Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Physics of Metals and Metallography 5/2019

01.05.2019 | STRENGTH AND PLASTICITY

Nanoindentation Analysis of Friction Stir Welded 6061-T6 Al Alloy in As-Weld and Post Weld Heat Treatment

verfasst von: Firouz Fadaeifard, Mohamad Reza Pakmanesh, Morteza Shamanian Esfahani, Khamirul Amin Matori, Didier Chicot

Erschienen in: Physics of Metals and Metallography | Ausgabe 5/2019

Einloggen, um Zugang zu erhalten
share
TEILEN

Abstract

In this research indentation instrument testing is used as a new method for local characterization to study different zones of friction stir welded AA6061 alloy. For this purpose nanoindentation and microhardness are applied for samples in as-weld and post weld heat treatment conditions. Nugget zone, thermomechanically affected zone, and heat affected zone are examined by using nanoindentor in both conditions. The observations say that an estimation of the truncated indenter tip defect is necessary because of pile-up. Whereas post weld heat treatment (PWHT) can recover elastic modulus and nanohardness as well as hardness in AA6061 weldment.
Literatur
1.
Zurück zum Zitat D. M. Rodrigues, A. Loureiro, C. Leitao, R. M. Leal, B. M. Chaparro, and P. Vilaca, “Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds,” Mater. Des. 30, 1913–1921 (2009). CrossRef D. M. Rodrigues, A. Loureiro, C. Leitao, R. M. Leal, B. M. Chaparro, and P. Vilaca, “Influence of friction stir welding parameters on the microstructural and mechanical properties of AA 6016-T4 thin welds,” Mater. Des. 30, 1913–1921 (2009). CrossRef
2.
Zurück zum Zitat R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng., R 50, 1–78 (2005). R. S. Mishra and Z. Y. Ma, “Friction stir welding and processing,” Mater. Sci. Eng., R 50, 1–78 (2005).
3.
Zurück zum Zitat G. Lucas, ”Aluminum structural applications,” Adv. Mater. Process. 149, 29–30 (1996). G. Lucas, ”Aluminum structural applications,” Adv. Mater. Process. 149, 29–30 (1996).
4.
Zurück zum Zitat D. Maisonnette, M. Suery, D. Neliasa, P. Chaudet, and T. Epicier, “Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy,” Mater. Sci. Eng., A 528, 2718–2724 (2011). CrossRef D. Maisonnette, M. Suery, D. Neliasa, P. Chaudet, and T. Epicier, “Effects of heat treatments on the microstructure and mechanical properties of a 6061 aluminium alloy,” Mater. Sci. Eng., A 528, 2718–2724 (2011). CrossRef
5.
Zurück zum Zitat A. K. Gupta, D. J. Lloyd, and S. A. Court, “Precipitation hardening processes in an Al–0.4% Mg–1.3% Si–0.25% Fe Aluminum alloy,” Mater. Sci. Eng., A 301, 140–146 (2001). CrossRef A. K. Gupta, D. J. Lloyd, and S. A. Court, “Precipitation hardening processes in an Al–0.4% Mg–1.3% Si–0.25% Fe Aluminum alloy,” Mater. Sci. Eng., A 301, 140–146 (2001). CrossRef
6.
Zurück zum Zitat F. Fadaeifard, Ka. Matori, F. Garavi, M. Al-Falahi, and G. Vahedi Sarrigani, “Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy,” Trans. Nonferrous Met. Soc. China 26, 3102–3114 (2016). CrossRef F. Fadaeifard, Ka. Matori, F. Garavi, M. Al-Falahi, and G. Vahedi Sarrigani, “Effect of post weld heat treatment on microstructure and mechanical properties of gas tungsten arc welded AA6061-T6 alloy,” Trans. Nonferrous Met. Soc. China 26, 3102–3114 (2016). CrossRef
7.
Zurück zum Zitat O. R. Myhr, O. Grong, H. G. Fjar, and C. D. Marioara, “Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing,” Acta Mater. 52, 4997–5008 (2004). CrossRef O. R. Myhr, O. Grong, H. G. Fjar, and C. D. Marioara, “Modelling of the microstructure and strength evolution in Al–Mg–Si alloys during multistage thermal processing,” Acta Mater. 52, 4997–5008 (2004). CrossRef
8.
Zurück zum Zitat M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding, ” Mater. Charact. 49, 95–101 (2002). CrossRef M. Guerra, C. Schmidt, J. C. McClure, L. E. Murr, and A. C. Nunes, “Flow patterns during friction stir welding, ” Mater. Charact. 49, 95–101 (2002). CrossRef
9.
Zurück zum Zitat E. P. Koumoulos, C. A. Charitidis, N. M. Daniolos, and D. I. Pantelis, “Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy,” Mater. Sci. Eng., B 176, 1585–1589 (2011). CrossRef E. P. Koumoulos, C. A. Charitidis, N. M. Daniolos, and D. I. Pantelis, “Nanomechanical properties of friction stir welded AA6082-T6 aluminum alloy,” Mater. Sci. Eng., B 176, 1585–1589 (2011). CrossRef
10.
