Skip to main content

2016 | OriginalPaper | Buchkapitel

6. Nanophotonics

verfasst von : Anqi Zhang, Gengfeng Zheng, Charles M. Lieber

Erschienen in: Nanowires

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Single crystalline semiconductor NWs have been extensively investigated as building blocks for ultra-small and entirely new electronic and photonic devices, due to their unique electronic and optical properties. The sub-wavelength diameters of NW structures and tunable energy band gaps provide a host of advantages for investigating generation, detection, amplification and modulation of light. Photonic platforms using NW building blocks also offers the promise of integrated functionalities at dimensions compatible with top-down fabricated electronics. With rational design and synthesis of the NW structures, the capability of controlling and manipulating these structures on surface to form single devices and networks is a crucial step for realizing these chemically synthesized NWs into photonic circuitry. In this chapter we will review progress made in the area of NW photonic devices, including waveguides, light-emitting diodes, lasers, and photodetectors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press Inc., New York, 2006) A. Yariv, P. Yeh, Photonics: Optical Electronics in Modern Communications (The Oxford Series in Electrical and Computer Engineering) (Oxford University Press Inc., New York, 2006)
2.
Zurück zum Zitat M.J. Deen, P.K. Basu, Silicon Photonics: Fundamentals and Devices (Wiley, Chichester, 2012)CrossRef M.J. Deen, P.K. Basu, Silicon Photonics: Fundamentals and Devices (Wiley, Chichester, 2012)CrossRef
3.
Zurück zum Zitat R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat. 24(11), 1975–1991 (2012)CrossRef R.G. Hobbs, N. Petkov, J.D. Holmes, Semiconductor nanowire fabrication by bottom-up and top-down paradigms. Chem. Mat. 24(11), 1975–1991 (2012)CrossRef
4.
Zurück zum Zitat C.M. Lieber, Nanoscale science and technology: building a big future from small things. MRS Bull. 28(07), 486–491 (2003)CrossRef C.M. Lieber, Nanoscale science and technology: building a big future from small things. MRS Bull. 28(07), 486–491 (2003)CrossRef
5.
Zurück zum Zitat C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007)CrossRef C.M. Lieber, Z.L. Wang, Functional nanowires. MRS Bull. 32(02), 99–108 (2007)CrossRef
6.
Zurück zum Zitat C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef C.M. Lieber, Semiconductor nanowires: a platform for nanoscience and nanotechnology. MRS Bull. 36(12), 1052–1063 (2011)CrossRef
7.
Zurück zum Zitat Y.-Z. Long, M. Yu, B. Sun, C.-Z. Gu, Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41(12), 4560–4580 (2012)CrossRef Y.-Z. Long, M. Yu, B. Sun, C.-Z. Gu, Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics. Chem. Soc. Rev. 41(12), 4560–4580 (2012)CrossRef
8.
Zurück zum Zitat R. Agarwal, C.M. Lieber, Semiconductor nanowires: optics and optoelectronics. Appl. Phys. A 85(3), 209–215 (2006)ADSCrossRef R. Agarwal, C.M. Lieber, Semiconductor nanowires: optics and optoelectronics. Appl. Phys. A 85(3), 209–215 (2006)ADSCrossRef
9.
Zurück zum Zitat Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9(10), 18–27 (2006)CrossRef Y. Li, F. Qian, J. Xiang, C.M. Lieber, Nanowire electronic and optoelectronic devices. Mater. Today 9(10), 18–27 (2006)CrossRef
10.
Zurück zum Zitat D.J. Sirbuly, M. Law, H. Yan, P. Yang, Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109(32), 15190–15213 (2005)CrossRef D.J. Sirbuly, M. Law, H. Yan, P. Yang, Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109(32), 15190–15213 (2005)CrossRef
11.
Zurück zum Zitat Y. Ma, X. Guo, X. Wu, L. Dai, L. Tong, Semiconductor nanowire lasers. Adv. Opt. Photonics 5(3), 216–273 (2013)CrossRef Y. Ma, X. Guo, X. Wu, L. Dai, L. Tong, Semiconductor nanowire lasers. Adv. Opt. Photonics 5(3), 216–273 (2013)CrossRef
12.
Zurück zum Zitat P.J. Pauzauskie, P. Yang, Nanowire photonics. Mater. Today 9(10), 36–45 (2006)CrossRef P.J. Pauzauskie, P. Yang, Nanowire photonics. Mater. Today 9(10), 36–45 (2006)CrossRef
13.
Zurück zum Zitat R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)ADSCrossRef R. Yan, D. Gargas, P. Yang, Nanowire photonics. Nat. Photonics 3(10), 569–576 (2009)ADSCrossRef
14.
Zurück zum Zitat Y. Huang, X. Duan, C.M. Lieber, Nanowires for integrated multicolor nanophotonics. Small 1(1), 142–147 (2005)CrossRef Y. Huang, X. Duan, C.M. Lieber, Nanowires for integrated multicolor nanophotonics. Small 1(1), 142–147 (2005)CrossRef
15.
Zurück zum Zitat K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77(2), 447–462 (1995)ADSCrossRef K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, H. Kakibayashi, Growth and optical properties of nanometer-scale GaAs and InAs whiskers. J. Appl. Phys. 77(2), 447–462 (1995)ADSCrossRef
16.
Zurück zum Zitat Y. Nagamune, H. Watabe, F. Sogawa, Y. Arakawa, One-dimensional exciton diffusion in GaAs quantum wires. Appl. Phys. Lett. 67(11), 1535–1537 (1995)ADSCrossRef Y. Nagamune, H. Watabe, F. Sogawa, Y. Arakawa, One-dimensional exciton diffusion in GaAs quantum wires. Appl. Phys. Lett. 67(11), 1535–1537 (1995)ADSCrossRef
17.
