Skip to main content

2011 | OriginalPaper | Buchkapitel

6. Nanomaterials

verfasst von : Bradley D. Fahlman

Erschienen in: Materials Chemistry

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanotechnology is more than a passing fad. The synthesis of nanoscale materials is used to fine-tune the properties of any existing solid-state material, or design an entirely new material from the bottom-up to afford a desired set of properties. This chapter begins by discussing the increasingly relevant topic of nanotoxicity for various classes of nanomaterials. Structures, properties, applications and synthetic techniques for a variety of nanomaterials are described throughout this chapter, citing many precedents from the scientific literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Note: a sampling of some intriguing applications that are already possible using nanomaterials include: self-cleaning fabrics (via TiO2 nanoparticles), automobile clearcoats that prevent scratches (PPG nanoparticle-based coatings), car wash solutions that prevent dirt from adhering to a painted surface, bandages that kill bacteria, drug-release agents and time-release biocidal coatings, and tennis balls that bounce twice as long as conventional balls.
 
2
Only U.S.-based institutes/centers are listed here; for a more comprehensive list of worldwide nanotechnology efforts, see http://​sunsite.​nus.​sg/​MEMEX/​nanolink.​html, a comprehensive listing of nanorelated websites hosted by the University of Singapore.
 
4
By 2014, commercial products that incorporate nanomaterials will be worth an estimated $6 trillion, with an estimated annual global market of $2 billion. For instance, see: (a) Holman, M. W.; Lackner, D. I. The Nanotech Report, 4th ed., Lux Research: New Yorki, 2006. (b) Thayer, A. M. Chem. Eng. News 2007, 85, 29.
 
5
“Discussion draft: Addressing nanomaterials as an issue of global concern”, May 2009, Center for International Environmental Law (CIEL). Found online at:
 
6
(a) De Jong, W. H.; Borm, P. J. A. Int. J. Nanomed. 2008, 3, 133. (b) Donaldson K, Stone V, Tran CL, Kreyling W and Borm PJA. Nanotoxicology. Occup Environ Med 2004, 61, 727–728.
 
7
For details on the biological effects of CNTs, see: Liu, Z.; Cai, W.; He, L.; Nakayama, N.; Chen, K.; Sun, X.; Chen, X.; Dai, H. Nat. Nanotechnol. 2007, 2, 47, and references therein. The biological effects of dendritic polymers is described in Boas, U.; Heegaard, P. M. H. Chem. Soc. Rev. 2004, 33, 43, and references therein. Some websites that have information regarding the toxicological effects of nanostructures include: (a) http://​orise.​orau.​gov/​ihos/​Nanotechnology/​nanotech_​OSHrisks.​html; (b) http://​www.​cdc.​gov/​niosh/​topics/​nanotech; (c) http://​www.​bnl.​gov/​cfn; (d) http://​www.​ciel.​org/​ Publications/​CIEL_​NanoStudy_​May09.​pdf; (e) http://​www.​nsf.​gov/​pubs/​2007/​nsf07590/​nsf07590.​htm
 
8
One of the most recent sources of nanotoxicity data is from the European Union Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), Risk Assessment of Products of Nanotechnologies, Jan. 19, 2009. May be accessed online at:
http://​ec.​europa.​eu/​health/​ph_​risk/​committees/​04_​scenihr/​docs/​scenihr_​o_​023.​pdf. The main website of the SCENIHR, that houses other reports, such as the dangers associated with nanomaterials for cosmetics applications, may be found at: http://​ec.​europa.​eu/​health/​ph_​risk/​committees/​04_​scenihr/​04_​scenihr_​en.​htm
 
9
Cross, S. E.; Innes, B.; Roberts, M. S.; Tsuzuki, T.; Robertson, T. A.; McCormich, P. Skin Pharmacol. Physiol. 2007, 20, 148.
 
10
Zhu, S.; Oberdorster, E.; Haasch, M. L. Marine Environ. Res. 2006, 62, S5, and references therein.
 
11
Tinkle, S. S, Antonini, J. M., Rich, B. A., Roberts, J. R., Salmen, R., DePree, K., Adkijns, E. J. Environ. Health Perspect. 2003, 111, 1202.
 
12
Holsapple, M. P.; Farland, W. H.; Landry, T. D.; Monteiro-Riviere, N. A.; Carter, J. M.; Walker, N. J.; Thomas, K. V. Toxicol. Sci. 2005, 88, 12.
 
13
For instance, see: Yang, X.; Fan, C.; HS, Z. Toxicol. In Vitro 2002, 16, 41, and references therein.
 
14
Sayes, C. M.; Fortner, J. D.; Guo, W.; Lyon, D.; Boyd, A. M.; Ausman, K. D.; Tao, Y. J.; Sitharaman, B.; Wilson, L. J.; Hughes, J. B.; West, J. L.; Colvin, V. L. Nano Lett. 2004, 4, 1881, and references therein.
 
15
(a) Rouse, J. G.; Yang, J.; Ryman-Rasmussen, J. P.; Barron, A. R.; Monteiro-Riviere, N. A. Nano Lett. 2007, 7, 155. (b) Rouse, J. G.; Yang, J.; Barron, A. R.; Monteiro-Riviere, N. A. Toxicol. In Vitro 2006, 20, 1313. (c) Yang, J.; Barron, A. R. Chem. Commun. 2004, 2884 (Article describing the synthesis of amino-acid functionalized fullerenes).
 
16
(a) Blundell, G.; Henderson, W. J.; Price, E. W. Ann. Trop. Med.
Parasitol. 1989, 83, 381–385. (b) Corachan, M.; Tura, J. M.; Campo, E.; Soley, M.; Traveria, A. Trop. Geogr. Med. 1988, 40, 359–364. (c) Tinkle, S. S.; Antonini, J. M.; Rich, B. A.; Roberts, J. R.; Salmen, R.; DePree, K.; Adkins, E. J. EnViron. Health Perspect. 2003, 111, 1202–1208.
 
17
As reported in the European Union’s Scientific Committee on Consumer Products (SCCP), Preliminary Opinion on Safety of Nanomaterials in Cosmetic Products, June 19, 2007. May be accessed online at: http://​ec.​europa.​eu/​health/​ph_​risk/​committees/​04_​sccp/​docs/​sccp_​o_​099.​pdf
Note: Nanosized particulates are also present as micron-sized aggregates.
 
18
Ryman-Rasmussen, J. P., Riviere, J. E., Monteiro-Riviere, N. A. Toxicol. Sci. 2006, 91, 159.
 
19
Lademann, J.; Weigmann, H.; Rickmeyer, C.; Barthelmes, H.; Schaefer, H.; Mueller, G.; Sterry, W. Skin Pharmacol Appl Skin Physiol 1999, 12, 247.
 
20
Kreilgaard, M. Adv Drug Deliv Rev 2002, 54, S77.
 
21
Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A. Toxicol. Sci. 2006, 91, 159.
 
22
Menon, G. K.; Elias, P. M. Skin Pharmacol 1997, 10, 235.
 
23
Baroli, B.; Ennas, M. G.; Loffredo, F.; Isola, M.; Pinna, R.; Lopez-Quintela, M. A. J. Invest. Dermatol. 2007, 127, 1701.
 
24
Monteiro-Riviere, N. A.; Nemanich, R. A.; Inman, A. O.; Wang, Y. Y.; Riviere, J. E. Toxicol Lett 2005, 155, 377.
 
25
Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR), March 10, 2006. May be accessed online at:
 
26
(a) Kittelson, D. B.; Watts, W. F.; Johnson, J. P. On-Road Nanoparticle Measurements, 8th International Conference on Environmental Science and Technology, Lemnos, Greece, September, 2003. (b) Kittelson, D. B.; Watts, W. F.; Johnson, J. P.; Zarling, D.; Schauer, J.; Kasper, A.; Baltensperger, U.; Burtscher, H. Gasoline vehicle exhaust particle sampling study, Proc. U. S. Department of Energy 9th Diesel Engine Emissions Reduction Conference, Newport, RI, 2003.
 
27
Möhlmann C. German Activity on the Ultra-fine Particles in the Workplaces. First International Symposium on Occupational Health Implications of Nanomaterials 12-14 October 2004 Palace Hotel, Buxton, Derbyshire, UK.
 
28
(a) Oberdörster G.; Sharp, Z.; Atudorei, V.; Elder, A. C. P.; Gelein, R.; Lunts, A.; Kreyling, W.; Cox, C. J Toxicol Environ Health 2002, 65A, 1531. (b) Kreyling, W. G.; Semmler, M.; Erbe F.; Mayer, P.; Takenaka, S.; Schulz, H.; Oberdörster, G.; Ziesenis, A. J Toxicol Environ Health 2002, 65A, 1513. (c) MacNee, W.; Li, X. Y.; Gilmour, P.; Donaldson K. Inhal Toxicol 2000, 12, 233. (d) Semmler-Behnke, M.; Fertsch, S.; Schmid, O.; Wenk, A.; Kreyling, W. G. Proceedings of Euro Nanoforum – Nanotechnology in Industrial Applications 2007, 102. Available online from: http://​www.​euronanoforum200​7.​de/​download/​Proceedings ENF2007.pdf.
 
29
For example, see: (a) Hillyer, J. F.; Albrecht, R. M. J Pharm Sci 2001, 90, 1927. (b) Kim, Y. S.; Kim, J. S.; Cho, H. S.; Rha, D. S.; Kim, J. M.; Park, J. D. Inhal Toxicol 2008, 20, 575.
 
30
For instance, see: (a) Semmler-Behnke, M.; Kreyling, W. G.; Lipka, J.; Fertsch, S.; Wenk, A.; Takenaka, S. Small 2008, 71, 616. (b) Takenaka, S.; Karg, E.; Kreyling, W. G.; Lentner, B.; Möller, W.; Behnke-Semmler, M. Inhal Toxicol 2006, 18, 733.
 
31
Kwon, J. T.; Hwang, S. K.; Jin, H.; Kim, D. S.; Minai-Tehrani, A.; Yoon, H. J. J Occup Health 2008, 50, 1.
 
32
For example, see: Yu, L. E.; Yung, L. Y.; Ong, C. N.; Tan, Y. L.; Balasubramaniam, S.; Hartono, D. Nanotoxicology 2007, 1, 235.
 
