Skip to main content

2015 | OriginalPaper | Buchkapitel

14. Nanomechanical Application of CNT

verfasst von : Seiji Akita

Erschienen in: Frontiers of Graphene and Carbon Nanotubes

Verlag: Springer Japan

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon nanotubes (CNT) are appropriate for nanoscale mechanical system such as nano-switches and nanomechanical resonators for mass sensor application because of their lightweight, high aspect ratio, and extraordinary mechanical properties. The resonator miniaturization is crucial in bringing highly sensitive force and mass detection into practice, so that the CNTs are appropriate for the force and mass sensing. Here, we focus on highly sensitive mass and force detections using CNT mechanical resonators as nanomechanical application of CNTs. Loss factors of the multiwall-CNT resonators, which determine the sensitivity of the resonator, are strongly correlated to the CNT diameter due to the van der Waals interaction between layers. Down-mixing method for detecting the resonance frequencies of CNT mechanical resonators is one of key techniques to achieve the extremely high sensitivity. The doubly clamped CNT resonators consisting of single-wall CNTs achieved the sensitivity with ∼10 zN Hz-1/2 at 1.2 K in ultrahigh vacuum. For the ambient condition, which is preferable for the biological samples, optical detection using opt-mechanical heterodyne technique was proposed and achieved high mass sensitivity with ∼100 zg under the atmospheric conditions. We believe that this extraordinarily high sensitivity offers new possibilities for the investigation of a wide range of materials, especially nanoscale materials.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRef Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286:2148–2150CrossRef
2.
Zurück zum Zitat Akita S, Nakayama Y, Mizooka S, Takano Y, Okawa T, Miyatake Y, Yamanaka S, Tsuji M, Nosaka T (2001) Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl Phys Lett 79:1691–1693CrossRef Akita S, Nakayama Y, Mizooka S, Takano Y, Okawa T, Miyatake Y, Yamanaka S, Tsuji M, Nosaka T (2001) Nanotweezers consisting of carbon nanotubes operating in an atomic force microscope. Appl Phys Lett 79:1691–1693CrossRef
3.
Zurück zum Zitat Cha SN, Jang JE, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl Phys Lett 86:083105CrossRef Cha SN, Jang JE, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Fabrication of a nanoelectromechanical switch using a suspended carbon nanotube. Appl Phys Lett 86:083105CrossRef
4.
Zurück zum Zitat Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87:163114CrossRef Jang JE, Cha SN, Choi Y, Amaratunga GAJ, Kang DJ, Hasko DG, Jung JE, Kim JM (2005) Nanoelectromechanical switches with vertically aligned carbon nanotubes. Appl Phys Lett 87:163114CrossRef
5.
Zurück zum Zitat Jang JE, Cha SN, Choi YJ, Kang DJ, Butler TP, Hasko DG, Jung JE, Kim JM, Amaratunga GA (2008) Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nat Nanotechnol 3:26–30CrossRef Jang JE, Cha SN, Choi YJ, Kang DJ, Butler TP, Hasko DG, Jung JE, Kim JM, Amaratunga GA (2008) Nanoscale memory cell based on a nanoelectromechanical switched capacitor. Nat Nanotechnol 3:26–30CrossRef
6.
Zurück zum Zitat Kaul AB, Wong EW, Epp L, Hunt BD (2006) Electromechanical carbon nanotube switches for high-frequency applications. Nano Lett 6:942–947CrossRef Kaul AB, Wong EW, Epp L, Hunt BD (2006) Electromechanical carbon nanotube switches for high-frequency applications. Nano Lett 6:942–947CrossRef
7.
Zurück zum Zitat Kinaret JM, Nord T, Viefers S (2003) A carbon-nanotube-based nanorelay. Appl Phys Lett 82:1287–1289CrossRef Kinaret JM, Nord T, Viefers S (2003) A carbon-nanotube-based nanorelay. Appl Phys Lett 82:1287–1289CrossRef
8.
Zurück zum Zitat Lee SW, Lee DS, Morjan RE, Jhang SH, Sveningsson M, Nerushev OA, Park YW, Campbell EEB (2004) A three-terminal carbon nanorelay. Nano Lett 4:2027–2030CrossRef Lee SW, Lee DS, Morjan RE, Jhang SH, Sveningsson M, Nerushev OA, Park YW, Campbell EEB (2004) A three-terminal carbon nanorelay. Nano Lett 4:2027–2030CrossRef