Zurück zum Zitat X. Duan, J. Wang, C.M. Lieber, Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 76(9), 1116–1118 (2000)ADSCrossRef X. Duan, J. Wang, C.M. Lieber, Synthesis and optical properties of gallium arsenide nanowires. Appl. Phys. Lett. 76(9), 1116–1118 (2000)ADSCrossRef
18.
Zurück zum Zitat J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293(5534), 1455–1457 (2001)ADSCrossRef J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293(5534), 1455–1457 (2001)ADSCrossRef
19.
Zurück zum Zitat M.S. Gudiksen, J. Wang, C.M. Lieber, Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106(16), 4036–4039 (2002)CrossRef M.S. Gudiksen, J. Wang, C.M. Lieber, Size-dependent photoluminescence from single indium phosphide nanowires. J. Phys. Chem. B 106(16), 4036–4039 (2002)CrossRef
20.
Zurück zum Zitat H.W. Seo, S.Y. Bae, J. Park, H. Yang, K.S. Park, S. Kim, Strained gallium nitride nanowires. J. Chem. Phys. 116(21), 9492–9499 (2002)ADSCrossRef H.W. Seo, S.Y. Bae, J. Park, H. Yang, K.S. Park, S. Kim, Strained gallium nitride nanowires. J. Chem. Phys. 116(21), 9492–9499 (2002)ADSCrossRef
21.
Zurück zum Zitat P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12(5), 323 (2002)CrossRef P. Yang, H. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. He, H.-J. Choi, Controlled growth of ZnO nanowires and their optical properties. Adv. Funct. Mater. 12(5), 323 (2002)CrossRef
22.
Zurück zum Zitat Q. Xiong, G. Chen, J. Acord, X. Liu, J. Zengel, H. Gutierrez, J. Redwing, L. Lew Yan Voon, B. Lassen, P. Eklund, Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett. 4(9), 1663–1668 (2004) Q. Xiong, G. Chen, J. Acord, X. Liu, J. Zengel, H. Gutierrez, J. Redwing, L. Lew Yan Voon, B. Lassen, P. Eklund, Optical properties of rectangular cross-sectional ZnS nanowires. Nano Lett. 4(9), 1663–1668 (2004)
23.
Zurück zum Zitat B. Xiang, H. Zhang, G. Li, F. Yang, F. Su, R. Wang, J. Xu, G. Lu, X. Sun, Q. Zhao, Green-light-emitting ZnSe nanowires fabricated via vapor phase growth. Appl. Phys. Lett. 82(19), 3330–3332 (2003)ADSCrossRef B. Xiang, H. Zhang, G. Li, F. Yang, F. Su, R. Wang, J. Xu, G. Lu, X. Sun, Q. Zhao, Green-light-emitting ZnSe nanowires fabricated via vapor phase growth. Appl. Phys. Lett. 82(19), 3330–3332 (2003)ADSCrossRef
24.
Zurück zum Zitat P.V. Radovanovic, C.J. Barrelet, S. Gradecak, F. Qian, C.M. Lieber, General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett. 5(7), 1407–1411 (2005)ADSCrossRef P.V. Radovanovic, C.J. Barrelet, S. Gradecak, F. Qian, C.M. Lieber, General synthesis of manganese-doped II-VI and III-V semiconductor nanowires. Nano Lett. 5(7), 1407–1411 (2005)ADSCrossRef
25.
Zurück zum Zitat C. Ma, Y. Ding, D. Moore, X. Wang, Z.L. Wang, Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 126(3), 708–709 (2004)CrossRef C. Ma, Y. Ding, D. Moore, X. Wang, Z.L. Wang, Single-crystal CdSe nanosaws. J. Am. Chem. Soc. 126(3), 708–709 (2004)CrossRef
26.
Zurück zum Zitat S. Bhattacharya, D. Banerjee, K. Adu, S. Samui, S. Bhattacharyya, Confinement in silicon nanowires: optical properties. Appl. Phys. Lett. 85(11), 2008–2010 (2004)ADSCrossRef S. Bhattacharya, D. Banerjee, K. Adu, S. Samui, S. Bhattacharyya, Confinement in silicon nanowires: optical properties. Appl. Phys. Lett. 85(11), 2008–2010 (2004)ADSCrossRef
27.
Zurück zum Zitat D. van Dam, D.R. Abujetas, R. Paniagua-Dominguez, J.A. Sánchez-Gil, E.P. Bakkers, J. Haverkort, J. Gómez-Rivas, Directional and polarized emission from nanowire arrays. Nano Lett. 15(7), 4557–4563 (2015)ADSCrossRef D. van Dam, D.R. Abujetas, R. Paniagua-Dominguez, J.A. Sánchez-Gil, E.P. Bakkers, J. Haverkort, J. Gómez-Rivas, Directional and polarized emission from nanowire arrays. Nano Lett. 15(7), 4557–4563 (2015)ADSCrossRef
28.
Zurück zum Zitat R. Solanki, J. Huo, J. Freeouf, B. Miner, Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81(20), 3864–3866 (2002)ADSCrossRef R. Solanki, J. Huo, J. Freeouf, B. Miner, Atomic layer deposition of ZnSe/CdSe superlattice nanowires. Appl. Phys. Lett. 81(20), 3864–3866 (2002)ADSCrossRef
29.