33
Semmler, M.; Seitz, J.; Erbe, F.; Mayer, P.; Heyder, J.; Oberörster, G. Inhal Toxicol 2004, 16, 453.
 
34
Crüts, B.; Van Etten, L.; Törnqvist, H.; Blomberg, A.; Sandström, T.; Mills, N. L. Part Fibre Toxicol 2008, 5, 4.
 
35
(a) Takagi, A.; Hirose, A.; Nishimura, T.; Fukumori, N.; Ogata, A.; Ohashi, N.; Kitajima, S.; Kanno, J. J. Toxicol. Sci. 2008, 33, 105. (b) Poland, C. A.; Duffin, R.; Kinloch, I.; Maynard, A.; Wallace, W. A. H.; Seaton, A.; Stone, V.; Brown, S.; MacNee, W.; Donaldson, K. Nature Nanotechnol. 2008, 3, 423.
 
36
Pacurari, M.; Yin, X. J.; Zhao, J.; Ding, M.; Leonard, S. S.; Schwegler-Berry, D. Environ Health Perspect 2008, 116, 1211.
 
37
Magrez, A.; Kasas, S.; Salicio, V.; Pasquier, N.; Seo, J. W.; Celio, M.; Catsicas, S.; Schwaller, B.; Forro, L. Nano Lett. 2006, 6, 1121.
 
38
Renwick, L. C.; Brown, D.; Clouter, A.; Donaldson, K. Occup Environ Med 2004, 61, 442.
 
39
Arnaud, C. H. Chem. Eng. News 2010, 88, 32.
 
40
Wilson, M. R.; Lightbody J. H.; Donaldson, K.; Sales, J.; Stone V. Toxicol Appl Pharmacol 2002, 184, 172.
 
41
(a) Jordan, A.; Scholz, R.; Wust, P.; Schirra, H.; Thomas, S.; Schmidt, H.; Felix, R. J. Magn. Magn. Mater. 1999, 194, 185. (b) Zhang, Y., Kohler, N., and Zhang, M. Biomaterials 2002, 23, 1553.
 
42
For instance, see: (a) Rouse, J. G.; Yang, J.; Barron, A. R.; and Monteiro-Riviere, N. A. Toxicol. In Vitro. 2006, 8, 1313. (b) Zhang, L. W.; Zeng, L.; Barron, A. R.; Monteiro-Riviere, N. A. Int. J. Toxicol. 2007, 26, 103.
 
43
For example: (a) Michalet, X.; Pinaud, F. F.; Bentolila; L. A.; Tsay, J. M.; Doose, S.; Li, J. J.; Sundaresan, G.; Wu, A. M.; Gambhir, S. S.; Weiss, S. Science 2005, 307, 538. (b) Derfus, A. M.; Chan, W. C. W.; Bhatia, S. Nano Lett. 2004, 4, 11. (c) Gao, X.; Cui, Y.; Levenson, R. M.; Chung, L. W.; Nie, S. Nat. Biotechnol. 2004, 22, 969. (d) Xing, Y.; Chaudry, Q.; Shen, C.; Kong, K. Y.; Zhau, H. E.; Chung, L. W.; Petros, J. A.; O’Regan, R. M.; Yezhelyev, M. V.; Simons, J. W. Nat. Protoc. 2007, 2, 1152.
 
44
For instance, see: (a) Duan, H.; Nie, S. J. Am. Chem. Soc. 2007, 129, 3333. (b) Jaiswal, J. K.; Mattoussi, H.; Mauro, J. M.; Simon, S. M. Nat. Biotechnol. 2003, 21, 47. (c) Zhang, L. W.; Yu, W. W.; Colvin, V. L.; Monteiro-Riviere, N. A. Toxicol. Appl. Pharmacol. 2008, 228, 200. (d) Ryman-Rasmussen, J. P.; Riviere, J. E.; Monteiro-Riviere, N. A. J. Invest. Dermatol. 2007, 127, 143.
 
45
Zhang, L. W.; Monteiro-Riviere, N. A. Toxicol. Sci. 2009, 110, 138.
 
46
Biswas P.; Wu, C. -Y. J. Air & Waste Manage. Assoc. 2005, 55, 708.
 
47
USEPA Nanotechnology White Paper, Science Policy Council, Feb. 2007. May be accessed online at: http://​www.​epa.​gov/​OSA/​pdfs/​nanotech/​epa-nanotechnology-whitepaper-0207.​pdf
 
48
Zhang et. al. Chemosphere, 2007, 67, 160.
 
49
Takeda et al. J. Health Sci., 2009, 55, 1.
 
50
For a thorough review of the genotoxicity of nanoparticles, see: Gonzalez, L.; Lison, D.; Kirsch-Volders, M. Nanotoxicology 2008, 2, 252.
 
51
For instance, see: Song, Y.; Li, X.; Du, X. Eur. Respir. J. 2009, 34, 559.
 
52
Lam, C. W.; James, J. T.; McCluskey, R.; Hunter, R. L. Toxicol. Sci. 2004, 77, 126.
 
53
For instance, see: Trouiller, B.; Reliene, R.; Westbrook, A.; Solaimani, P.; Schiestl, R. H. Cancer Res. 2009, 69, 8784.
 
54
Wick, P.; Malek, A.; Manser, P.; Meili, D.; Maeder-Althaus, X.; Diener, L.; Diener, P. A.; Zisch, A.; Krug, H. F.; von Mandach, U. Environ. Health Perspect. 2009, ASAP.
 
55
Bhabra, G.; Sood, A.; Fisher, B.; Cartwright, L.; Saunders, M.; Evans, W. H.; Surprenant, A.; Lopez-Castejon, G.; Mann, S.; Davis, S. A.; Hails, L. A.; Ingham, E.; Verkade, P.; Lane, J.; Heesom, K.; Newson, R.; Case, C. P. Nature Nanotechnol. 2009, 4, 876.
 
56
Tervonen, T.; Linkov, I.; Figueira, J. R.; Steevens, J.; Chappell, M.; Merad, M. J. Nanopart. Res. 2009, 11, 757.
 
57
The Virtual Journal of Nanotechnology Environment, Health and Safety is an electronic knowledge base for accessing peer-reviewed publications related to the health and environmental risk issues in nanotechnology. It may be accessed at: http://​cohesion.​rice.​edu/​centersandinst/​icon/​virtualjournal.​cfm. For a comprehensive roadmap for research strategies needed to evaluate the safety of nanomaterials, see: Holsapple, M. P.; Farland, W. H.; Landry, T. D.; Monteiro-Riviere, N. A.; Carter, J. M.; Walker, N. J.; Thomas, K. V. Toxicol. Sci. 2005, 88, 12
 
59
For example, commercial products such as iPod Nano, and Hollywood movies (e.g., “nanomites” in G.I. Joe, “nanobots” in iRobot, etc.).
 
60
Taniguchi, N. On the Basic Concept of NanoTechnology. Proc. ICPE 1974.
 
62
For example, see Pishko, V. V.; Gnatchenko, S. L.; Tsapenko, V. V.; Kodama, R. H.; Makhlouf, S. A. J. Appl. Phys. 2003, 93, 7382.
 
63
For a recent review of nanoparticle melting models, see: Nanda, K. K. PRAMANA J. Phys. 2009, 72, 617 (may be accessed online at: http://​www.​ias.​ac.​in/​pramana/​v72/p617/fulltext.pdf). Also see: Neyts, E. C.; Bogaerts, A. J. Phys. Chem. C 2009, 113, 2771.
 
64
Tomalia, D. A. J. Nanopart. Res. 2009, 11, 1251: a recent report by Tomalia that attempts to define a systematic framework for the classification of nanomaterials, in terms of critical nanoscale design parameters (CNDPs) – their size, shape, surface chemistry, flexibility, and elemental composition. The self-assembly of nanosized building blocks to form hard-hard, hard-soft, and soft-soft nanocompounds is described as being analogous to molecular compound formation from discrete atoms. For an earlier description of CNDPs, pertaining to varying generations of startburst dendrimers, see: Tomalia, D. A. Angew. Chem. Int. Ed. Eng. 1990, 29, 138. Further progress toward a “nanoperiodic table” was reported by Percec and coworkers, who describe the prediction of tertiary dendrimer structures (“soft-soft” nanocompounds) from a variety of ABx self-assembling dendrons – Rosen, B. M.; Wilson, D. A.; Wilson, C. J.; Peterca, M.; Won, B. C.; Huang, C.; Lipski, L. R.; Zeng, X.; Ungar, G.; Heiney, P. A.; Percec, V. J. Am. Chem. Soc. 2009, 131, 17500.
 
65
(a) Lewis, J. Chem. Br. 1988, 24, 795. (b) Deeming, A. J. Adv. Organomet. Chem. 1986, 26, 1.
 
66
Shown from left to right are (a) Pd nanoclusters supported on hydroxyapatite: Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 10657. (b) Copper nanoclusters: Williams, G. L.; Vohs, J. K.; Brege, J. J.; Fahlman, B. D. J. Chem. Ed. 2005, 82, 771.
 
67
Huang, J.; Kunitake, T.; Onoue, S.-Y. Chem. Commun. 2004, 1008.
 
68
Scher, E. C.; Manna, L.; Alivisatos, A. P. Philos. Trans. R. Soc. Lond. A. 2003, 361, 241.
 
69
Shown is a Ti/O/C nanopowder with individual nanosized grains: Leconte, Y.; Maskrot, H.; Herlin-Boime, N.; Porterat, D.; Reynaud, C.; Gierlotka, S.; Swiderska-Sroda, A.; Vicens, J. J. Phys. Chem. B 2006, 110, 158.
 
70
Shown are submicron particulates (with some nanoparticles also present) of aluminum oxide: Williams, G. L.; Vohs, J. K.; Brege, J. J.; Fahlman, B. D. J. Chem. Ed. 2005, 82, 771.
 
71
For an excellent review of transition metal nanocluster formation and nomenclature, as well as the difference between colloids and nanoclusters, see Finke, R. G. Transition Metal Nanoclusters in Metal Nanoparticles: Synthesis, Characterization, and Applications, Dekker: New York, 2002.
 
72
For example, there is a 500% rate difference for the photoreduction of CO2 using 10 different samples of Pd n colloids: Wilner, I.; Mendler, D. J. Am. Chem. Soc. 1989, 111, 1330. Also, see Kohler, J. U.; Bradley, J. S. Catal. Lett. 1997, 45, 203, wherein they describe a 670% variation in the rate of hydrogenation with PVP-protected Pt n colloids (due to a widely dispersed composition, with varying numbers of surface Cl groups).
 
73
Though quantum dots are typically thought of as 0-D nanostructures, quantum confinement effects are also exhibited in 1-D nanowires and nanorods. Buhro and coworkers have studied the effect on both size and shape on quantum confinement (Yu, H.; Li, J.; Loomis, R. A.; Wang, L.-W.; Buhro, W. E. Nature Mater. 2003, 2, 517). Their work provides empirical data to back up the theoretical order of increasing quantum confinement effects: dots (3-D confinement) > rods > wires (2-D confinement) > wells (1-D confinement). For an example of an interesting nanostructure comprised of both a nanorod and nanodot, see: Mokari, T.; Sztrum, C. G.; Salant, A.; Rabani, E.; Banin, U. Nature Mater. 2005, 4, 855.
 