Zurück zum Zitat C. A. Charitidis, D. A. Dragatogiannis, E. P. Koumoulos, and I. A. Kartsonakis, “Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation,” Mater. Sci. Eng., A 540, 226–234 (2012). CrossRef C. A. Charitidis, D. A. Dragatogiannis, E. P. Koumoulos, and I. A. Kartsonakis, “Residual stress and deformation mechanism of friction stir welded aluminum alloys by nanoindentation,” Mater. Sci. Eng., A 540, 226–234 (2012). CrossRef
11.
Zurück zum Zitat M. Cabibbo, A. Forcellese, M. El-Mehtedi, and M. Simoncini, “Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization,” Mater. Sci. Eng., A 590, 209–217 (2014). CrossRef M. Cabibbo, A. Forcellese, M. El-Mehtedi, and M. Simoncini, “Double side friction stir welding of AA6082 sheets: Microstructure and nanoindentation characterization,” Mater. Sci. Eng., A 590, 209–217 (2014). CrossRef
12.
Zurück zum Zitat C. D. Marioara, S. J. Andersen, T. N. Stene, H. S. Hasting, J. Walmsley, A. T. J. Van Helvoort, and R. Holmestad, “The effect of Cu on precipitation in Al–Mg–Si alloys,” Philos. Mag. 87, 3385–3413 (2007). CrossRef C. D. Marioara, S. J. Andersen, T. N. Stene, H. S. Hasting, J. Walmsley, A. T. J. Van Helvoort, and R. Holmestad, “The effect of Cu on precipitation in Al–Mg–Si alloys,” Philos. Mag. 87, 3385–3413 (2007). CrossRef
13.
Zurück zum Zitat V. Fahimpour, S. K. Sadrnezhaad, and F. Karimzadeh, “Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy,” Metall. Mater. Trans. A 44A, 2187–2195 (2013). CrossRef V. Fahimpour, S. K. Sadrnezhaad, and F. Karimzadeh, “Microstructure and mechanical property change during FSW and GTAW of Al6061 alloy,” Metall. Mater. Trans. A 44A, 2187–2195 (2013). CrossRef
14.
Zurück zum Zitat K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci. 37, 473–480 (2002). CrossRef K. N. Krishnan, “The effect of post weld heat treatment on the properties of 6061 friction stir welded joints,” J. Mater. Sci. 37, 473–480 (2002). CrossRef
15.
Zurück zum Zitat K. Elangovan and V. Balasubramanian, “Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints,” Mater. Charact. 59, 1168–1177 (2008). CrossRef K. Elangovan and V. Balasubramanian, “Influences of post-weld heat treatment on tensile properties of friction stir-welded AA6061 aluminum alloy joints,” Mater. Charact. 59, 1168–1177 (2008). CrossRef
16.
Zurück zum Zitat E. Totten George, ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys (ASM International, California, 2016). CrossRef E. Totten George, ASM Handbook Volume 4E: Heat Treating of Nonferrous Alloys (ASM International, California, 2016). CrossRef
17.
Zurück zum Zitat W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992). CrossRef W. C. Oliver and G. M. Pharr, “An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments,” J. Mater. Res. 7, 1564–1583 (1992). CrossRef
18.
Zurück zum Zitat D. Chicot, NjockM. Yetna, E. S. Puchi-Cabrera, A. Iost, M. H. Staia, G. Louis, G. Bouscarrat, and R. Aumaitre, “A contact area function for Berkovich nanoindentation: Application to hardness determination of a TiHfCN thin film,” Thin Solid Films 558, 259–266 (2014). CrossRef D. Chicot, NjockM. Yetna, E. S. Puchi-Cabrera, A. Iost, M. H. Staia, G. Louis, G. Bouscarrat, and R. Aumaitre, “A contact area function for Berkovich nanoindentation: Application to hardness determination of a TiHfCN thin film,” Thin Solid Films 558, 259–266 (2014). CrossRef
19.
Zurück zum Zitat M. Yetna Njock, D. Chicot, J. M. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, and A. Mejias, “A criterion to identify sinking-in and piling-up in indentation of materials,” Int. J. Mech. Sci. 90, 145–150 (2015). CrossRef M. Yetna Njock, D. Chicot, J. M. Ndjaka, J. Lesage, X. Decoopman, F. Roudet, and A. Mejias, “A criterion to identify sinking-in and piling-up in indentation of materials,” Int. J. Mech. Sci. 90, 145–150 (2015). CrossRef
20.
Zurück zum Zitat E. Hornbogen and U. Koster, Recrystallization of metallic materials, Ed. by F. Haessner and Dr. Riederer (Verlag, Stuttgart, 1978). E. Hornbogen and U. Koster, Recrystallization of metallic materials, Ed. by F. Haessner and Dr. Riederer (Verlag, Stuttgart, 1978).
21.
Zurück zum Zitat V. L. Niranjani, K. C. Hari Kumar, and V. Subramanya Sarma, “Development of high strength Al–Mg–Si AA6061 alloy through cold rolling and ageing,” Mater. Sci. Eng., A 515, 169–174 (2009). CrossRef V. L. Niranjani, K. C. Hari Kumar, and V. Subramanya Sarma, “Development of high strength Al–Mg–Si AA6061 alloy through cold rolling and ageing,” Mater. Sci. Eng., A 515, 169–174 (2009). CrossRef