Zurück zum Zitat W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15(6), 526–529 (2003)CrossRef W.I. Park, G.C. Yi, M. Kim, S.J. Pennycook, Quantum confinement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15(6), 526–529 (2003)CrossRef
30.
Zurück zum Zitat N. Panev, A.I. Persson, N. Sköld, L. Samuelson, Sharp exciton emission from single InAs quantum dots in GaAs nanowires. Appl. Phys. Lett. 83(11), 2238–2240 (2003)ADSCrossRef N. Panev, A.I. Persson, N. Sköld, L. Samuelson, Sharp exciton emission from single InAs quantum dots in GaAs nanowires. Appl. Phys. Lett. 83(11), 2238–2240 (2003)ADSCrossRef
31.
Zurück zum Zitat P. Poole, J. Lefebvre, J. Fraser, Spatially controlled, nanoparticle-free growth of InP nanowires. Appl. Phys. Lett. 83(10), 2055–2057 (2003)ADSCrossRef P. Poole, J. Lefebvre, J. Fraser, Spatially controlled, nanoparticle-free growth of InP nanowires. Appl. Phys. Lett. 83(10), 2055–2057 (2003)ADSCrossRef
32.
Zurück zum Zitat M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14(2), 982–986 (2014)ADSCrossRef M.J. Holmes, K. Choi, S. Kako, M. Arita, Y. Arakawa, Room-temperature triggered single photon emission from a III-nitride site-controlled nanowire quantum dot. Nano Lett. 14(2), 982–986 (2014)ADSCrossRef
33.
Zurück zum Zitat F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4(10), 1975–1979 (2004)ADSCrossRef F. Qian, Y. Li, S. Gradecak, D. Wang, C.J. Barrelet, C.M. Lieber, Gallium nitride-based nanowire radial heterostructures for nanophotonics. Nano Lett. 4(10), 1975–1979 (2004)ADSCrossRef
34.
Zurück zum Zitat F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)ADSCrossRef F. Qian, Y. Li, S. Gradečak, H.-G. Park, Y. Dong, Y. Ding, Z.L. Wang, C.M. Lieber, Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. Nat. Mater. 7(9), 701–706 (2008)ADSCrossRef
35.
Zurück zum Zitat F. Qian, M. Brewster, S.K. Lim, Y. Ling, C. Greene, O. Laboutin, J.W. Johnson, S. Gradečak, Y. Cao, Y. Li, Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties. Nano Lett. 12(6), 3344–3350 (2012)ADSCrossRef F. Qian, M. Brewster, S.K. Lim, Y. Ling, C. Greene, O. Laboutin, J.W. Johnson, S. Gradečak, Y. Cao, Y. Li, Controlled synthesis of AlN/GaN multiple quantum well nanowire structures and their optical properties. Nano Lett. 12(6), 3344–3350 (2012)ADSCrossRef
36.
Zurück zum Zitat Y.-R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984) Y.-R. Shen, Principles of Nonlinear Optics (Wiley, New York, 1984)
37.
Zurück zum Zitat R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003) R.W. Boyd, Nonlinear Optics, 2nd edn. (Academic Press, San Diego, 2003)
38.
Zurück zum Zitat S. Yue, M.N. Slipchenko, J.X. Cheng, Multimodal nonlinear optical microscopy. Laser Photonics Rev. 5(4), 496–512 (2011)CrossRef S. Yue, M.N. Slipchenko, J.X. Cheng, Multimodal nonlinear optical microscopy. Laser Photonics Rev. 5(4), 496–512 (2011)CrossRef
39.
Zurück zum Zitat L. Tong, J.-X. Cheng, Label-free imaging through nonlinear optical signals. Mater. Today 14(6), 264–273 (2011)MathSciNetCrossRef L. Tong, J.-X. Cheng, Label-free imaging through nonlinear optical signals. Mater. Today 14(6), 264–273 (2011)MathSciNetCrossRef
40.
Zurück zum Zitat R. Cisek, V. Barzda, H.E. Ruda, A. Shik, Nonlinear optical properties of semiconductor nanowires. IEEE J. Sel. Top. Quant. 17(4), 915–921 (2011)CrossRef R. Cisek, V. Barzda, H.E. Ruda, A. Shik, Nonlinear optical properties of semiconductor nanowires. IEEE J. Sel. Top. Quant. 17(4), 915–921 (2011)CrossRef
41.
Zurück zum Zitat C.J. Barrelet, H.-S. Ee, S.-H. Kwon, H.-G. Park, Nonlinear mixing in nanowire subwavelength waveguides. Nano Lett. 11(7), 3022–3025 (2011)ADSCrossRef C.J. Barrelet, H.-S. Ee, S.-H. Kwon, H.-G. Park, Nonlinear mixing in nanowire subwavelength waveguides. Nano Lett. 11(7), 3022–3025 (2011)ADSCrossRef
42.
Zurück zum Zitat J.C. Johnson, H. Yan, R.D. Schaller, P.B. Petersen, P. Yang, R.J. Saykally, Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett. 2(4), 279–283 (2002)ADSCrossRef J.C. Johnson, H. Yan, R.D. Schaller, P.B. Petersen, P. Yang, R.J. Saykally, Near-field imaging of nonlinear optical mixing in single zinc oxide nanowires. Nano Lett. 2(4), 279–283 (2002)ADSCrossRef
43.
Zurück zum Zitat J. Long, B. Simpkins, D. Rowenhorst, P. Pehrsson, Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett. 7(3), 831–836 (2007)ADSCrossRef J. Long, B. Simpkins, D. Rowenhorst, P. Pehrsson, Far-field imaging of optical second-harmonic generation in single GaN nanowires. Nano Lett. 7(3), 831–836 (2007)ADSCrossRef
44.