74
For example, see: Dinu, M.; Rapaport, R.; Chen, G.; Stuart, H. R.; Giles, R. Bell Labs Techn. J. 2005, 10, 215.
 
75
Note: It should be noted that while nanoparticulate films are generally transparent to light due to minimal scattering, films that contain nanoporous structures may not be optically transparent due to significant light scattering from interconnected/agglomerated pores.
 
76
Compton, D.; Comish, L.; van der Lingen, E. Gold Bull. 2003, 36, 10.
 
77
For a thorough review of surface plasmon resonance, see Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. J. Phys. Chem. B 2003, 107, 668.
 
78
Note: Faraday was the first to assert that the red color of gold nanoparticle solutions was due to the interaction of light with particulates of varying morphologies. Mie explained the red color in 1908 by solving Maxwell’s equations based on spheres with sizes comparable to the wavelength of light; however, Raleigh solved the problem for spheres smaller than wavelengths of light. For more details on the interaction of light with metallic nanoparticles and the influence of inter-particle agglomeration, see: Ghosh, S. K.; Pal, T. Chem. Rev. 2007 , 107, 4797.
 
79
Haes, A. J.; Stuart, D. A.; Nie, S.; Duyne, R. P. V. J. Fluoresc. 2004, 14, 355.
 
80
For instance, one is able to vary the plasmonic properties of Au nanorods by incorporating Cu: Henkel, A.; Jakab, A.; Brunklaus, G.; Sonnichsen, C. J. Phys. Chem. C 2009, 113, 2200.
 
82
For a nice review of metal nanoparticles and their electronic properties, see: (a) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J. Chem. Soc. Rev. 2000, 29, 27. (b) Eustis, S.; El-Sayed, A.; Chem. Soc. Rev. 2006, 35, 209.
 
83
Busani, R.; Folker, M.; Cheshnovsky, O. Phys. Rev. Lett. 1998, 81, 3836.
 
84
Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000, 29, 27.
 
85
For more information/precedents on quantum confinement effects for metallic nanoclusters, see: (a) Rao, C. N. R.; Kulkarni, G. U.; Thomas, P. J.; Edwards, P. P. Chem. Soc. Rev. 2000, 29, 27. (b) Mohamed, M. B.; Volkov, V.; Link, S.; El-Sayed, M. A. Chem. Phys. Lett. 2000, 317, 517. (c) Huang, T.; Murray, R. W. J. Phys. Chem. B 2001, 105, 12498. (d) Link, S.; Beeby, A.; FitzGerald, S.; El-Sayed, M. A.; Schaaff, T. G.; Whetten, R. L. J. Phys. Chem. B 2002, 106, 3410. (e) Empedocles, S.; Bawendi, M. Acc. Chem. Res. 1999, 32, 389. (f) El-Sayed, M. A. Acc. Chem. Res. 2001, 34, 257. (g) Zheng, J.; Petty, J. T.; Dickson, R. M. J. Am. Chem. Soc. 2003, 125, 7780. (h) Schaaff, T. G.; Shafigullin, M. N.; Khoury, J. T.; Vezmar, I.; Whetten, R. L.; Cullen, W. G.; First, P. N.; Gutierrez-Wing, C.; Ascensio, J.; Jose-Yacaman, M. J. J. Phys. Chem. B 1997, 101, 7885.
 
86
(a) Ge, J.; Hu, Y.; Diasini, M.; Beyermann, W. P.; Yin, Y. Angew. Chem. Int. Ed. 2007, 46, 4342. (b) Esteban-Cubillo, A.; Pina-Zapardiel, R.; Moya, J. S.; Pecharroman, C. J. Nanop. Res. 2009, ASAP. (c) Yang, C.; Xing, J.; Guan, Y.; Liu, J.; Liu, H. J. Alloys Compounds 2004, 385, 283. For more details regarding superparamagnetism, see:
 
87
Current areal densities of the highest-capacity magnetic storage hard drives are >400 Gb.in2, corresponding to bit areas <1500 nm2, with the dimensions of one bit equal to ca. 80 nm x 20 nm; each bit is comprised of 50–100 grains with an average diameter of <10 nm. However, the use of nanomaterials with much smaller dimensions are predicted to yield bit cells with dimensions as small as 6 nm x 6 nm, corresponding to an astounding 15–20 Tb.in2!
For more details on next-generation materials for magnetic storage devices, see: Bandic, Z. Z.; Litvinov, D.; Rooks, M. MRS Bull. 2008, 33, 831.
 
88
Ferrofluids are a class of important ternary ferrite spinels are of the formula MFe2O4 (M = Co, Mn, Ni), synthesized as nano-sized particulates dispersed in a solvent. These solutions have applications that span electronic devices (e.g., forming seals around spinning drive shafts in computer hard drives; heat conduction in speaker tweeters) to medicine (hyperthermia-based cancer treatment – i.e., directing nanoparticles to a cancerous area and raising their temperature via an external magnetic field). For a review of ferrofluids, see: Odenbach, S. J. Phys.: Condens. Matter 2004, 16, R1135.
 
89
Kroto, H. W.; Heath, J. R.; O’Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
 
90
The irradiation of C60 with light in the presence of O2 causes the formation of reactive singlet oxygen (1O2); for example, see Jensen, A. W.; Daniels, C. J. Org. Chem. 2003, 68, 207.
 
91
Note: Smalley and Curl named this structure after Buckminster Fuller, for his discovery of geodesic domes.
 
92
Sitharaman, B.; Bolskar, R. D.; Rusakova, I.; Wilson, L. J. Nano Lett. 2004, 4, 2373.
 
93
Tanigaki, K.; Ebbesen, T. W.; Saito, S.; Mizuki, J.; Tsai, J. S.; Kubo, Y.; Kuroshima, S. Nature 1991, 352, 222.
 
94
Zakharian, T. Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B. E.; Knight, V.; Wilson, L. J. J. Am. Chem. Soc. 2005, 127, 12508.
 
95
Note: the difference between nanocars and nanotrucks has been described as the former is only able to transport itself, whereas a nanotruck is able to accommodate a load.
 
96
(a) Shirai, Y.; Osgood, A. J.; Zhao, Y.; Kelly, K. F.; Tour, J. M. Nano Lett. 2005, 5, 2330. (b) Shirai, Y.; Osgood, A. J.; Zhao, Y.; Yao, Y.; Saudan, L.; Yang, H.; Chiu, Y.-H.; Alemany, L. B.; Sasaki, T.; Morin, J.-F.; Guerrero, J. M.; Kelly, K. F.; Tour, J. M. J. Am. Chem. Soc. 2006, 126, 4854.
 
97
For an interesting book on the history of other serendipitous discoveries in science, see Roberts, R. M. Serendipity: Accidental Discoveries in Science, Wiley: New York, 1989. Note: Exxon first obtained mass spectra of fullerenes during their analysis of coke build-up on a reforming catalyst. However, subsequent work by Smalley, Curl and Kroto yielded larger concentrations of gaseous carbon clusters, of which mass spectra more clearly showed the existence of stable, even-numbered clusters with the intensity of the C60 species being 20% greater than neighbors (Figure 6.24). For more information, see: Smalley, R. E. Discovering the Fullerenes, Nobel Lecture, Dec. 1996, may be accessed online at: http://​nobelprize.​org/​nobel_​prizes/​chemistry/​laureates/​1996/​smalley-lecture.​pdf
 
98
Kroto, H. Nanotechnology 1992, 3, 111. A lecture given in the same title is also available as an audio file from: http://​www.​learnoutloud.​com/​Catalog/​Science/​Scientists/​C60-The-Celestial-Sphere-That-Fell-to-Earth/​15201
 
99
For instance, see: (a) Morales, A. M.; Lieber, C. M. Science 1998, 279, 208. (b) Itina, T. E.; Sentis, M.; Marine, V. Appl. Surf. Sci. 2006, 252, 4433. (c) Saitow, K. J. Phys. Chem. B 2005, 109, 3731. (d) Marine, W.; Patrone, L.; Lukyanchuk, B.; Sentis, M. Appl. Surf. Sci. 2000, 154–155, 345. (e) Ozerov, I.; Bulgakov, A. V.; Nelson, D. K.; Castell, R.; Marine, W. Appl. Surf. Sci. 2005, 247, 677.
 
100
Manolopoulos, D. E. Chem. Phys. Lett. 1992, 192, 330.
 
101
(a) Kriitschmer. W.; Lamb. L. D.; Fostiropoulos, K.; Huffman. D. R. Nature 1990, 347, 354. (b) Kratschmer, W.; Fostiropoulos, K.; Huffman, D. R. Chem. Phys. Lett. 1990, 170, 167. (c) http://​www.​mercorp.​com/​mercorp/​products1.​htm; a company that manages rights to fullerene production technology.
 
102
Ewels, C. P. Nano Lett. 2006, 6, 890.
 
103
Smalley, R. E. Acc. Chem. Res. 1992, 25, 98.
 
104
Heath, J. R. ACS Symp. Ser. 1992, 481, 1.
 
105
(a) V. Z. Mordkovich, V. Z.; Umnov, A. G.; Inoshita, T.; Endo, M. Carbon 1999, 37, 1855. (b) Mordkovich, V. Z. Chem. Mater. 2000, 12, 2813.
 
106
Sygula, A.; Rabideau, P. W. J. Am. Chem. Soc. 1999, 121, 7800.
 
107
(a) Komatsu, K.; Murata, M.; Murata, Y. Science 2005, 307, 238. (b) Lopez-Gejo, J.; Marti, A. A.; Ruzzi, M.; Jockusch, S.; Komatsu, K.; Tanabe, F.; Murata, Y.; Turro, N. J. J. Am. Chem. Soc. 2007, 129, 14554.
 
108
Gluch, K.; Feil, S.; Matt-Laubner, S. M.; Echt, O.; Scheier, P.; Mark, T. D. J. Phys. Chem. A 2004, 108, 6990.
 
109
Wang, C.-R.; Shi, Z.-Q.; Wan, L.-J.; Lu, X.; Dunsch, L.; Shu, C.-Y.; Tang, Y.-L.; Shinohara, H. J. Am. Chem. Soc., 2006, 128, 6605.
 
110
Gan, L.-H.; Wang, C.-R. J. Phys. Chem. A 2005, 109, 3980.
 
111
Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, M. S. Pure Appl. Chem. 2006, 78, 1667.
 