22.
Zurück zum Zitat D. A. Lucca, K. Herrmann, and M. J. Klopfstein, “Nanoindentation: Measuring methods and applications,” CIRP Ann. Manuf. Technol. 803, 803–819 (2010). CrossRef D. A. Lucca, K. Herrmann, and M. J. Klopfstein, “Nanoindentation: Measuring methods and applications,” CIRP Ann. Manuf. Technol. 803, 803–819 (2010). CrossRef
23.
Zurück zum Zitat C. A. Fischer-Cripps, “Critical review of analysis and interpretation of nanoindentation test data,” Surf. Coat. Techol. 200, 4153–4165 (2006). CrossRef C. A. Fischer-Cripps, “Critical review of analysis and interpretation of nanoindentation test data,” Surf. Coat. Techol. 200, 4153–4165 (2006). CrossRef
24.
Zurück zum Zitat X. Li and B. Bhushan, “Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Surf. Coat. Technol. 30, 163–164 (2002). CrossRef X. Li and B. Bhushan, “Fatigue studies of nanoscale structures for MEMS/NEMS applications using nanoindentation techniques,” Surf. Coat. Technol. 30, 163–164 (2002). CrossRef
25.
Zurück zum Zitat M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, and A. R. Bushroa, “Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing,” Met. Mater. Int. 22, 1098–1107 (2016). CrossRef M. Mesbah, F. Fadaeifard, A. Karimzadeh, B. Nasiri-Tabrizi, A. Rafieerad, G. Faraji, and A. R. Bushroa, “Nano-mechanical properties and microstructure of UFG brass tubes processed by parallel tubular channel angular pressing,” Met. Mater. Int. 22, 1098–1107 (2016). CrossRef
26.
Zurück zum Zitat W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, 3–20 (2004). CrossRef W. C. Oliver and G. M. Pharr, “Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology,” J. Mater. Res. 19, 3–20 (2004). CrossRef
27.
Zurück zum Zitat J. L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-Manuel, Nanoindentation with a Surface Force Apparatus, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Ed. by M. Nastasi, D.M. Parkin, and H. Gleiter (Springer, Dordrecht, 1993). J. L. Loubet, M. Bauer, A. Tonck, S. Bec, and B. Gauthier-Manuel, Nanoindentation with a Surface Force Apparatus, in Mechanical Properties and Deformation Behavior of Materials Having Ultra-Fine Microstructures, Ed. by M. Nastasi, D.M. Parkin, and H. Gleiter (Springer, Dordrecht, 1993).
28.
Zurück zum Zitat D. Chicot, “Hardness length-scale factor to model nano-and micro-indentation size effects,” Mater. Sci. Eng., A 499, 454–461 (2009). CrossRef D. Chicot, “Hardness length-scale factor to model nano-and micro-indentation size effects,” Mater. Sci. Eng., A 499, 454–461 (2009). CrossRef
29.
Zurück zum Zitat L. Charleux, V. Keryvin, M. Nivard, J. P. Guin, J. C. Sanglebœuf, and Y. Yokoyama, “A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging,” Acta Mater. 70, 249–258 (2014). CrossRef L. Charleux, V. Keryvin, M. Nivard, J. P. Guin, J. C. Sanglebœuf, and Y. Yokoyama, “A method for measuring the contact area in instrumented indentation testing by tip scanning probe microscopy imaging,” Acta Mater. 70, 249–258 (2014). CrossRef
30.
Zurück zum Zitat J. Gong, H. Miao, and Z. Peng, “On the contact area for nanoindentation tests with berkovich indenter: case study on soda-lime glass,” Mater. Lett. 58, 1349–1353 (2004). CrossRef J. Gong, H. Miao, and Z. Peng, “On the contact area for nanoindentation tests with berkovich indenter: case study on soda-lime glass,” Mater. Lett. 58, 1349–1353 (2004). CrossRef
31.
Zurück zum Zitat T. Sawa, Correlation between Nanoindentation Test Result and Vickers Hardness, IMECO TC3, TC5 and TC22 Conf., Metrology in Modern Context (2010) 171–174. T. Sawa, Correlation between Nanoindentation Test Result and Vickers Hardness, IMECO TC3, TC5 and TC22 Conf., Metrology in Modern Context (2010) 171–174.
Metadaten
Titel
Nanoindentation Analysis of Friction Stir Welded 6061-T6 Al Alloy in As-Weld and Post Weld Heat Treatment
verfasst von
Firouz Fadaeifard
Mohamad Reza Pakmanesh
Morteza Shamanian Esfahani
Khamirul Amin Matori
Didier Chicot
Publikationsdatum
01.05.2019
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 5/2019
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X1905003X

Weitere Artikel der Ausgabe 5/2019

Physics of Metals and Metallography 5/2019 Zur Ausgabe