1 Introduction
2 Method
2.1 The physical problem
2.2 The mathematical model
2.3 Non-dimensional system of equations
2.4 Re-specification of the far-field boundary condition
3 Asymptotic and numerical solution of the diffusion problem
3.1 Asymptotic approximation
3.2 Numerical implementation of asymptotic solution
3.3 Finite element solution
transient-axisymmetric
analysis module is used to exploit the azimuthal symmetry of the system around the z-axis. Moreover, it is sufficient to apply the finite element method to one half of the system cross-section, here taken to be the xz-plane. The spatial variables for this non-dimensional cross-section are defined as in Sect. 2.3,E7
and E8
, between \(\tilde{z}=-1\) and \(\tilde{z}=+1\), represent the boundary of our biological cell. We maintain a constant concentration condition, \(C_1=1\), along the boundary edge E2
, which denotes the planar boundary generating the diffusive front. Along edges E1
and E3
, we impose the condition of zero normal flux, \(\partial C_1/ \partial \tilde{x} = 0\) and \(\partial C_1/ \partial \tilde{z} = 0\), respectively. The latter boundary conditions are required since the PDE toolbox is incapable of treating infinite domain systems. Along the central, axis of symmetry, we also impose a zero gradient condition, \(\partial C_{1,2}/ \partial \tilde{x} = 0\). These boundary conditions and their locations are shown in Fig. 2. To best model the present infinite system, we capture as large an external region as possible. We define parameters \(Q_1\) (the length of E1
) and \(Q_2\) (the length of E3
) as being the length and breadth, respectively, of a subset of the actual infinite spatial domain. Relevant edges are labelled E1
to E8
, and the exterior and interior regions are denoted F1
and F2
, respectively.4 Results and discussion
4.1 Preliminary remarks
4.2 Numerical comparison
\(\tau \) | 0.1 | 0.25 | 0.5 | 0.75 | 1 | 3 |
---|---|---|---|---|---|---|
\(L_1(\rho < 1)\) | \(1.79\times 10^{-2}\) | \(6.25\times 10^{-3}\) | \(2.73\times 10^{-3}\) | \(8.51\times 10^{-5}\) | \(3.18\times 10^{-4}\) | \(7.60\times 10^{-5}\) |
\(L_2(\rho < 1)\) | \( 2.32\times 10^{-2}\) | \(8.20\times 10^{-3}\) | \( 3.54\times 10^{-3}\) | \(1.24\times 10^{-4}\) | \(4.06\times 10^{-4}\) | \(8.30\times 10^{-5}\) |
\(L_{\infty }(\rho < 1)\) | \(4.50\times 10^{-2}\) | \(1.61\times 10^{-2}\) | \(6.87\times 10^{-3}\) | \(3.49\times 10^{-4}\) | \(9.30\times 10^{-4}\) | \(1.93\times 10^{-4}\) |
\(L_1(1< \rho < X)\) | \(2.44\times 10^{-2}\) | \(4.14\times 10^{-3}\) | \(7.09\times 10^{-4}\) | \(2.67\times 10^{-4}\) | \(1.56\times 10^{-4}\) | \(6.66\times 10^{-5}\) |
\(L_2(1< \rho < X)\) | \(5.13\times 10^{-2}\) | \(6.99\times 10^{-3}\) | \(1.18\times 10^{-3}\) | \(4.81\times 10^{-4}\) | \(2.61\times 10^{-4}\) | \(8.23\times 10^{-5}\) |
\(L_{\infty }(1< \rho < X)\) | \(2.65\times 10^{-1}\) | \(3.32\times 10^{-2}\) | \(5.44\times 10^{-3}\) | \(2.38\times 10^{-3}\) | \(1.15\times 10^{-3}\) | \(1.63\times 10^{-4}\) |
\(\tau \) | 250 | 625 | 1250 | 1875 | 2500 | 7500 |
---|---|---|---|---|---|---|
\(L_1(\rho < 1)\) | \(8.93\times 10^{-6}\) | \(2.51\times 10^{-6}\) | \(5.20\times 10^{-6}\) | \(3.02\times 10^{-6}\) | \(1.73\times 10^{-5}\) | \(8.64\times 10^{-5}\) |
\(L_2(\rho < 1)\) | \(1.01\times 10^{-5}\) | \(3.03\times 10^{-6}\) | \(5.48\times 10^{-6}\) | \(3.53\times 10^{-6}\) | \( 5.75\times 10^{-5}\) | \(8.64\times 10^{-5}\) |
\(L_{\infty }(\rho < 1)\) | \(1.75\times 10^{-6}\) | \(8.80\times 10^{-6}\) | \(1.03\times 10^{-5}\) | \(1.07\times 10^{-5}\) | \(2.57\times 10^{-5}\) | \(9.38\times 10^{-5}\) |
\(L_1(1< \rho < X)\) | \(2.44\times 10^{-2}\) | \(4.14\times 10^{-3}\) | \(6.68\times 10^{-4}\) | \(2.30\times 10^{-4}\) | \(1.85\times 10^{-4}\) | \(1.30\times 10^{-4}\) |
\(L_2(1< \rho < X)\) | \(5.13\times 10^{-2}\) | \(6.99\times 10^{-3}\) | \(1.14\times 10^{-3}\) | \(4.34\times 10^{-4}\) | \(2.58\times 10^{-4}\) | \(1.72\times 10^{-4}\) |
\(L_{\infty }(1< \rho < X)\) | \(2.65\times 10^{-1}\) | \(3.33\times 10^{-2}\) | \(5.44\times 10^{-3}\) | \(2.38\times 10^{-3}\) | \(1.15\times 10^{-3}\) | \(4.41\times 10^{-4}\) |
X | 10 | 7.5 | 5 | 2.5 | 2 |
---|---|---|---|---|---|
m (exterior) | 4472 | 2495 | 1069 | 229 | 132 |
\(L_1(\rho < 1)\) | \(8.51\times 10^{-5}\) | \(7.97\times 10^{-5}\) | \(1.16\times 10^{-4}\) | \(8.99\times 10^{-4}\) | \(1.80\times 10^{-3}\) |
\(L_2(\rho < 1)\) | \(1.24\times 10^{-4}\) | \(1.22\times 10^{-4}\) | \(1.59\times 10^{-4}\) | \(1.10\times 10^{-3}\) | \( 2.12\times 10^{-3}\) |
\(L_{\infty }(\rho < 1)\) | \(3.49\times 10^{-4}\) | \(3.27\times 10^{-4}\) | \(4.19\times 10^{-4}\) | \(2.20\times 10^{-3}\) | \(4.20\times 10^{-3}\) |
\(L_1(1< \rho < X)\) | \(2.67\times 10^{-4}\) | \(1.46\times 10^{-4}\) | \(3.60\times 10^{-4}\) | \(1.90\times 10^{-3}\) | \(3.20\times 10^{-3}\) |
\(L_2(1< \rho < X)\) | \(4.81\times 10^{-4}\) | \(1.86\times 10^{-4}\) | \(4.15\times 10^{-4}\) | \(2.08\times 10^{-3}\) | \(3.53\times 10^{-3}\) |
\(L_{\infty }(1< \rho < X)\) | \(2.38\times 10^{-3}\) | \(6.34\times 10^{-4}\) | \(8.23\times 10^{-4}\) | \(3.60\times 10^{-3}\) | \(5.70\times 10^{-3}\) |