Skip to main content
Erschienen in: Microsystem Technologies 1/2019

05.07.2018 | Technical Paper

Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics

verfasst von: Noreen Sher Akbar, A. Bintul Huda, Muhammad Bilal Habib, D. Tripathi

Erschienen in: Microsystem Technologies | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetohydrodynamics plays important role to manipulate the physiological fluids due to magnetic nature of physiological fluids. Magnetohydrodynamics pumps are a robust technology which provide more elegant and sustainable performance compared with conventional medical pumps. To study the effects of suspension of the nanoparticles (drugs) in physiological fluids (blood) flow are important in biomedical science and engineering. Motivated by such applications, an analytical approach is presented to study the nanoparticle shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics in the present article. A two dimensional continuity, momentum and energy equations are considered to govern the present biophysical model. The governing equations are also linearized using lubrication theory where we consider the low Reynolds number and long wavelength approximations. Closed form solutions are obtained for axial velocity, axial pressure gradient, temperature, pressure rise, wall shear stress and stream function. The effects of three different type of shapes (bricks, cylinders, and platelets) of nanoparticles on peristaltic pumping characteristics and thermal characteristics are computed with the help of graphical illustrations. The interesting outcomes of this study are relevant to more realistic designs for ocular peristaltic pumps in drug delivery systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbas Z, Naveed M, Sajid M (2016) Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. J Mol Liq 215:756–762CrossRef Abbas Z, Naveed M, Sajid M (2016) Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. J Mol Liq 215:756–762CrossRef
Zurück zum Zitat Akbar NS, Tripathi D, Khan ZH, Bég OA (2016a) A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chem Phys Lett 661:20–30CrossRef Akbar NS, Tripathi D, Khan ZH, Bég OA (2016a) A numerical study of magnetohydrodynamic transport of nanofluids over a vertical stretching sheet with exponential temperature-dependent viscosity and buoyancy effects. Chem Phys Lett 661:20–30CrossRef
Zurück zum Zitat Akbar NS, Huda AB, Tripathi D (2016b) Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. Eur Phys J Plus 131(9):332CrossRef Akbar NS, Huda AB, Tripathi D (2016b) Thermally developing MHD peristaltic transport of nanofluids with velocity and thermal slip effects. Eur Phys J Plus 131(9):332CrossRef
Zurück zum Zitat Akbar NS, Tripathi D, Khan ZH, Bég OA (2017a) Mathematical model for ciliary-induced transport in MHD flow of Cu–H2O nanofluids with magnetic induction. Chin J Phys 55(3):947–962CrossRef Akbar NS, Tripathi D, Khan ZH, Bég OA (2017a) Mathematical model for ciliary-induced transport in MHD flow of Cu–H2O nanofluids with magnetic induction. Chin J Phys 55(3):947–962CrossRef
Zurück zum Zitat Akbar NS, Abid SA, Tripathi D, Mir NA (2017b) Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube. Eur Phys J Plus 132(3):110CrossRef Akbar NS, Abid SA, Tripathi D, Mir NA (2017b) Nanostructures study of CNT nanofluids transport with temperature-dependent variable viscosity in a muscular tube. Eur Phys J Plus 132(3):110CrossRef
Zurück zum Zitat Akbar NS, Butt AW, Tripathi D (2017c) Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel. Results Phys 7:2477–2484CrossRef Akbar NS, Butt AW, Tripathi D (2017c) Nanoparticle shapes effects on unsteady physiological transport of nanofluids through a finite length non-uniform channel. Results Phys 7:2477–2484CrossRef
Zurück zum Zitat Akbar NS, Butt AW, Tripathi D (2017d) Biomechanically driven unsteady non-uniform flow of copper water and Silver water nanofluids through finite length channel. Comput Methods Progr Biomed 146:1–9CrossRef Akbar NS, Butt AW, Tripathi D (2017d) Biomechanically driven unsteady non-uniform flow of copper water and Silver water nanofluids through finite length channel. Comput Methods Progr Biomed 146:1–9CrossRef