Zurück zum Zitat Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P. Yang, Tunable nanowire nonlinear optical probe. Nature 447(7148), 1098–1101 (2007)ADSCrossRef Y. Nakayama, P.J. Pauzauskie, A. Radenovic, R.M. Onorato, R.J. Saykally, J. Liphardt, P. Yang, Tunable nanowire nonlinear optical probe. Nature 447(7148), 1098–1101 (2007)ADSCrossRef
45.
Zurück zum Zitat F. Wang, P.J. Reece, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, Nonlinear optical processes in optically trapped InP nanowires. Nano Lett. 11(10), 4149–4153 (2011)ADSCrossRef F. Wang, P.J. Reece, S. Paiman, Q. Gao, H.H. Tan, C. Jagadish, Nonlinear optical processes in optically trapped InP nanowires. Nano Lett. 11(10), 4149–4153 (2011)ADSCrossRef
46.
Zurück zum Zitat R. Sanatinia, M. Swillo, S. Anand, Surface second-harmonic generation from vertical GaP nanopillars. Nano Lett. 12(2), 820–826 (2012)ADSCrossRef R. Sanatinia, M. Swillo, S. Anand, Surface second-harmonic generation from vertical GaP nanopillars. Nano Lett. 12(2), 820–826 (2012)ADSCrossRef
47.
Zurück zum Zitat X. Liu, Q. Zhang, W.K. Chong, J.N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, T.C. Sum, Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure. ACS Nano 9(5), 5018–5026 (2015)CrossRef X. Liu, Q. Zhang, W.K. Chong, J.N. Yip, X. Wen, Z. Li, F. Wei, G. Yu, Q. Xiong, T.C. Sum, Cooperative enhancement of second-harmonic generation from a single CdS nanobelt-hybrid plasmonic structure. ACS Nano 9(5), 5018–5026 (2015)CrossRef
48.
Zurück zum Zitat R. Sanatinia, S. Anand, M. Swillo, Modal engineering of second-harmonic generation in single GaP nanopillars. Nano Lett. 14(9), 5376–5381 (2014)ADSCrossRef R. Sanatinia, S. Anand, M. Swillo, Modal engineering of second-harmonic generation in single GaP nanopillars. Nano Lett. 14(9), 5376–5381 (2014)ADSCrossRef
49.
Zurück zum Zitat O. Schwartz, D. Oron, Background-free third harmonic imaging of gold nanorods. Nano Lett. 9(12), 4093–4097 (2009)ADSCrossRef O. Schwartz, D. Oron, Background-free third harmonic imaging of gold nanorods. Nano Lett. 9(12), 4093–4097 (2009)ADSCrossRef
50.
Zurück zum Zitat Y. Jung, L. Tong, A. Tanaudommongkon, J.-X. Cheng, C. Yang, In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett. 9(6), 2440–2444 (2009)ADSCrossRef Y. Jung, L. Tong, A. Tanaudommongkon, J.-X. Cheng, C. Yang, In vitro and in vivo nonlinear optical imaging of silicon nanowires. Nano Lett. 9(6), 2440–2444 (2009)ADSCrossRef
51.
Zurück zum Zitat J. Jang, S. Park, N. Frazer, J. Ketterson, S. Lee, B. Roy, J. Cho, Strong P-band emission and third harmonic generation from ZnO nanorods. Solid State Commun. 152(14), 1241–1243 (2012)ADSCrossRef J. Jang, S. Park, N. Frazer, J. Ketterson, S. Lee, B. Roy, J. Cho, Strong P-band emission and third harmonic generation from ZnO nanorods. Solid State Commun. 152(14), 1241–1243 (2012)ADSCrossRef
52.
Zurück zum Zitat Y. Jung, H. Chen, L. Tong, J.-X. Cheng, Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing. J. Phys. Chem. C 113(7), 2657–2663 (2009)CrossRef Y. Jung, H. Chen, L. Tong, J.-X. Cheng, Imaging gold nanorods by plasmon-resonance-enhanced four wave mixing. J. Phys. Chem. C 113(7), 2657–2663 (2009)CrossRef
53.
Zurück zum Zitat E. Poutrina, C. Ciracì, D.J. Gauthier, D.R. Smith, Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film. Opt. Express 20(10), 11005–11013 (2012)ADSCrossRef E. Poutrina, C. Ciracì, D.J. Gauthier, D.R. Smith, Enhancing four-wave-mixing processes by nanowire arrays coupled to a gold film. Opt. Express 20(10), 11005–11013 (2012)ADSCrossRef
54.
Zurück zum Zitat Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, E.O. Potma, Four-wave mixing microscopy of nanostructures. Adv. Opt. Photonics 3(1), 1–52 (2011)CrossRef Y. Wang, C.-Y. Lin, A. Nikolaenko, V. Raghunathan, E.O. Potma, Four-wave mixing microscopy of nanostructures. Adv. Opt. Photonics 3(1), 1–52 (2011)CrossRef
55.
Zurück zum Zitat R.W. Hellwarth, Theory of stimulated Raman scattering. Phys. Rev. 130(5), 1850 (1963)ADSCrossRef R.W. Hellwarth, Theory of stimulated Raman scattering. Phys. Rev. 130(5), 1850 (1963)ADSCrossRef
56.
Zurück zum Zitat M.F.S. Ferreira, Stimulated Raman scattering. In Nonlinear Effects in Optical Fibers (Wiley, New Jersey, 2011), pp. 245–272 M.F.S. Ferreira, Stimulated Raman scattering. In Nonlinear Effects in Optical Fibers (Wiley, New Jersey, 2011), pp. 245–272
57.