112
For example, see: (a) Shimada, M.; Azuma, Y.; Okuyama, K.; Hayashi, Y.; Tanabe, E. Jpn. J. Appl. Phys. 2006, 45, 328. (b) http://​www.​kona.​or.​jp/​search/​25_​039.​pdf
 
113
Reproduced with permission from Saunders, W. A.; Sercel, P. C.; Lee, R. B.; Atwater, H. A.; Vahala, K. J.; Flagan, R. C.; Escorcia-Aparcio, E. J. Appl. Phys. Lett. 1993, 63, 1549. Copyright 1993 American Institute of Physics.
 
114
Reproduced with permission from Majima, T.; Miyahara, T.; Haneda, K.; Ishii, T.; Takami, M. Jpn. J. Appl. Phys. 1994, 33, 4759. Copyright 1994 The Japan Society of Applied Physics.
 
115
Reproduced with permission from Ayers, T. M.; Fye, J. L.; Li, Q.; Duncan, M. A. J. Cluster Sci. 2003, 14, 97. Copyright 2003 Springer Science and Business Media.
 
116
Reproduced with permission from Yamamoto, T.; Mazumder, J. Nanostruct. Mater. 1996, 7, 305. Copyright 1996 Elsevier B.V.
 
117
Cross-section illustration of an inert-gas evaporation system. Shown are an inconel pipe (1), a crucible containing the precursor (2), tube furnace (3), evaporation zone (4), and cap-free (5) or gas-return cap (6) inert-gas diluter configurations to introduce cooling carrier gas to control the size of the nanoparticles. Reproduced with permission from Wegner, K.; Walker, B.; Tsantilis, S.; Pratsinis, S. E. ChemEng Sci. 2002, 57, 1753. Copyright 2002 Elsevier B.V.
 
118
Schematic of an electrospray system. In order to prevent droplet explosion during evaporation of aerosol droplets, the highly charged aerosol is passed through a radioactive neutralizer before evaporation occurs. Reproduced with permission from Chen, X.; Hu, X.; Feng, J. Nanostruct. Mater. 1995, 6, 309. Copyright 1995 Elsevier B.V.
 
119
Schematic of the development of nanoparticulate size and microstructure. TEM images illustrate the TiO2 nanoparticle at reactor temperatures of (a) 800°C, (b) 1100°C, and (c) 1300°C. Reproduced with permission from Ahonen, P. P.; Joutsensaari, J.; Richard, O. J. Aerosol Sci. 2001, 32, 615. Copyright 2001 Elsevier B.V.
 
120
Bapat, A.; Gatti, M.; Ding, Y. -P.; Campbell, S. A.; Kortshagen, U. J. Phys. D.: Appl. Phys. 2007, 40, 2247.
 
121
Vemury, S.; Pratsinis, S. E.; Kibbey, L. J. Mater. Res. 1997, 12, 1031.
 
122
For example, see: (a) Shoutian, L.; Igor, N.; Germanenko, N.; El-Shall, M. S. J. Cluster Sci. 1999, 10, 533. (b) Ayers, T. M.; Fye, J. L.; Li, Q.; Duncan, M. A. J. Cluster Sci. 2003, 14, 97. (c) El-Shall, M. S.; Si, S. T.; Graiver, D.; Pernisz, U. Nanotech ACS Symp. Series 1996, 622, 79.
 
123
(a) Belouet, C. Appl. Surf. Sci. 1996, 96-98, 630. (b) http://​www.​pcgg.​de/​download/​publication4.​pdf
 
124
Ahonen, P. P.; Joutsensaari, J.; Richard O. J. Aerosol Sci. 2001, 32, 615.
 
125
For instance, see: (a) Lee, H.; Habas, S. E.; Kweskin, S.; Butcher, D.; Somorjai, G. A.; Yang, P. Angew. Chem. Int. Ed. 2006, 45, 7824, and references therein. (b) Ahmadi, T. S.; Wang, Z. L.; Green, T. C.; Henglein, A.; El-Sayed, M. A. Science 1996, 272, 1924.
 
126
Glaspell, G.; Abdelsayed, V.; Saoud, K. M.; El-Shall, M. S. Pure Appl. Chem. 2006, 78, 1667.
 
127
(a) Yonezawa, T.; Onoue, S.-Y.; Kimizuka, N. Langmuir 2000, 16, 5218. (b) Yonezawa, T.; Onoue, S.-Y.; Kimizuka, N. Chem. Lett. 2002, 528.
 
128
Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem. Res. 2001, 34, 181, and references therein. The first precedent for the use of poly(propylene imine) (PPI) dendrimers is: Floriano, P. N.; Noble, C. O.; Schoonmaker, J. M.; Poliakoff, E. D.; McCarley, R. L. J. Am. Chem. Soc. 2001, 123, 10545. This also contains many useful references for early precedents for metal@ PAMAM nanocomposites.
 
129
For an example of trimetallic nanoparticle synthesis (using a nondendritic host), see: Henglein, A. J. Phys. Chem. B 2000, 104, 6683.
 
130
Schaak, R. E.; Sra, A. K.; Leonard, B. M.; Cable, R. E.; Bauer, J. C.; Han, Y.-F.; Means, J.; Teizer, W.; Vasquez, Y.; Funck, E. S. J. Am. Chem. Soc. 2005, 127, 3506.
 
131
(a) Kim, C.; Lee, H. Catalysis Commun. 2009, 10, 1305. (b) Siekkinen, A. R.; McLellan, J. M.; Chen, J.; Xia, Y. Chem. Phys. Lett. 2006, 432, 491. (c) Patel, K.; Kapoor, S.; Dave, D. P.; Mukherjee, T. Res. Chem. Intermed. 2006, 32, 103. (d) Mallik, K.; Mandal, M.; Pradhan, N.; Pal, T. Nano Lett. 2001, 1, 319. (e) Tsuji, M.; Matsuo, R.; Jiang, P.; Miyamae, N.; Hikino, S.; Kumagae, H.; Sozana, K.; Kamarudin, N.; Tang, X. -L. Cryst. Growth Des. 2008, 8, 2528.
 
132
Kim, J. -H.; Bryan, W. W.; Lee, T. R. Langmuir 2008, 24, 11147, and references therein.
 
133
Chen, L.; Zhang, D.; Chen, J.; Zhou, H.; Wan, H. Mater. Sci. Engin. A 2006, 415, 156, and references therein.
 
134
For example, see: (a) Saleh, N.; Sarbu, T.; Sirk, K.; Lowry, G. V.; Matyjaszewski, K.; Tilton, R. D. Langmuir 2005, 21, 9873. (b) Herrera, A. P.; Resto, O.; Briano, J. G.; Rinaldi, C. Nanotechnol. 2005, 16, S618.
 
135
Knecht, M. R.; Garcia-Martinez, J. C.; Crooks, R. M. Langmuir 2005, 21, 11981.
 
136
(a) Garcia-Martinez, J. C.; Crooks, R. M. J. Am. Chem. Soc. 2004, 126, 16170–16178. (b) Garcia-Martinez, J. C.; Scott, R. W. J.; Crooks, R. M. J. Am. Chem. Soc. 2003, 125, 11190–11191. (c) Kim, Y.-G.; Garcia-Martinez, J. C.; Crooks, R. M. Langmuir 2005, 21, 5485–5491.
 
137
Finke, R. G. in Metal Nanoparticles: Synthesis, Characterization, and Applications, Feldheim, D. L.; Foss, C. A. ed., Marcel-Dekker: New York, 2002.
 
138
For instance, see: (a) Nayak, R.; Galsworthy, J.; Dobson, P.; Hutchison, J. J. Mater. Res. 1998, 3, 905ff. (b) Trindade, T. et al. Chem. Mater. 2001, 13, 3843.
 
139
Murray, C. B.; Norris, D. J.; Bawendi, M. G. J. Am. Chem. Soc. 1993, 115, 8706.
 
140
Also known as ‘coarsening’. For more information, see: Ratke, L.; Voorhees, P. W. Growth and Coarsening: Ostwald Ripening in Material Processing (Engineering Materials), Springer: New York, 2002.
 
141
For a review of polymer brush syntheses via surface-initiated controlled radical polymerization, see: Barbey, R.; Lavanant, L.; Paripovic, D.; Schuwer, N.; Sugnaux, C.; Tugulu, S.; Klok, H. -A. Chem. Rev. 2009, 109, 5437.
 
142
For a review of gold nanoshells and applications, see: (a) Bardhan, R.; Chen, W.; Perez-Torres, C.; Bartels, M.; Huschka, R. M.; Zhao, L.; Morosan, E.; Pautler, R.; Joshi, A.; Halas, N. J. Adv. Func. Mater. 2009, 19, 3901. (b) Barhoumi, A.; Huschka, R. M.; Bardhan, R.; Knight, M. W.; Halas, N. J. Chem. Phys. Lett. 2009, 482, 171. (c) Lal, S.; Clare, S. E.; Halas, N. J. Acc. Chem. Res. 2008, 41, 1842. (d) Westcott, S.; Oldenburg, S.; Lee, T. R.; Halas, N. J. Langmuir, 1998, 14, 5396 (& 7378).
 
143
(a) Kamata, K.; Lu, Y.; Xia, Y. J. Am. Chem. Soc. 2003, 125, 2384. (b) Marinakos, S. M.; Shultz, D. A.; Feldheim, D. L. Adv. Mater. 1999, 11, 34. (c) Chah, S.; Fendler, J. H.; Yi, J. J. Colloid Interface Sci. 2002, 250, 142. (d) Marinakos, S. M.; Novak, J. P.; Brousseau, L. C., III; House, A. B.; Edeki, E. M.; Feldhaus, J. C.; Feldheim, D. L. J. Am. Chem. Soc. 1999, 121, 8518.
 
144
Chen, M.; Gao, L. Inorg. Chem. 2006, 45, 5145.
 
145
Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughes, S.; Somorjai, G. A.; Alivisatos, A. P. Science 2004, 304, 711.
 
146
For examples of nanoparticles grown via the polyol route, see: (a) Elkins, K. E.; Chaubey, G. S.; Nandwana, V.; Liu, J. P. J. Nano Res. 2008, 1, 23. (b) Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Nano Lett. 2004, 4, 2057, and references therein.
 
