zhang, G., Li, X., Li, Y., Wu, T., Sun, D., & Lu, F. (2011). Removal of anionic dyes from aqueous solution by leaching solutions of white mud. Desalination, 274, 255–261.CrossRef Zhang, G., Li, X., Li, Y., Wu, T., Sun, D., & Lu, F. (2011). Removal of anionic dyes from aqueous solution by leaching solutions of white mud. Desalination, 274, 255–261.CrossRef
Zurück zum Zitat Zheng, Y., Yao, G., Cheng, Q., Yu, S., Liu, M., & Gao, C. (2013). Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination, 328, 42–50.CrossRef Zheng, Y., Yao, G., Cheng, Q., Yu, S., Liu, M., & Gao, C. (2013). Positively charged thin-film composite hollow fiber nanofiltration membrane for the removal of cationic dyes through submerged filtration. Desalination, 328, 42–50.CrossRef
Zurück zum Zitat Zhong, P. S., Widjojo, N., Chung, T., Weber, M., & Maletzko, C. (2012). Positively charged nanofiltration (NF) membranes vis UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. Journal of Membrane Science, 417–418, 52–60.CrossRef Zhong, P. S., Widjojo, N., Chung, T., Weber, M., & Maletzko, C. (2012). Positively charged nanofiltration (NF) membranes vis UV grafting on sulfonated polyphenylenesulfone (sPPSU) for effective removal of textile dyes from wastewater. Journal of Membrane Science, 417–418, 52–60.CrossRef
Metadaten
Titel
Nanofiltration of Dye Bath Towards Zero Liquid Discharge: A Technical and Economic Evaluation
verfasst von
Li Shu
Muthu Pannirselvam
Veeriah Jegatheesan
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-75199-3_3