9.
Zurück zum Zitat Loh OY, Espinosa HD (2012) Nanoelectromechanical contact switches. Nat Nanotechnol 7:283–295CrossRef Loh OY, Espinosa HD (2012) Nanoelectromechanical contact switches. Nat Nanotechnol 7:283–295CrossRef
10.
Zurück zum Zitat Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516CrossRef Poncharal P, Wang ZL, Ugarte D, de Heer WA (1999) Electrostatic deflections and electromechanical resonances of carbon nanotubes. Science 283:1513–1516CrossRef
11.
Zurück zum Zitat Nishio M, Sawaya S, Akita S, Nakayama Y (2005) Carbon nanotube oscillators toward zeptogram detection. Appl Phys Lett 86:133111CrossRef Nishio M, Sawaya S, Akita S, Nakayama Y (2005) Carbon nanotube oscillators toward zeptogram detection. Appl Phys Lett 86:133111CrossRef
12.
Zurück zum Zitat Nishio M, Sawaya S, Akita S, Nakayama Y (2005) Density of electron-beam-induced amorphous carbon deposits. J Vac Sci Technol B 23:1975–1979CrossRef Nishio M, Sawaya S, Akita S, Nakayama Y (2005) Density of electron-beam-induced amorphous carbon deposits. J Vac Sci Technol B 23:1975–1979CrossRef
13.
Zurück zum Zitat Sawaya S, Akita S, Nakayama Y (2006) In situ mass measurement of electron-beam-induced nanometer-sized W-related deposits using a carbon nanotube cantilever. Appl Phys Lett 89:193115CrossRef Sawaya S, Akita S, Nakayama Y (2006) In situ mass measurement of electron-beam-induced nanometer-sized W-related deposits using a carbon nanotube cantilever. Appl Phys Lett 89:193115CrossRef
14.
Zurück zum Zitat Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol 3:533–537CrossRef Jensen K, Kim K, Zettl A (2008) An atomic-resolution nanomechanical mass sensor. Nat Nanotechnol 3:533–537CrossRef
15.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young's modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
16.
Zurück zum Zitat Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef Wong EW, Sheehan PE, Lieber CM (1997) Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277:1971–1975CrossRef
17.
Zurück zum Zitat Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K (1999) Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J Phys D Appl Phys 32:1044–1048CrossRef Akita S, Nishijima H, Nakayama Y, Tokumasu F, Takeyasu K (1999) Carbon nanotube tips for a scanning probe microscope: their fabrication and properties. J Phys D Appl Phys 32:1044–1048CrossRef
18.
Zurück zum Zitat Sawaya, S, Arie, T, Akita, S (2011) Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes. Nanotechnology 22:165702 Sawaya, S, Arie, T, Akita, S (2011) Diameter-dependent dissipation of vibration energy of cantilevered multiwall carbon nanotubes. Nanotechnology 22:165702
19.
Zurück zum Zitat Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, McEuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431:284–287CrossRef Sazonova V, Yaish Y, Ustunel H, Roundy D, Arias TA, McEuen PL (2004) A tunable carbon nanotube electromechanical oscillator. Nature 431:284–287CrossRef
20.
Zurück zum Zitat Peng HB, Chang CW, Aloni S, Yuzvinsky TD, Zettl A (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97:087203 Peng HB, Chang CW, Aloni S, Yuzvinsky TD, Zettl A (2006) Ultrahigh frequency nanotube resonators. Phys Rev Lett 97:087203
21.
Zurück zum Zitat Witkamp, B, Poot M, Pathangi H, Huttel AK, van der Zant HSJ (2008) Self-detecting gate-tunable nanotube paddle resonators. Appl Phys Lett 93:111909 Witkamp, B, Poot M, Pathangi H, Huttel AK, van der Zant HSJ (2008) Self-detecting gate-tunable nanotube paddle resonators. Appl Phys Lett 93:111909
22.
Zurück zum Zitat Wu CC, Zhong ZH (2011) Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators. Nano Lett 11:1448–1451CrossRef Wu CC, Zhong ZH (2011) Capacitive spring softening in single-walled carbon nanotube nanoelectromechanical resonators. Nano Lett 11:1448–1451CrossRef
23.