147
Sun, S.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204. Other examples of solution-phase growth of oxide, and other compound 0-D nanostructures (including quantum dots) are: (a) Strable, E.; Bulte, J. W. M.; Moskowitz, B.; Vivekanandan, K.; Allen, M.; Douglas, T.Chem. Mater. 2001, 13, 2201. (b) Frankamp, B. L.; Boal, A. K.; Tuominen, M. T.; Rotello, V. M. J. Am. Chem. Soc. 2005, 127, 9731. (c) Lemon, B. I.; Crooks, R. M. J. Am. Chem. Soc. 2000, 122, 12886. (d) Hanus, L. H.; Sooklal, K.; Murphy, C. J.; Ploehn, H. J. Langmuir 2000, 16, 2621.
 
148
Redi, F. X.; Cho, K. -S.; Murray, C. B.; O’Brien, S. Nature 2003, 423, 968.
 
149
Nandwana, V.; Elkins, K. E.; Poudyal, N.; Chaubey, G. S.; Yano, K.; Liu, J. P. J. Phys. Chem. C 2007, 111, 4185.
 
150
Juttukonda, V.; Paddock, R. L.; Raymond, J. E.; Denomme, D.; Richardson, A. E.; Slusher, L. E.; Fahlman, B. D. J. Am. Chem. Soc. 2006, 128, 420.
 
151
Vacassy, R.; Flatt, R. J.; Hofmann, H.; Choi, K. S.; Singh, R. K. J. Coll. Interf. Sci. 2000, 227, 302.
 
152
Jolivet, J. -P. et al. Chem. Commun. 2004, 481.
 
153
It should be noted that in addition to solution-phase methods, quantum dots are frequently synthesized using molecular-beam epitaxy or other vapor-phase technique. For example, see: Wang, X. Y.; Ma, W. Q.; Zhang, J. Y.; Salamo, G. J.; Xiao, M.; Shih, C. K. Nano Lett. 2005, 5, 1873, and references therein.
 
154
(a) Synthesis of the Iridium complex is reported in: Finke, R. G.; Lyon, D. K.; Nomiya, K.; Sur, S.; Mizuno, N. Inorg. Chem. 1990, 29, 1784. (b) Aiken, J. D.; Lin, Y.; Finke, R. G. J. Mol. Catal. A 1996, 114, 29.
 
155
For a detailed discussion of the mechanistic steps, see: Besson, C.; Finney, E. E.; Finke, R. G. J. Am. Chem. Soc. 2005, 127, 8179, and references therein.
 
156
For a thorough recent review on nanostructural growth via coprecipitation of multiple species (and ways to synthesize/stabilize 0D nanostructures), consult: Cushing, B. L.; Kolesnichenko, V. L.; O’Connor, C. J. Chem. Rev. 2004, 104, 3893.
 
157
(a) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. (b) LaMer, V. K. J. Am. Chem. Soc. 1950, 72, 4847. (c) Saraiva, S. M.; de Oliveira, J. F. J. Dispersion Sci. Technol. 2002, 23, 837.
 
158
For example, see: (a) Kimling, J.; Maier, M.; Okenve, B.; Kotaidis, V.; Ballot, H.; Plech, A. J. Phys. Chem. B 2006, 110, 15700. (b) Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Yeng, X. J. Am. Chem. Soc. 2007, 129, 13939.
 
159
Pong, B. -K.; Elim, H. I.; Chong, J. -X.; Ji, W.; Trout, B. L.; Lee, J. -Y. J. Phys. Chem. C 2007, 111, 6281.
 
160
For more details regarding proposed mechanisms for Au/Ag nanoparticle growth via citrate reduction/stabilization, see: (a) Rodriguez-Gonzalez, B.; Mulvaney, P.; Liz-Marzan, L. M. Z. Phys. Chem. 2007, 221, 415. (b) Pillai, Z. S.; Kamat, P. V. J. Phys. Chem. B 2004, 108, 945.
 
161
L. Colombi Ciacchi, W. Pompe, A. De Vita, J. Phys. Chem. B 2003, 107, 1755.
 
162
Emerson, S. C. Synthesis of Nanometer-size Inorganic Materials for the Examination of Particle Size Effects on Heterogeneous Catalysis, Ph.D. thesis, Worcester Polytechnic Institute, 2000. May be accessed online at: http://​www.​wpi.​edu/​Pubs/​ETD/​Available/​etd-0503100-105634/​unrestricted/​emerson.​pdf
 
163
J. M. Montejano-Carrizales and J. L. Morán-López. Nanostructured Mate- rials, 1:397–409, 1992.
 
164
Whetten, R. L.; Khoury, J. T.; Alvarez, M. M.; Murthy, S.; Vezmar, I.; Wang, Z. L.; Stephens, P. W.; Cleveland, C. L.; Luedtke, W. D.; Landman, U. Adv. Mater. 1996, 8, 428.
 
165
Finke, R. G. in Metal Nanoparticles: Synthesis, Characterization, and Applications, Feldheim, D. L.; Foss, C. A. eds., Dekker: New York, 2002. Crooks and coworkers determined that a closed-shell metallic nanocluster of Au55 has a diameter of 1.2 nm: Kim, Y.-G.; Oh, S.-K.; Crooks, R. M. Chem. Mater. 2004, 16, 167.
 
166
For a thorough review of shape control for nanocrystals, see: Xie, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Adv. Mater. 2009, 48, 60.
 
167
For instance, see: (a) Using focused-ion beam (FIB): McMahon, M. D.; Hmelo, A. B.; Lopez, R.; Ryle, W. T.; Newton, A. T.; Haglund, R. F.; Feldman, L. C.; Weller, R. A.; Magruder, R. H. Mat. Res. Soc. Symp. Proc. 2003, 739, H2.7.1. (b) Liu, K.; Ho, C. -L.; Aouba, S.; Zhao, Y. -Q.; Lu, Z. -H.; Petrov, S.; Coombs, N.; Dube, P.; Ruda, H. E.; Wong, W. -Y. Angew. Chem. 2008, 120, 1275. (c) Yonezawa, T.; Itoh, T.; Shirahata, N.; Masuda, Y.; Koumoto, K. Appl. Surf. Sci. 2007, 254, 621. (d) Resch, R.; Baur, C.; Bugacov, A.; Koel, B. E.; Madhukar, A.; Requicha, A. A. G.; Will, P. Langmuir, 1998, 14, 6613.
 
168
(a) Tsai, D. -H.; Kim, S. H.; Corrigan, T. D.; Phaneuf, R. J.; Zachariah, M. R. Nanotechnology 2005, 16, 1856. (b) Jamshidi, A. et al. Nano Lett. 2009, 9, 2921. (c) Chiou, P. Y.; Ohta, A. J.; Wu, M. C. Nature 2005, 436, 370.
 
169
Redi, F. X.; Cho, K. -S.; Murray, C. B.; O’Brien, S. Nature 2003, 423, 968.
 
170
(a) Decher, G.; Hong, J. D. Makromol. Chem. Macromol. Symp. 1991, 46, 321. (b) Decher, G.; Hong, J. D.; Schmitt, J. Thin Solid Films 1992, 210, 831. For a recent review of electrostatic LbL growth, see: Hammond, P. T. Adv. Mater. 2004, 16, 1271.
 
171
Adamantyl groups were used on the periphery of the dendrimers since they strongly interact with cyclodextrins. For example, see: Rekharsky, M. V.; Inoue, Y. Chem. Rev. 1998, 98, 1880–1901.
 
172
(a) The SEM image (low-resolution and high-resolution) of 9, 10-antraquinone nanorods is reproduced with permission from (copyright 2004 American Chemical Society): Liu, H.; Li, Y.; Xiao, S.; Li, H.; Jiang, L.; Zhu, D.; Xiang, B.; Chen, Y.; Yu, D. J. Phys. Chem. B 2004, 108, 7744. (b) The SEM image of GaP–GaAs nanowires is reproduced with permission from (copyright 2006 American Chemical Society): Verheijen, M. A.; Immink, G.; de Smet, T.; Borgstrom, M. T.; Bakkers, E. P. A. M. J. Am. Chem. Soc. 2006, 128, 1353. (c) The SEM image of carbon nanotubes is reproduced with permission from (copyright 2001 American Chemical Society): Chiang, I. W.; Brinson, B. E.; Smalley, R. E.; Margrave, J. L.; Hauge, R. H. J. Phys. Chem. B 2001, 105, 1157. (d) The SEM image of TiO2 nanofibers is reproduced with permission from (copyright 2006 American Chemical Society): Ostermann, R.; Li, D.; Yin, Y.; McCann, J. T.; Xia, Y. Nano Lett. 2006, 6, 1297.
 
173
(a) The HRTEM image of V2O5 nanorods on TiO2 nanofibers is reproduced with permission from Frankamp, B. L.; Boal, A. K.; Tuominen, M. T.; Rotello, V. M. J. Am. Chem. Soc. 2005, 127, 9731. (b) The HRTEM image of GaP–GaAs nanowires is reproduced with permission from reference 54b. (c) The HRTEM image of multiwall carbon nanotubes is reproduced with permission from (copyright 2004 American Chemical Society): Lee, D. C.; Mikulec, F. V.; Korgel, B. A. J. Am. Chem. Soc. 2004, 126, 4951.
 
174
(a) Iijima, S. Nature 1991, 354, 56 (first report of MWNTs). (b)Iijima, S. Nature 1993, 363, 603 (SWNT co-precedent). (c) Bethune, D. S.; Kiang, C. H.; Devries, M. S.; Gorman, G.; Savoy, R.; Vazquez, J.; Beyers, R. Nature 1993, 363, 605 (SWNT co-precedent).
 
175
The term graphene designates a single layer of carbon atoms packed into hexagonal units. Though this structure is used to describe properties of many carbonaceous materials (e.g., CNTs, graphite, fullerenes, etc.), this planar structure is thermodynamically unstable relative to curved structures such as fullerenes, nanotubes, and other structures found in carbon soot. As such, the isolation of single graphene sheets has first been reported only recently through exfoliation from a high purity graphite crystal: Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.
 
176
For a nice review of carbon nanotube properties and applications, see: (a) Collins, P. G.; Avouris, P. Scientific American 2000, 283, 62. (b) Milne, W. I.; Mann, M.; Dijon, J.; Bachmann, P.; McLaughlin, J.; Robertson, J.; Teo, K. B. K.; Lewalter, A.; de Souza, M.; Boggild, P.; Briggs, A.; Mogensen, K. B.; Gabriel, J. -C. P.; Roche, S.; Baptist, R. eNano Newsletter, Sept. 2008 (no. 13), available online at http://​www.​phantomsnet.​net
 
177
(a) Dresselhaus, M. S.; Dresselhaus, G.; Jorio, A.; Souza Filho, A. G.; Pimenta, M. A.; Saito, R. Acc. Chem. Res. 2002, 35, 1070. (b) Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A.; Smalley, R. E.; Dresselhaus, G.; Dresselhaus, M. S. Science 1997, 275, 187. (c) Weisman, R. B.; Subramoney, S. Electrochem. Soc. Interf. 2006 (summer), 42.
 