Zurück zum Zitat J. Wu, A.K. Gupta, H.R. Gutierrez, P.C. Eklund, Cavity-enhanced stimulated Raman scattering from short GaP nanowires. Nano Lett. 9(9), 3252–3257 (2009)ADSCrossRef J. Wu, A.K. Gupta, H.R. Gutierrez, P.C. Eklund, Cavity-enhanced stimulated Raman scattering from short GaP nanowires. Nano Lett. 9(9), 3252–3257 (2009)ADSCrossRef
58.
Zurück zum Zitat L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426(6968), 816–819 (2003)ADSCrossRef L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Subwavelength-diameter silica wires for low-loss optical wave guiding. Nature 426(6968), 816–819 (2003)ADSCrossRef
59.
Zurück zum Zitat C.J. Barrelet, A.B. Greytak, C.M. Lieber, Nanowire photonic circuit elements. Nano Lett. 4(10), 1981–1985 (2004)ADSCrossRef C.J. Barrelet, A.B. Greytak, C.M. Lieber, Nanowire photonic circuit elements. Nano Lett. 4(10), 1981–1985 (2004)ADSCrossRef
60.
Zurück zum Zitat M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang, Nanoribbon waveguides for subwavelength photonics integration. Science 305(5688), 1269–1273 (2004)ADSCrossRef M. Law, D.J. Sirbuly, J.C. Johnson, J. Goldberger, R.J. Saykally, P. Yang, Nanoribbon waveguides for subwavelength photonics integration. Science 305(5688), 1269–1273 (2004)ADSCrossRef
61.
Zurück zum Zitat D.J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A.V. Maslov, K. Knutsen, C.-Z. Ning, R.J. Saykally, P. Yang, Optical routing and sensing with nanowire assemblies. Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005)ADSCrossRef D.J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A.V. Maslov, K. Knutsen, C.-Z. Ning, R.J. Saykally, P. Yang, Optical routing and sensing with nanowire assemblies. Proc. Natl. Acad. Sci. U.S.A. 102(22), 7800–7805 (2005)ADSCrossRef
62.
Zurück zum Zitat R. Yan, P. Pausauskie, J. Huang, P. Yang, Direct photonic–plasmonic coupling and routing in single nanowires. Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009)ADSCrossRef R. Yan, P. Pausauskie, J. Huang, P. Yang, Direct photonic–plasmonic coupling and routing in single nanowires. Proc. Natl. Acad. Sci. U.S.A. 106(50), 21045–21050 (2009)ADSCrossRef
63.
Zurück zum Zitat H.-G. Park, C.J. Barrelet, Y. Wu, B. Tian, F. Qian, C.M. Lieber, A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2(10), 622–626 (2008)CrossRef H.-G. Park, C.J. Barrelet, Y. Wu, B. Tian, F. Qian, C.M. Lieber, A wavelength-selective photonic-crystal waveguide coupled to a nanowire light source. Nat. Photonics 2(10), 622–626 (2008)CrossRef
64.
Zurück zum Zitat J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2, 820 (2012)ADS J. Xu, X. Zhuang, P. Guo, W. Huang, W. Hu, Q. Zhang, Q. Wan, X. Zhu, Z. Yang, L. Tong, Asymmetric light propagation in composition-graded semiconductor nanowires. Sci. Rep. 2, 820 (2012)ADS
65.
Zurück zum Zitat E.F. Schubert, J. Cho, J.K. Kim, Light-emitting diodes. In Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, Hoboken, NJ, 2015) E.F. Schubert, J. Cho, J.K. Kim, Light-emitting diodes. In Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, Hoboken, NJ, 2015)
66.
Zurück zum Zitat X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)ADSCrossRef X. Duan, Y. Huang, Y. Cui, J. Wang, C.M. Lieber, Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409(6816), 66–69 (2001)ADSCrossRef
67.
Zurück zum Zitat Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3(3), 343–346 (2003)ADSCrossRef Z. Zhong, F. Qian, D. Wang, C.M. Lieber, Synthesis of p-type gallium nitride nanowires for electronic and photonic nanodevices. Nano Lett. 3(3), 343–346 (2003)ADSCrossRef
68.
Zurück zum Zitat K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRef K. Haraguchi, T. Katsuyama, K. Hiruma, K. Ogawa, GaAs p-n junction formed in quantum wire crystals. Appl. Phys. Lett. 60(6), 745–747 (1992)ADSCrossRef
69.
Zurück zum Zitat M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)ADSCrossRef M.S. Gudiksen, L.J. Lauhon, J. Wang, D.C. Smith, C.M. Lieber, Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 415(6872), 617–620 (2002)ADSCrossRef
70.
Zurück zum Zitat H.-M. Kim, Y.-H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4(6), 1059–1062 (2004)ADSCrossRef H.-M. Kim, Y.-H. Cho, H. Lee, S.I. Kim, S.R. Ryu, D.Y. Kim, T.W. Kang, K.S. Chung, High-brightness light emitting diodes using dislocation-free indium gallium nitride/gallium nitride multiquantum-well nanorod arrays. Nano Lett. 4(6), 1059–1062 (2004)ADSCrossRef
71.