Zurück zum Zitat Steele GA, Huttel AK, Witkamp B, Poot M, Meerwaldt HB, Kouwenhoven LP, van der Zant HSJ (2009) Strong coupling between single-electron tunneling and nanomechanical motion. Science 325:1103–1107CrossRef Steele GA, Huttel AK, Witkamp B, Poot M, Meerwaldt HB, Kouwenhoven LP, van der Zant HSJ (2009) Strong coupling between single-electron tunneling and nanomechanical motion. Science 325:1103–1107CrossRef
24.
Zurück zum Zitat Lassagne B, Tarakanov Y, Kinaret J, Garcia-Sanchez D, Bachtold A (2009) Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325:1107–1110CrossRef Lassagne B, Tarakanov Y, Kinaret J, Garcia-Sanchez D, Bachtold A (2009) Coupling mechanics to charge transport in carbon nanotube mechanical resonators. Science 325:1107–1110CrossRef
25.
Zurück zum Zitat Moser J, Guttinger J, Eichler A, Esplandiu MJ, Liu DE, Dykman MI, Bachtold A (2013) Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol 8:493–496CrossRef Moser J, Guttinger J, Eichler A, Esplandiu MJ, Liu DE, Dykman MI, Bachtold A (2013) Ultrasensitive force detection with a nanotube mechanical resonator. Nat Nanotechnol 8:493–496CrossRef
26.
Zurück zum Zitat Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7:300–303CrossRef Chaste J, Eichler A, Moser J, Ceballos G, Rurali R, Bachtold A (2012) A nanomechanical mass sensor with yoctogram resolution. Nat Nanotechnol 7:300–303CrossRef
27.
Zurück zum Zitat Fukami S, Arie T, Akita S (2009) Effect of gaseous dissipation of oscillating cantilevered carbon nanotubes. Jpn J Appl Phys 48:06FG04 Fukami S, Arie T, Akita S (2009) Effect of gaseous dissipation of oscillating cantilevered carbon nanotubes. Jpn J Appl Phys 48:06FG04
28.
Zurück zum Zitat Akita S, Arie T (2009) Carbon nanotube mechanical resonators for mass sensing. Sensor Mater 21:339–349 Akita S, Arie T (2009) Carbon nanotube mechanical resonators for mass sensing. Sensor Mater 21:339–349
29.
Zurück zum Zitat Sawano S, Arie T, Akita S (2010) Carbon nanotube resonator in liquid. Nano Lett 10:3395–3398CrossRef Sawano S, Arie T, Akita S (2010) Carbon nanotube resonator in liquid. Nano Lett 10:3395–3398CrossRef
30.
Zurück zum Zitat Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36CrossRef Yamamoto K, Akita S, Nakayama Y (1998) Orientation and purification of carbon nanotubes using ac electrophoresis. J Phys D Appl Phys 31:L34–L36CrossRef
31.
Zurück zum Zitat Yoshinaka A, Arie T, Akita S (2011) Sustained mechanical self-oscillation of carbon nanotube cantilever by phase locked loop with optomechanical heterodyne. Appl Phys Lett 98:133103CrossRef Yoshinaka A, Arie T, Akita S (2011) Sustained mechanical self-oscillation of carbon nanotube cantilever by phase locked loop with optomechanical heterodyne. Appl Phys Lett 98:133103CrossRef
32.
Zurück zum Zitat Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301CrossRefMATH Garcia R, Perez R (2002) Dynamic atomic force microscopy methods. Surf Sci Rep 47:197–301CrossRefMATH
33.
Zurück zum Zitat Wiesendanger R (1994) Scanning probe microscopy and spectroscopy. Cambridge University Press, CambridgeCrossRef Wiesendanger R (1994) Scanning probe microscopy and spectroscopy. Cambridge University Press, CambridgeCrossRef
34.
Zurück zum Zitat Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673CrossRef Albrecht TR, Grutter P, Horne D, Rugar D (1991) Frequency-modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J Appl Phys 69:668–673CrossRef
35.
Zurück zum Zitat Hiroshima S, Yoshinaka A, Arie T, Akita S (2013) Photothermal actuation of cantilevered multiwall carbon nanotubes with bimaterial configuration toward calorimeter. Jpn J Appl Phys 52:06GH02 Hiroshima S, Yoshinaka A, Arie T, Akita S (2013) Photothermal actuation of cantilevered multiwall carbon nanotubes with bimaterial configuration toward calorimeter. Jpn J Appl Phys 52:06GH02
Metadaten
Titel
Nanomechanical Application of CNT
verfasst von
Seiji Akita
Copyright-Jahr
2015
Verlag
Springer Japan
DOI
https://doi.org/10.1007/978-4-431-55372-4_14

Neuer Inhalt