178
For extensive reviews of molecular electronics see: (a) Tour, J. M. Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming; World Scientific: River Edge, NJ, 2003. (b) Tour, J. M.; James, D. K. in Handbook of Nanoscience, Engineering and Technology; Goddard, W. A., III; Brenner, D. W.; Lyshevski, S. E.; Iafrate, G. J. eds.,; RC: New York, 2003; pp. 4.1–4.28. (c) Tour, J. M. Acc. Chem. Res. 2000, 33, 791.
 
179
Note: field emission results from the tunneling of electrons from a metal tip into a vacuum, under an applied strong electric field (Chap.​ 7 will have more details on this phenomenon, and how it is exploited for high-resolution electron microscopy).
 
181
(a) Wang, Q. H.; Setlur, A. A.; Lauerhaas, J. M.; Dai, J. Y.; Seelig, E. W.; Chang, R. P. H. Appl. Phys. Lett. 1998, 72, 2912. (b) Choi, Y. S.; Kang, J. H.; Park, Y. J.; Choi, W. B.; Lee, C. J.; Jo, S. H.; Lee, C. G.; You, J. H.; Jung, J. E.; Lee, N. S.; Kim, J. M. Diam. Rel. Mater. 2001, 10, 1705.
 
182
(a) Avouris, P. Acc. Chem. Res. 2002, 35, 1026. (b) Wind, S. J.; Appenzeller, J.; Martel, R.; Derycke, V.; Avouris, P. Appl Phys. Lett. 2002, 80, 3817. A recent strategy for the bottom-up design of CNT interconnects: Li, J.; Ye, Q.; Cassel, A.; Ng, H. T.; Stevens, R.; Han, J.; Meyyappan, M. Appl. Phys. Lett. 2003, 82, 2491.
 
183
Yakabson, B. I. Appl. Phys. Lett. 1998, 72, 918.
 
184
Note: micro-Raman spectroscopy has shown that during tension, only the outer layers of MWNTs are loaded, whereas during compression, the load is transferred to all layers.
 
185
Salvetat, J.-P.; Briggs, G. A. D.; Bonard, J.-M.; Basca, R. R.; Kulik, A. J.; Stöckli, T.; Burnham, N. A.; Forró, L. Phys. Rev. Lett. 1999, 82, 944.
 
186
For a review of nanotube-reinforced polymers, see: Schulte, K.; Gojny, F. H.; Fiedler, B.; Sandler, J. K. W.; Bauhofer, W. in Polymer Composites, Springer: New York, 2005.
 
187
For a very nice summary of specific stiffness/ specific strength regions for various materials classes see: http://​www-materials.​eng.​cam.​ac.​uk/​mpsite/​ interactive_​charts/​spec-spec/​basic.​html
 
188
Fluorination has recently been used to attach amine-terminated polymers to the sidewalls of carbon nanotubes; for instance, see: (a) Dillon, E. P.; Crouse, C. A.; Barron, A. R. ACS Nano 2008, 2, 156. (b) Direct polymerization of poly(amidoamine), PAMAM, dendrimers directly from chlorocarbonyl- functionalized (–COCl) carbon nanotubes: Pan, B.; Cui, D.; Gao, F.; He, R. Nanotechnol. 2006, 17, 2483.
 
189
For a nice review regarding defect sites in CNTs, see Charlier, J.-C. Acc. Chem. Res. 2002, 35, 1063.
 
190
For a thorough review of the surface chemistry (noncovalent and covalent) of CNTs, see Tasis, D.; Tagmatarchis, N.; Bianco, A.; Prato, M. Chem. Rev. 2006, 106, 1105.
 
191
(a) Grunlan, J. C.; Liu, L.; Kim, Y. S. Nano Lett. 2006, 6, 911. (b) Liu, Y. et al. J. Phys. Chem. B 2010, 114, 5783.
 
192
Knupfer, M.; Reibold, M.; Bauer, H.-D.; Dunsch, L.; Golden, M. S.; Haddon, R. C.; Scuseria, G. E.; Smalley, R. E. Chem. Phys. Lett. 1997, 272, 38.
 
193
For a description of methods used to form surface-bound nanosized catalysts, see: (a) Kind, H.; Bonard, J. –M.; Emmeneggar, C.; Nilsson, L. –O.; Hernadi, K.; Maillard-Schaller, E.; Schlapbach, L.; Forro, L.; Kern, K. Adv. Mat. 1999, 11, 1285. (b) Huang, Z. P.; Xu, J. W.; Ren, Z. F.; Wang, J. H.; Siegal, M. P.; Provencio, P. Appl. Phys. Lett. 1998, 73, 3845. (c) Bower, C.; Zhou, O.; Zhu, W.; Werder, D. J.; Jin, S. Appl. Phys. Lett. 2000, 77, 2767. (d) Geng, J. et al. J. Phys. Chem. B 2004, 108, 18447.
 
194
For a discussion of proposed CNT growth mechanisms in the absence of metallic nanocatalysts (e.g., pure C arc), see: (a) de Heer, W. et al. Science 2005, 307, 907. (b) Jin, C.; Suenaga, K.; Iijima, S. ACS Nano 2008, 2, 1275.
 
195
Note: the National Institute of Standards and Technology (NIST) has been recently focused on the development of standard synthesis, purification, and characterization techniques for CNTs (and other nanomaterials). To date, there are a number of competing methods for SWNTs/MWNTs – all citing percent purity values that appear rather arbitrary. Indeed, purchasing a “90% pure SWNT” sample from multiple vendors will result in very different products! In order to continue the rapid progress in CNT synthesis/applications, it is essential that we set up a “gold standard” for CNTs that will immediately tell us what a certain purity level means. That is, if a “60% purity” value is cited, clarifying what the remaining 40% consists of (amorphous carbon, remaining catalytic metal, other nanotube diameters/morphologies, etc.)
 
196
Dai, H. Acc. Chem. Res. 2002, 35, 1035. For a recent article describing the growth mechanism for vertically-aligned CNTs, see: Bedewy, M.; Meshot, E. R.; Guo, H.; Verploegen, E. A.; Lu, W.; Hart, A. J. J. Phys. Chem. C 2009, 113, 20576.
 
197
For a nice review of strategies used for superhydrophobic coatings, see: Ma, M.; Hill, R. M. Curr. Opin. Coll. Interf. Sci. 2006, 11, 193. For a discussion of the optical properties of nanotube forests, see: Hsieh, K. -C.; Tsai, T. -Y.; Wan, D.; Chen, H. -L.; Tai, N. -H. ACS Nano 2010, 4, 1327, and references therein.
 
198
(a) Zhong, G.; Hofmann, S.; Fan, F.; Telg, H.; Warner, J. H.; Eder, D.; Thomsen, C.; Milne, W. I.; Robertson, J. J. Phys. Chem. C 2009, 113, 17321. (b) Meshot, E. R.; Plata, D. L.; Tawfick, S.; Zhang, Y.; Verploegen, E. A.; Hart, A. J. ACS Nano 2009, 3, 2477.
 
199
Burt, D. P.; Whyte, W. M.; Weaver, J. M. R.; Glidle, A.; Edgeworth, J. P.; Macpherson, J. V.; Dobson, P. S. J. Phys. Chem. C 2009, 113, 15133, and references therein.
 
200
Rao, C. N. R.; Govindaraj, A. Acc. Chem. Res. 2002, 35, 998, and references therein. For recent information regarding the role of alumina on the yield/morphology of supported CNT catalysts, see: Jodin, L.; Dupuis, A.-C.; Rouviere, E.; Reiss, P. J. Phys. Chem. B 2006, 110, 7328. It should be noted that the supported nanoclusters may reside within nanochannels to facilitate 1-D growth, examples of these methods, which include both template and “closed space sublimation” (CSS) are (and references therein): (a) Li, J.; Papadopoulos, C.; Xu, J. M.; Moskovits, M. Appl. Phys. Lett. 1999, 75, 367. (b) Kyotani, T.; Tsai, L. F.; Tomita, A. Chem. Mater. 1996, 8, 2109. (c) Hu, Z. D.; Hu, Y. F.; Chen, Q.; Duan, X. F.; Peng, L.-M. J. Phys. Chem. B 2006, 110, 8263.
 
201
Choi, H. C.; Kim, W.; Wang, D.; Dai, H. J. Phys. Chem. B 2002, 106, 12361. The first precedent for SWNT growth from gold nanoclusters has also been recently reported: Bhaviripudi, S.; Mile, E.; Steiner, S. A.; Zare, A. T.; Dresselhaus, M. S.; Belcher, A. M.; Kong, J. J. Am. Chem. Soc. 2007, 129, 1516.
 
202
For example, the CoMoCAT technique can be optimized to predominantly yield (6,5) semiconductor SWNTs. The first precedent for (n,m) control of SWNT growth is: Lolli, G.; Zhang, L.; Balzano, L.; Sakulchaicharoen, N.; Tan, Y.; Resasco, D. E. J. Phys. Chem. B 2006, 110, 2108.
 
203
In 2009, researchers in China reported the longest SWNT, over 18.5 cm in length, grown using CVD from a CNT catalytic film: Wang, X.; Li, Q.; Xie, J.; Jin, Z.; Wang, J.; Li, Y.; Jiang, K.; Fan, S. Nano Lett. 2009, 9, 3137.
 
204
Resasco, D. E.; Alvarez, W. E.; Pompeo, F.; Balzano, L.; Herrera, J. E.; Kitiyanan, B.; Borgna, A. J. Nanopart. Res. 2002, 4, 131.
 
205
Nikolaev, P.; Bronikowski, M. J.; Bradley, R. K.; Rohmund, F.; Colbert, D. T.; Smith, K. A.; Smalley, R. E. Chem. Phys. Lett. 1999, 313, 91. It should be noted that Fe(CO)5 is not the only system in which the precursor acts as the metal catalyst and carbon source. A number of metallocenes (e.g., ferrocene, cobaltocene, and nickelocene) have also been used; however, they typically result in MWNT growth rather than SWNTs. This is most likely due to the larger number of carbon atoms from cyclopentadienyl groups that must self-assemble, relative to smaller carbon precursors (e.g., CH4, C2H2, etc.) used for SWNT growth.
 
206
Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. For a recent review of the solid–liquid–solid (SLS) and supercritical fluid–liquid–solid (SFLS) mechanisms for semiconductor nanowire growth, see: Wang, F.; Dong, A.; Sun, J.; Tang, R.; Yu, H.; Buhro, W. E. Inorg. Chem. 2006, 45, 7511. A recent precedent for the epitaxial growth of ZnO nanowires at the junction of nanowalls: Ng, H. T.; Li, J.; Smith, M. K.; Nguyen, P.; Cassell, A.; Han, J.; Meyyappan, M. Science 2003, 300, 1249.
 