Zurück zum Zitat Y.-H. Ra, R. Navamathavan, H.-I. Yoo, C.-R. Lee, Single Nanowire Light-Emitting Diodes Using Uniaxial and Coaxial InGaN/GaN Multiple Quantum Wells Synthesized by Metalorganic Chemical Vapor Deposition. Nano Lett. 14, 1537–1545 (2014)ADSCrossRef Y.-H. Ra, R. Navamathavan, H.-I. Yoo, C.-R. Lee, Single Nanowire Light-Emitting Diodes Using Uniaxial and Coaxial InGaN/GaN Multiple Quantum Wells Synthesized by Metalorganic Chemical Vapor Deposition. Nano Lett. 14, 1537–1545 (2014)ADSCrossRef
72.
Zurück zum Zitat F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)ADSCrossRef F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C.M. Lieber, Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 5(11), 2287–2291 (2005)ADSCrossRef
73.
Zurück zum Zitat Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, Coaxial InxGa1–xN/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. Nano Lett. 13(8), 3506–3516 (2013)ADSCrossRef Y.-H. Ra, R. Navamathavan, J.-H. Park, C.-R. Lee, Coaxial InxGa1–xN/GaN multiple quantum well nanowire arrays on Si(111) substrate for high-performance light-emitting diodes. Nano Lett. 13(8), 3506–3516 (2013)ADSCrossRef
74.
Zurück zum Zitat O. Svelto, D.C. Hanna, Principles of Lasers, 5th edn. (Springer, New York, 2010)CrossRef O. Svelto, D.C. Hanna, Principles of Lasers, 5th edn. (Springer, New York, 2010)CrossRef
75.
Zurück zum Zitat M.A. Zimmler, F. Capasso, S. Müller, C. Ronning, Optically pumped nanowire lasers: invited review. Semicond. Sci. Tech. 25(2), 024001 (2010)ADSCrossRef M.A. Zimmler, F. Capasso, S. Müller, C. Ronning, Optically pumped nanowire lasers: invited review. Semicond. Sci. Tech. 25(2), 024001 (2010)ADSCrossRef
76.
Zurück zum Zitat R.M. Ma, R.F. Oulton, V.J. Sorger, X. Zhang, Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev. 7(1), 1–21 (2013)CrossRef R.M. Ma, R.F. Oulton, V.J. Sorger, X. Zhang, Plasmon lasers: coherent light source at molecular scales. Laser Photonics Rev. 7(1), 1–21 (2013)CrossRef
77.
Zurück zum Zitat D. Vanmaekelbergh, L.K. van Vugt, ZnO nanowire lasers. Nanoscale 3(7), 2783–2800 (2011)ADSCrossRef D. Vanmaekelbergh, L.K. van Vugt, ZnO nanowire lasers. Nanoscale 3(7), 2783–2800 (2011)ADSCrossRef
78.
Zurück zum Zitat M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)ADSCrossRef M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, Room-temperature ultraviolet nanowire nanolasers. Science 292(5523), 1897–1899 (2001)ADSCrossRef
79.
Zurück zum Zitat J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang, Single nanowire lasers. J. Phys. Chem. B 105(46), 11387–11390 (2001)CrossRef J.C. Johnson, H. Yan, R.D. Schaller, L.H. Haber, R.J. Saykally, P. Yang, Single nanowire lasers. J. Phys. Chem. B 105(46), 11387–11390 (2001)CrossRef
80.
Zurück zum Zitat H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef H. Yan, R. He, J. Johnson, M. Law, R.J. Saykally, P. Yang, Dendritic nanowire ultraviolet laser array. J. Am. Chem. Soc. 125(16), 4728–4729 (2003)CrossRef
81.
Zurück zum Zitat J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, R.J. Saykally, Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett. 4(2), 197–204 (2004)ADSCrossRef J.C. Johnson, K.P. Knutsen, H. Yan, M. Law, Y. Zhang, P. Yang, R.J. Saykally, Ultrafast carrier dynamics in single ZnO nanowire and nanoribbon lasers. Nano Lett. 4(2), 197–204 (2004)ADSCrossRef
82.
Zurück zum Zitat Y. Zhang, R.E. Russo, S.S. Mao, Quantum efficiency of ZnO nanowire nanolasers. Appl. Phys. Lett. 87(4), 043106–043106–3 (2005) Y. Zhang, R.E. Russo, S.S. Mao, Quantum efficiency of ZnO nanowire nanolasers. Appl. Phys. Lett. 87(4), 043106–043106–3 (2005)
83.
Zurück zum Zitat W. Kwok, A.B. Djurišić, Y.H. Leung, D. Li, K. Tam, D. Phillips, W. Chan, Influence of annealing on stimulated emission in ZnO nanorods. Appl. Phys. Lett. 89(18), 183112 (2006)ADSCrossRef W. Kwok, A.B. Djurišić, Y.H. Leung, D. Li, K. Tam, D. Phillips, W. Chan, Influence of annealing on stimulated emission in ZnO nanorods. Appl. Phys. Lett. 89(18), 183112 (2006)ADSCrossRef
84.
Zurück zum Zitat M.A. Zimmler, J. Bao, F. Capasso, S. Müller, C. Ronning, Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93(5), 051101 (2008)ADSCrossRef M.A. Zimmler, J. Bao, F. Capasso, S. Müller, C. Ronning, Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl. Phys. Lett. 93(5), 051101 (2008)ADSCrossRef
85.
Zurück zum Zitat D.J. Gargas, M.E. Toimil-Molares, P. Yang, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. J. Am. Chem. Soc. 131(6), 2125–2127 (2009)CrossRef D.J. Gargas, M.E. Toimil-Molares, P. Yang, Imaging single ZnO vertical nanowire laser cavities using UV-laser scanning confocal microscopy. J. Am. Chem. Soc. 131(6), 2125–2127 (2009)CrossRef
86.