Zurück zum Zitat Angue Minsta H, Roy G, Nguyen CT, Doucet D (2009) New temperature and conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371CrossRef Angue Minsta H, Roy G, Nguyen CT, Doucet D (2009) New temperature and conductivity data for water-based nanofluids. Int J Therm Sci 48(2):363–371CrossRef
Zurück zum Zitat Assael MJ, Metaxa I, Kakosimos KE, Constantinou D (2006) Thermal conductivity of nanofluids—experimental and theoretical. Int J Thermophys 27(4):999–1017CrossRef Assael MJ, Metaxa I, Kakosimos KE, Constantinou D (2006) Thermal conductivity of nanofluids—experimental and theoretical. Int J Thermophys 27(4):999–1017CrossRef
Zurück zum Zitat Batchelor GK, Green JT (1972) Determination of bulk stress in a suspension of spherical-articles to order C-2. J Fluid Mech 56:401–427CrossRefMATH Batchelor GK, Green JT (1972) Determination of bulk stress in a suspension of spherical-articles to order C-2. J Fluid Mech 56:401–427CrossRefMATH
Zurück zum Zitat Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571CrossRef Brinkman HC (1952) The viscosity of concentrated suspensions and solutions. J Chem Phys 20:571CrossRef
Zurück zum Zitat Bruno L, Bruno A, Alexandra F, Nelson M, Mónica O (2014) Critical analysis of the thermal conductivity models for CNT based nanofluids. Int J Therm Sci 78:65–76CrossRef Bruno L, Bruno A, Alexandra F, Nelson M, Mónica O (2014) Critical analysis of the thermal conductivity models for CNT based nanofluids. Int J Therm Sci 78:65–76CrossRef
Zurück zum Zitat Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29(4):731–743CrossRef Burns JC, Parkes T (1967) Peristaltic motion. J Fluid Mech 29(4):731–743CrossRef
Zurück zum Zitat Choi US, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, San Francisco Choi US, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME International Mechanical Engineering Congress and Exposition, San Francisco
Zurück zum Zitat Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(97):153107CrossRef Chon CH, Kihm KD, Lee SP, Choi SUS (2005) Empirical correlation finding the role of temperature and particle size for nanofluid (Al2O3) thermal conductivity enhancement. Appl Phys Lett 87(97):153107CrossRef
Zurück zum Zitat Einstein A (1906) Eine neue bestimmung der molek¨uldimensionen. Ann Phys 19:289–306CrossRefMATH Einstein A (1906) Eine neue bestimmung der molek¨uldimensionen. Ann Phys 19:289–306CrossRefMATH
Zurück zum Zitat George O, Sanjeeva W, Joseph A, Yulong D (2012) Computational analysis of factors influencing enhancement of thermal conductivity of nanofluids. Institute of Particle Science and Engineering, University of Leeds, Leeds George O, Sanjeeva W, Joseph A, Yulong D (2012) Computational analysis of factors influencing enhancement of thermal conductivity of nanofluids. Institute of Particle Science and Engineering, University of Leeds, Leeds
Zurück zum Zitat Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. I&EC Fund 1(3):187–191CrossRef Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. I&EC Fund 1(3):187–191CrossRef
Zurück zum Zitat Joan Ibbora R (2012) Nanofluids: thermophysical analysis and heat transfer performance. Master of Science thesis, KTH School of Industrial Engineering and Management Energy Technology, Division of Applied Thermodynamics, Stockholm Joan Ibbora R (2012) Nanofluids: thermophysical analysis and heat transfer performance. Master of Science thesis, KTH School of Industrial Engineering and Management Energy Technology, Division of Applied Thermodynamics, Stockholm
Zurück zum Zitat Khan WA, Makinde OD, Khan ZH (2016) Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int J Heat Mass Transf 96:525–534CrossRef Khan WA, Makinde OD, Khan ZH (2016) Non-aligned MHD stagnation point flow of variable viscosity nanofluids past a stretching sheet with radiative heat. Int J Heat Mass Transf 96:525–534CrossRef
Zurück zum Zitat Latham W (1966) Fluid motion in a peristaltic pump. MSc thesis, Massachusetts Institute of Technology, Cambridge Latham W (1966) Fluid motion in a peristaltic pump. MSc thesis, Massachusetts Institute of Technology, Cambridge
Zurück zum Zitat Makinde OD, Onyejekwe OO (2011) A numerical study of MHD generalized Couette flowand heat transfer with variable viscosity and electrical conductivity. J Magn Magn Mater 323:2757–2763CrossRef Makinde OD, Onyejekwe OO (2011) A numerical study of MHD generalized Couette flowand heat transfer with variable viscosity and electrical conductivity. J Magn Magn Mater 323:2757–2763CrossRef