207
For a review of CNT growth mechanisms, see: Harris, P. J. F. Carbon 2007, 45, 229. A recent in situ TEM study of Si nanowire growth has been reported by Hofmann, S.; Sharma, R.; Wirth, C. T.; Cervantes-Sodi, F.; Ducati, C.; Kasama, T.; Dunin-Borkowski, R. E.; Drucker, J.; Bennett, P.; Robertson, J. Nature Mater. 2008, 7, 372.
 
208
The first precedent of solution-liquid-solid (SLS) growth of nanowires: Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science, 1995, 270, 1791.
 
209
For instance, see: Paulose, M.; Varghese, O. K.; Grimes, C. A. J. Nanosci. Technol. 2003, 3, 341.
 
210
For example, see: Adhikari, H.; Marshall, A. F.; Chidsey, E. D.; McIntyre, P. C. Nano Lett. 2006, 6, 318.
 
211
(a) Huang, S.; Cai, Q.; Chen, J.; Qian, Y.; Zhang, L. J. Am. Chem. Soc. 2009, 131, 2094, and references therein. (b) Liu, B.; Ren, W.; Gao, L.; Li, S.; Pei, S.; Liu, C.; Jiang, C.; Cheng, H. -M. J. Am. Chem. Soc. 2009, 131, 2082.
 
212
Cantoro, M.; Hofmann, S.; Pisana, S.; Scardaci, V.; Parvez, A.; Ducati, C.; Ferrari, A. C.; Blackburn, A. M.; Wang, K.-Y.; Robertson, J. Nano Lett. 2006, 6, 1107.
 
213
Deng, W.-Q.; Xu, X.; Goddard, W. A. Nano Lett. 2004, 4, 2331.
 
214
It has been shown that reducing the catalyst size causes an increase in the growth rate, whereas varying the catalyst composition affects the growth rate, activation energy, and onset temperature for CNT growth: Chiang, W. -H.; Sankaran, R. M. Diam. Rel. Mater. 2009, 18, 946. For the influence of catalyst morphology on CNT growth termination, see: Kim, S. M. et al. J. Phys. Chem. Lett. 2010, 1, 918, and references therein.
 
215
The top VLS mechanism was predicted using molecular dynamics calculations. The image was reproduced with permission from Ding, F.; Bolton, K.; Rosen, A. J. Phys. Chem. B 2004, 108, 17369. The middle VLS mechanism shows both “root growth” (c–d) and “folded growth” (e–g). The image was reproduced with permission from Lee, D. C.; Mikulec, F. V.; Korgel, B. A. J. Am. Chem. Soc. 2004, 126, 4951. The bottom mechanism, predicted by quantum mechanics/molecular mechanics, is one of the first examples of an atomic-level picture of CNT growth. The image was reproduced with permission from Deng, W.-Q.; Xu, X.; Goddard, W. A. Nano Lett. 2004, 4, 2331. Other atomic-level mechanistic calculations: (a) Wang, Q.; Ng, M. -F.; Yang, S. -W.; Chen, Y. ACS Nano 2010, 4, 939; (b) Page, A. J.; Irle, S.; Morokuma, K. J. Phys. Chem. C 2010, 114, 8206.
 
216
Considering a VLS growth mechanism, the catalyst nanocluster must be molten during nucleation. However, the growth temperature of carbonaceous nanostructures is much lower than the melting point of binary C/M systems (M = catalytic metals such as Fe, Ni, Co, etc.), which lends credence to the existence of “liquid-like” deformable nanoclusters during growth.
 
217
Graphite-encapsulated metal nanostructures are of increasing importance for magnetic applications such as high-density magnetic recording media; for example, see: Flahaut, E.; Agnoli, F.; Sloan, J.; O’Connor, C.; Green, M. L. H. Chem. Mater. 2002, 14, 2553, and references therein. Encapsulation dominates over CNT growth at low temperatures since the kinetic energy is not sufficient for graphitic islands to lift off the catalyst surface. Hence, encapsulation may easily be limited, which enhances CNT growth, by maintaining elevated temperatures. Experimental results also show that small catalyst nanoclusters (diameters <2 nm) are free of graphite encapsulation since they do not contain a sufficient number of dissolved C atoms. However, for metal nanostructures >3 nm in diameter, calculations suggest that graphite encapsulation is thermodynamically preferred over SWNT growth. This is confirmed by the empirical observation that SWNTs form only on catalyst particles with diameters <2 nm.
 
218
For example, see: (a) Lin, M.; Tan, J. P. Y.; Boothroyd, C.; Loh, K. P.; Tok, E. S.; Foo, Y. -L. Nano Lett. 2006, 6, 449. (b) Yoshida, H.; Takeda, S.; Uchiyama, T.; Kohno, H.; Homma, Y. Nano Lett. 2008, 8, 2082.
 
219
Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Proc. Nat’l Acad. Sci. 2009, 106, 2506.
 
220
Using field-emission microscopy (FEM) to observe axial rotation and preferential adsorption of dimeric C2 units during growth: Marchand, M.; Journet, C.; Guillot, D.; Benoit, J. -M.; Yakobson, B. I.; Purcell, S. T. Nano Lett. 2009, 9, 2961.
 
221
Jin, S.; Bierman, M. J.; Morin, S. A. J. Phys. Chem. Lett. 2010, 1, 1472, and references therein.
 
222
Hofmann, S.; Sharma, R.; Ducati, C.; Du, G.; Mattevi, C.; Cepek, C.; Cantoro, M.; Pisana, S.; Parvez, A.; Cervantes-Sodi, F.; Ferrari, A. C.; Dunin-Borkowski, R.; Lizzit, S.; Petaccia, L.; Goldoni, A.; Robertson, J. Nano Lett. 2007, 602.
 
223
Lee, Y. H.; Kim, S. G.; Jund, P.; Tomanek, D. Phys. Rev. Lett. 1997, 78, 2393.
 
224
A recent paper by Hata et al. discusses the variables that govern highly-efficient carbon nanotube growth – an oxygen-containing “growth enhancer” (e.g., water, alcohols), and a carbon source not containing oxygen: Futaba, D. N.; Goto, J.; Yasuda, S.; Yamada, T.; Yumura, M.; Hata, K. Adv. Mater. 2009, 21, 4811.
 
225
Hata, K.; Futaba, D. N.; Mizuno, K.; Namai, T.; Yumura, M.; Iijima, S. Science 2004, 306, 1362.
 
226
Rummeli, M. H.; Borowiak-Palen, E.; Gemming, T.; Pichler, T.; Knupfer, M.; Kalbac, M.; Dunsch, L.; Jost, O.; Silva, S. R. P.; Pompe, W.; Buchner, B. Nano Lett. 2005, 5, 1209.
 
227
(a) For a recent review of inorganic-based nanotubes, see: Goldberger, J.; Fan, R.; Yang, P. Acc. Chem. Res. 2006, 39, 239, and references therein. (b) Mukherjee, S. Synthesis, Characterization and Growth Mechanism of Single-Walled Metal Oxide Nanotubes, Ph.D. Dissertation (Chem. Eng.), Georgia Institute of Technology, August 2007. May be accessed online at: http://​etd.​gatech.​edu/​theses/​available/​etd-06302007-202542/​unrestricted/​mukherjee_​sanjoy_​200708_​phd.​pdf
 
228
Lu, J. G.; Chang, P. C.; Fan, Z. Y. Mater. Sci. Eng. Rep. 2006, 52, 49.
 
229
Hulteen, J. C.; Martin, C. R. J. Mater. Chem. 1997, 7, 1075.
 
230
For example, see: (a) Wang, J. M.; Gao, L. J. Mater. Chem. 2003, 13, 2551. (b) Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2003, 125, 4430.
 
231
Mukherjee, S.; Bartlow, V. M.; Nair, S. Chem. Mater. 2005, 17, 4900.
 
232
(a) Kamat, P. V. J. Phys. Chem. C 2008, 112, 18737, and references therein. (b) Bang, J. H.; Kamat, P. V. ACS Nano 2009, 3, 1467. (c) Farrow, B.; Kamat, P. V. J. Am. Chem. Soc. 2009, 131, 11124.
 
233
(a) Baker, D. R.; Kamat, P. V. J. Phys. Chem. C 2009, 113, 17967. (b) Yu, P.; Zhu, K.; Norman, A. G.; Ferrere, S.; Frank, A. J.; Nozik, A. J. J. Phys. Chem. B 2006, 110, 25451. (c) Wen, X.; Junchao, T.; Sun, Y.; Sun, Y.; Dai, N. Proc. SPIE 2009, 7381, 73810Z.
 
234
(a) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Science 2004, 306, 666.(b) Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 10451.
 
235
Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A. A Nature 2005, 438, 197.
 
236
Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N.; Conrad, E. H.; First, P. N.; de Heer, W. A. Science 2006, 312, 1191.
 
237
Graphite intercalation compounds and applications, Endo, M., Ed.; Oxford University Press: Oxford, U.K., 2003.
 
238
Bulk graphite oxide is best prepared from purified natural graphite using the Hummers method: Hummers, W. S. & Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339.
For the mechanical exfoliation of bulk graphene oxide into sheets within an aqueous medium, see: Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Nature 2006, 442, 282.
 
239
(a) He, H., Klinowski, J., Forster, M. & Lerf, A. Chem. Phys. Lett. 1998, 287, 53. (b) Lerf, A., He, H., Forster, M. & Klinowski, J. Structure of graphite oxide revisited. J.Phys.Chem.B102,4477–4482(1998).
 
240
For example, see: (a) Tung, V. C.; Allen, M. J.; Yang, Y.; Kaner, R. B. Nat. Nanotechnol. 2009, 4, 25. (b) Allen, M. J.; Fowler, J. D.; Tung, V. C.; Yang, Y.; Weiller, B. H.; Kaner, R. B. Appl. Phys. Lett. 2008, 93, 193119. (c) Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. ACS Nano 2009, 3, 301.
 
241
(a) Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Nano Lett. 2009, 9, 30. (b) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Nature 2009, 457, 706.
 
242
For a recent review of graphene properties and applications, see: Allen, M. J.; Tung, V. C.; Kaner, R. B. Chem. Rev. 2009, 21, 3056.
 