Zurück zum Zitat B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, Z.L. Wang, Lasing mechanism of ZnO nanowires/nanobelts at room temperature. J. Phys. Chem. B 110(26), 12865–12873 (2006)CrossRef B. Zou, R. Liu, F. Wang, A. Pan, L. Cao, Z.L. Wang, Lasing mechanism of ZnO nanowires/nanobelts at room temperature. J. Phys. Chem. B 110(26), 12865–12873 (2006)CrossRef
87.
Zurück zum Zitat J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Single gallium nitride nanowire lasers. Nat. Mater. 1(2), 106–110 (2002)ADSCrossRef J.C. Johnson, H.-J. Choi, K.P. Knutsen, R.D. Schaller, P. Yang, R.J. Saykally, Single gallium nitride nanowire lasers. Nat. Mater. 1(2), 106–110 (2002)ADSCrossRef
88.
Zurück zum Zitat S. Gradečak, F. Qian, Y. Li, H.-G. Park, C.M. Lieber, GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87(17), 173111 (2005)ADSCrossRef S. Gradečak, F. Qian, Y. Li, H.-G. Park, C.M. Lieber, GaN nanowire lasers with low lasing thresholds. Appl. Phys. Lett. 87(17), 173111 (2005)ADSCrossRef
89.
Zurück zum Zitat H.-G. Park, F. Qian, C.J. Barrelet, Y. Li, Microstadium single-nanowire laser. Appl. Phys. Lett. 91(25), 251115–251115-3 (2007) H.-G. Park, F. Qian, C.J. Barrelet, Y. Li, Microstadium single-nanowire laser. Appl. Phys. Lett. 91(25), 251115–251115-3 (2007)
90.
Zurück zum Zitat P.C. Upadhya, Q. Li, G.T. Wang, A.J. Fischer, A.J. Taylor, R.P. Prasankumar, The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires. Semicond. Sci. Tech. 25(2), 024017 (2010)ADSCrossRef P.C. Upadhya, Q. Li, G.T. Wang, A.J. Fischer, A.J. Taylor, R.P. Prasankumar, The influence of defect states on non-equilibrium carrier dynamics in GaN nanowires. Semicond. Sci. Tech. 25(2), 024017 (2010)ADSCrossRef
91.
Zurück zum Zitat A. Armstrong, Q. Li, K.H.A. Bogart, Y. Lin, G.T. Wang, A.A. Talin, Deep level optical spectroscopy of GaN nanorods. J. Appl. Phys. 106(5), 053712 (2009)ADSCrossRef A. Armstrong, Q. Li, K.H.A. Bogart, Y. Lin, G.T. Wang, A.A. Talin, Deep level optical spectroscopy of GaN nanorods. J. Appl. Phys. 106(5), 053712 (2009)ADSCrossRef
92.
Zurück zum Zitat A. Armstrong, G. Wang, A. Talin, Depletion-mode photoconductivity study of deep levels in GaN nanowires. J. Electron. Mater. 38(4), 484–489 (2009)ADSCrossRef A. Armstrong, G. Wang, A. Talin, Depletion-mode photoconductivity study of deep levels in GaN nanowires. J. Electron. Mater. 38(4), 484–489 (2009)ADSCrossRef
93.
Zurück zum Zitat Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014)ADSCrossRef Q. Zhang, G. Li, X. Liu, F. Qian, Y. Li, T.C. Sum, C.M. Lieber, Q. Xiong, A room temperature low-threshold ultraviolet plasmonic nanolaser. Nat. Commun. 5, 4953 (2014)ADSCrossRef
94.
Zurück zum Zitat P.J. Pauzauskie, D.J. Sirbuly, P. Yang, Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 96(14), 143903 (2006)ADSCrossRef P.J. Pauzauskie, D.J. Sirbuly, P. Yang, Semiconductor nanowire ring resonator laser. Phys. Rev. Lett. 96(14), 143903 (2006)ADSCrossRef
95.
Zurück zum Zitat R. Agarwal, C.J. Barrelet, C.M. Lieber, Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5(5), 917–920 (2005)ADSCrossRef R. Agarwal, C.J. Barrelet, C.M. Lieber, Lasing in single cadmium sulfide nanowire optical cavities. Nano Lett. 5(5), 917–920 (2005)ADSCrossRef
96.
Zurück zum Zitat A.B. Greytak, C.J. Barrelet, Y. Li, C.M. Lieber, Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 87(15), 151103 (2005)ADSCrossRef A.B. Greytak, C.J. Barrelet, Y. Li, C.M. Lieber, Semiconductor nanowire laser and nanowire waveguide electro-optic modulators. Appl. Phys. Lett. 87(15), 151103 (2005)ADSCrossRef
97.
Zurück zum Zitat B. Liu, R. Chen, X. Xu, D. Li, Y. Zhao, Z. Shen, Q. Xiong, H. Sun, Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C 115(26), 12826–12830 (2011)CrossRef B. Liu, R. Chen, X. Xu, D. Li, Y. Zhao, Z. Shen, Q. Xiong, H. Sun, Exciton-related photoluminescence and lasing in CdS nanobelts. J. Phys. Chem. C 115(26), 12826–12830 (2011)CrossRef
98.
Zurück zum Zitat S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K.A. Sunter, F. Capasso, C. Ronning, Low threshold room-temperature lasing of CdS nanowires. Nanotechnology 23(36), 365204 (2012)CrossRef S. Geburt, A. Thielmann, R. Röder, C. Borschel, A. McDonnell, M. Kozlik, J. Kühnel, K.A. Sunter, F. Capasso, C. Ronning, Low threshold room-temperature lasing of CdS nanowires. Nanotechnology 23(36), 365204 (2012)CrossRef
99.