Zurück zum Zitat Makinde OD, Khan WA, Culham JR (2016a) MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. Int J Heat Mass Transf 93:595–604CrossRef Makinde OD, Khan WA, Culham JR (2016a) MHD variable viscosity reacting flow over a convectively heated plate in a porous medium with thermophoresis and radiative heat transfer. Int J Heat Mass Transf 93:595–604CrossRef
Zurück zum Zitat Makinde OD, Mabood F, Khan WA, Tshehla MS (2016b) MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. J Mol Liq 219:624–630CrossRef Makinde OD, Mabood F, Khan WA, Tshehla MS (2016b) MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat. J Mol Liq 219:624–630CrossRef
Zurück zum Zitat Maxwell JCA (1881) reatise on electricity and magnetism, 2nd edn. Clarendon Press, Oxford Maxwell JCA (1881) reatise on electricity and magnetism, 2nd edn. Clarendon Press, Oxford
Zurück zum Zitat Nayak MK, Akbar NS, Pandey VS, Khan ZH, Tripathi D (2017a) 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol 315:205–215CrossRef Nayak MK, Akbar NS, Pandey VS, Khan ZH, Tripathi D (2017a) 3D free convective MHD flow of nanofluid over permeable linear stretching sheet with thermal radiation. Powder Technol 315:205–215CrossRef
Zurück zum Zitat Nayak MK, Akbar NS, Tripathi D, Khan ZH, Pandey VS (2017b) MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Adv Powder Technol 28(9):2159–2166CrossRef Nayak MK, Akbar NS, Tripathi D, Khan ZH, Pandey VS (2017b) MHD 3D free convective flow of nanofluid over an exponentially stretching sheet with chemical reaction. Adv Powder Technol 28(9):2159–2166CrossRef
Zurück zum Zitat Nayak MK, Akbar NS, Tripathi D, Pandey VS (2017c) Three dimensional MHD flow of nanofluid over an exponential porous stretching sheet with convective boundary conditions. Therm Sci Eng Progr 3:133–140CrossRef Nayak MK, Akbar NS, Tripathi D, Pandey VS (2017c) Three dimensional MHD flow of nanofluid over an exponential porous stretching sheet with convective boundary conditions. Therm Sci Eng Progr 3:133–140CrossRef
Zurück zum Zitat Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Minsta H (2007) Temperature and particle-size dependent viscosity data for water based nanofluids hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506CrossRef Nguyen CT, Desgranges F, Roy G, Galanis N, Mare T, Boucher S, Angue Minsta H (2007) Temperature and particle-size dependent viscosity data for water based nanofluids hysteresis phenomenon. Int J Heat Fluid Flow 28:1492–1506CrossRef
Zurück zum Zitat Ozerinc S, Kakac S, Yazıcıoglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluids Nanofluids 8:145–170CrossRef Ozerinc S, Kakac S, Yazıcıoglu AG (2010) Enhanced thermal conductivity of nanofluids: a state-of-the-art review. Microfluids Nanofluids 8:145–170CrossRef
Zurück zum Zitat Tertsinidou GJ, Tsolakidou CM, Pantzali Maria, Assael MJ (2017) New measurements of the apparent thermal conductivity of nanofluids and investigation of their heat transfer capabilities. J Chem Eng Data 62(1):491–507CrossRef Tertsinidou GJ, Tsolakidou CM, Pantzali Maria, Assael MJ (2017) New measurements of the apparent thermal conductivity of nanofluids and investigation of their heat transfer capabilities. J Chem Eng Data 62(1):491–507CrossRef
Zurück zum Zitat Tripathi D, Sharma A, Bég OA (2017) Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz-Smoluchowski velocity. Int J Heat Mass Transf 111:138–149CrossRef Tripathi D, Sharma A, Bég OA (2017) Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel: effects of Joule heating and Helmholtz-Smoluchowski velocity. Int J Heat Mass Transf 111:138–149CrossRef
Zurück zum Zitat Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19CrossRef Wang X-Q, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46(1):1–19CrossRef
Zurück zum Zitat Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64CrossRef Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21(1):58–64CrossRef
Metadaten
Titel
Nanoparticles shape effects on peristaltic transport of nanofluids in presence of magnetohydrodynamics
verfasst von
Noreen Sher Akbar
A. Bintul Huda
Muhammad Bilal Habib
D. Tripathi
Publikationsdatum
05.07.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2019
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3963-6

Weitere Artikel der Ausgabe 1/2019

Microsystem Technologies 1/2019 Zur Ausgabe

Neuer Inhalt