243
The quantum Hall effect is the integer quantization of the Hall conductance for a 2-D system subjected to low temperatures and strong magnetic fields. However, for graphene, an anomalous fractional quantization is observed in which electrons exhibit much smaller effective masses. This corresponds to extremely facile transport through graphene, which is analogous to the mobility of relativistic particles such as photons. For example, see: (a) http://​icmt.​illinois.​edu/​ICMT-talks/​20080114-Abanin-Talk.​pdf. (b) Toke, C.; Lammert, P. E.; Crespi, V. H.; Jain, J. K. Phys. Rev. B 2006, 74, 235417. (c) Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer,
H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Science 2007, 315, 1379. (d) Ozyilmaz, B.; Jarillo-Herrero, P.; Efetov, D.; Abanin, D. A.; Levitov,
L. S.; Kim, P. Phys. ReV. Lett. 2007, 99, 186804.
 
244
For instance, see: Bolotin, K. I.; Sikes, K. J.; Jiang, Z.; Klima, M.; Fudenberg, G.;
Hone, J.; Kim, P.; Stormer, H. L. Solid State Commun. 2008, 146, 351.
 
245
Li, D.; Kaner, R. B. Science 2008, 320, 1170.
 
246
Xu, Y.; Bai, H.; Lu, G.; Li, C.; Shi, G. J. Am. Chem. Soc. 2008, 130, 5856.
 
247
Stankovich, S.; Piner, R. D.; Chen, X. Q.; Wu, N. Q.; Nguyen, S. T.; Ruoff,
R. S. J. Mater. Chem. 2006, 16, 155.
 
248
Bon, S. B.; Valentini, L.; Verdejo, R.; Garcia Fierro, J. L.; Peponi, L.; Lopez-Manchado, M. A.; Kenny, J. M. Chem. Mater. 2009, 21, 3433.
 
249
Note: the term ‘zero-bandgap semiconductor’ should be distinguished from a metal, even though both of these materials exhibit zero bandgaps. Within a graphene sheet, the Dirac point represents the sole electronic state responsible for its electrical conductivity; in contrast, electrons in many other states within the vicinity of the Fermi level may participate in electrical conductivity.
 
250
Ambipolarity is also shared by organic semiconductors: a) Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C. W.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194. (b) Meijer, E. J.; De Leeuw, D. M.; Setayesh, S.; van Veenendaal, E.; Huisman, B. H.; Blom, P. W. M.; Hummelen, J. C.; Scherf, U.; Klapwijk, T. M. Nat. Mater. 2003, 2, 678.
 
251
Zhang, Y.; Tang, T. -T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F. Nature 2009, 459, 820.
 
252
Zhang, Y.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.
 
253
(a) Son, Y. -W.; Cohen, M. L.; Louie, S. G. Phys. Rev. Lett. 2006, 97, 216803. (b) Han, M. Y.; Ozyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206805.
 
255
(a) Bhardwaj, T.; Antic, A.; Pavan, B.; Barone, V.; Fahlman, B. D. J. Am. Chem. Soc. 2010, 132, 12556. (b) Uthaisar, C.; Barone, V. Nano Lett. 2010, 10, 2838.
 
256
Uthaisar, C.; Barone, V.; Peralta, J. E. J. Appl. Phys. 2009, 106, 113715.
 
257
Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature 2009, 458, 872.
 
258
Jiao, L.; Zhang, L.; Wang, X.; Diankov, G.; Dai, H. Nature 2009, 458, 877.
 
259
(a) Han, M. Y.; Oezyilmaz, B.; Zhang, Y.; Kim, P. Phys. Rev. Lett. 2007, 98, 206805. (b) Chen, Z.; Lin, Y. -M.; Rooks, M. J.; Avouris, P. Physica E 2007, 40, 228.
 
260
Campos-Delgado, J. et al. Nano Lett. 2008, 8, 2773.
 
261
Yang, X.; Dou, X.; Rouhanipour, A.; Zhi, L.; Joachim Rader, H.; Mullen, K. J. Am. Chem. Soc. 2008, 130, 4216.
 
262
Zaumseil, J.; Meitl, M. A.; Hsu, J. W. P.; Acharya, B. R.; Baldwin, K. W.; Loo, Y.-L.; Roger, J. A. Nano Lett. 2003, 3, 1223.
 
263
Ginger, D. S.; Zhang, H.; Mirkin, C. A. Angew. Chem. Int. Ed. 2004, 43, 30. This review contains all of the references for the various experimental conditions.
 
264
Yang, Y. T.; Callegari, C.; Feng, X. L.; Ekinci, K. L.; Roukes, M. L. Nano Lett. 2006, 6, 583.
 
265
Collin, J.-P.; Dietrich-Buchecker, C.; Gavina, P.; Jimenez-Molero, M.; Sauvage, J.-P. Acc. Chem. Res. 2001, 34, 477.
 
266
Geeves, M. A. Nature 2002, 415, 129.
 
267
Liu, Y.; Flood, A. H.; Bonvallet, P. A.; Vignon, S. A.; Northrop, B. H.; Tseng, H.-R.; Jeppesen, J. O.; Huang, T. J.; Brough, B.; Baller, M.; Magonov, S.; Solares, S. D.; Goddard, W. A.; Ho, C.-M.; Stoddart, J. F. J. Am. Chem. Soc. 2005, 127, 9745.
 
Literatur
4.
Zurück zum Zitat Springer Handbook of Nanotechnology, Bhushan, B. ed., 2nd ed., Springer: New York, 2007. Springer Handbook of Nanotechnology, Bhushan, B. ed., 2nd ed., Springer: New York, 2007.
5.
Zurück zum Zitat Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press: London, U.K., 2004. Cao, G. Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press: London, U.K., 2004.
6.
Zurück zum Zitat Ozin, G. A.; Arsenault, A. C.; Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials, 2nd ed., Royal Society of Chemistry Publishing: Cambridge, U.K., 2009. Ozin, G. A.; Arsenault, A. C.; Cademartiri, L. Nanochemistry: A Chemical Approach to Nanomaterials, 2nd ed., Royal Society of Chemistry Publishing: Cambridge, U.K., 2009.
7.
Zurück zum Zitat Kostarelos, K. Nanomedicine, Pharmaceutical Press: New York, 2010. Kostarelos, K. Nanomedicine, Pharmaceutical Press: New York, 2010.
8.
Zurück zum Zitat Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes, Academic: New York, 1996. Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes, Academic: New York, 1996.
9.
Zurück zum Zitat Dendrimers and Dendritic Polymers, Frechet, J. M. J.; Tomalia, D. A. eds., Wiley: New York, 2001. Dendrimers and Dendritic Polymers, Frechet, J. M. J.; Tomalia, D. A. eds., Wiley: New York, 2001.
10.
Zurück zum Zitat Advanced Materials2004, 16, 15. Special issue dedicated to George Whitesides. Advanced Materials2004, 16, 15. Special issue dedicated to George Whitesides.
11.
Zurück zum Zitat MRS Bulletin2006, 31, 5 – May 2006. Special issue on materials for magnetic data storage. MRS Bulletin2006, 31, 5 – May 2006. Special issue on materials for magnetic data storage.
12.
Zurück zum Zitat MRS Bulletin2005, 30, 12 – December, 2005. Special issue on fabrication of sub-45-nm structures for the next generation of devices. MRS Bulletin2005, 30, 12 – December, 2005. Special issue on fabrication of sub-45-nm structures for the next generation of devices.
13.
Zurück zum Zitat Madou, M. J. Fundamentals of Microfabrication, 2nd ed., CRC: Boca Raton, 2002. Madou, M. J. Fundamentals of Microfabrication, 2nd ed., CRC: Boca Raton, 2002.
14.
Zurück zum Zitat Alternative Lithography – Unleashing the Potentials of Nanotechnology, Sotomayor-Torres, C. M. ed., Kluwer/Plenum: New York, 2003. Alternative Lithography – Unleashing the Potentials of Nanotechnology, Sotomayor-Torres, C. M. ed., Kluwer/Plenum: New York, 2003.
15.
Zurück zum Zitat Wilson, M.; Kannangara, K.; Smith, G.; Simmons, M. Nanotechnology: Basic Science and Emerging Technologies, CRC: Boca Raton, 2002. Wilson, M.; Kannangara, K.; Smith, G.; Simmons, M. Nanotechnology: Basic Science and Emerging Technologies, CRC: Boca Raton, 2002.
16.
Zurück zum Zitat Carbon Nanotubes, O’Connell, M. J. ed., CRC: Boca Raton, 2006. Carbon Nanotubes, O’Connell, M. J. ed., CRC: Boca Raton, 2006.
17.
Zurück zum Zitat Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Smalley, R. E.; Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. eds., Springer: New York, 2001. Carbon Nanotubes: Synthesis, Structure, Properties and Applications, Smalley, R. E.; Dresselhaus, M. S.; Dresselhaus, G.; Avouris, P. eds., Springer: New York, 2001.
18.
Zurück zum Zitat Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. eds, Springer: New York, 2008. Carbon Nanotubes: Advanced Topics in the Synthesis, Structure, Properties and Applications, Jorio, A.; Dresselhaus, G.; Dresselhaus, M. S. eds, Springer: New York, 2008.
20.
Zurück zum Zitat Lyshevski, S. E.; Lyshevski, S. E. MEMS and NEMS: Systems, Devices, and Structures, CRC: Boca Raton, 2002. Lyshevski, S. E.; Lyshevski, S. E. MEMS and NEMS: Systems, Devices, and Structures, CRC: Boca Raton, 2002.
21.
Zurück zum Zitat Nanoparticles: From Theory to Application, Schmid, G. ed., Wiley: New York, 2004. Nanoparticles: From Theory to Application, Schmid, G. ed., Wiley: New York, 2004.
22.
Zurück zum Zitat Rotello, V. Nanoparticles: Building Blocks for Nanotechnology (Nanostructure Science and Technology), Springer: New York, 2004. Rotello, V. Nanoparticles: Building Blocks for Nanotechnology (Nanostructure Science and Technology), Springer: New York, 2004.
23.
Zurück zum Zitat The Chemistry of Nanomaterials: Synthesis, Properties, and Applications, Rao, C. N. R.; Muller, A.; Cheetham, A. K. eds., Wiley-VCH: Berlin, 2004. The Chemistry of Nanomaterials: Synthesis, Properties, and Applications, Rao, C. N. R.; Muller, A.; Cheetham, A. K. eds., Wiley-VCH: Berlin, 2004.
24.
Zurück zum Zitat Wolf, E L. Nanophysics and Nanotechnology, Wiley-VCH: Berlin, 2004. Wolf, E L. Nanophysics and Nanotechnology, Wiley-VCH: Berlin, 2004.
Metadaten
Titel
Nanomaterials
verfasst von
Bradley D. Fahlman
Copyright-Jahr
2011
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-0693-4_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.