Zurück zum Zitat A. Pan, R. Liu, Q. Zhang, Q. Wan, P. He, M. Zacharias, B. Zou, Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts. J. Phys. Chem. C 111(38), 14253–14256 (2007)CrossRef A. Pan, R. Liu, Q. Zhang, Q. Wan, P. He, M. Zacharias, B. Zou, Fabrication and red-color lasing of individual highly uniform single-crystal CdSe nanobelts. J. Phys. Chem. C 111(38), 14253–14256 (2007)CrossRef
100.
Zurück zum Zitat Y. Ye, Y. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. Tong, G. Qin, Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method. Nanoscale 3(8), 3072–3075 (2011)ADSCrossRef Y. Ye, Y. Ma, S. Yue, L. Dai, H. Meng, Z. Li, L. Tong, G. Qin, Lasing of CdSe/SiO2 nanocables synthesized by the facile chemical vapor deposition method. Nanoscale 3(8), 3072–3075 (2011)ADSCrossRef
101.
Zurück zum Zitat A. Chin, S. Vaddiraju, A. Maslov, C. Ning, M. Sunkara, M. Meyyappan, Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88(16), 163115 (2006)ADSCrossRef A. Chin, S. Vaddiraju, A. Maslov, C. Ning, M. Sunkara, M. Meyyappan, Near-infrared semiconductor subwavelength-wire lasers. Appl. Phys. Lett. 88(16), 163115 (2006)ADSCrossRef
102.
Zurück zum Zitat B. Hua, J. Motohisa, Y. Ding, S. Hara, T. Fukui, Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl. Phys. Lett. 91(13), 131112 (2007)ADSCrossRef B. Hua, J. Motohisa, Y. Ding, S. Hara, T. Fukui, Characterization of Fabry-Perot microcavity modes in GaAs nanowires fabricated by selective-area metal organic vapor phase epitaxy. Appl. Phys. Lett. 91(13), 131112 (2007)ADSCrossRef
103.
Zurück zum Zitat Y. Ding, J. Motohisa, B. Hua, S. Hara, T. Fukui, Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy. Nano Lett. 7(12), 3598–3602 (2007)ADSCrossRef Y. Ding, J. Motohisa, B. Hua, S. Hara, T. Fukui, Observation of microcavity modes and waveguides in InP nanowires fabricated by selective-area metalorganic vapor-phase epitaxy. Nano Lett. 7(12), 3598–3602 (2007)ADSCrossRef
104.
Zurück zum Zitat B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 9(1), 112–116 (2009)ADSCrossRef B. Hua, J. Motohisa, Y. Kobayashi, S. Hara, T. Fukui, Single GaAs/GaAsP coaxial core-shell nanowire lasers. Nano Lett. 9(1), 112–116 (2009)ADSCrossRef
105.
Zurück zum Zitat Y. Liu, J.A. Zapien, Y. Shan, C.Y. Geng, C.S. Lee, S.T. Lee, Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons. Adv. Mater. 17(11), 1372–1377 (2005)CrossRef Y. Liu, J.A. Zapien, Y. Shan, C.Y. Geng, C.S. Lee, S.T. Lee, Wavelength-controlled lasing in ZnxCd1−xS single-crystal nanoribbons. Adv. Mater. 17(11), 1372–1377 (2005)CrossRef
106.
Zurück zum Zitat A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. Wang, Color-tunable photoluminescence of alloyed CdSxSe1−x nanobelts. J. Am. Chem. Soc. 127(45), 15692–15693 (2005)CrossRef A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. Wang, Color-tunable photoluminescence of alloyed CdSxSe1−x nanobelts. J. Am. Chem. Soc. 127(45), 15692–15693 (2005)CrossRef
107.
Zurück zum Zitat A. Pan, R. Liu, F. Wang, S. Xie, B. Zou, M. Zacharias, Z.L. Wang, High-QUALITY ALLOYED CdSxSe1-x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110(45), 22313–22317 (2006)CrossRef A. Pan, R. Liu, F. Wang, S. Xie, B. Zou, M. Zacharias, Z.L. Wang, High-QUALITY ALLOYED CdSxSe1-x whiskers as waveguides with tunable stimulated emission. J. Phys. Chem. B 110(45), 22313–22317 (2006)CrossRef
108.
Zurück zum Zitat Y. Liu, J. Zapien, Y. Shan, H. Tang, C. Lee, S. Lee, Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons. Nanotechnology 18(36), 365606 (2007)CrossRef Y. Liu, J. Zapien, Y. Shan, H. Tang, C. Lee, S. Lee, Wavelength-tunable lasing in single-crystal CdS1−XSeX nanoribbons. Nanotechnology 18(36), 365606 (2007)CrossRef
109.
Zurück zum Zitat A. Pan, W. Zhou, E.S. Leong, R. Liu, A.H. Chin, B. Zou, C. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009)ADSCrossRef A. Pan, W. Zhou, E.S. Leong, R. Liu, A.H. Chin, B. Zou, C. Ning, Continuous alloy-composition spatial grading and superbroad wavelength-tunable nanowire lasers on a single chip. Nano Lett. 9(2), 784–788 (2009)ADSCrossRef
110.
Zurück zum Zitat F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, A. Pan, Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 133(7), 2037–2039 (2011)CrossRef F. Gu, Z. Yang, H. Yu, J. Xu, P. Wang, L. Tong, A. Pan, Spatial bandgap engineering along single alloy nanowires. J. Am. Chem. Soc. 133(7), 2037–2039 (2011)CrossRef
111.
Zurück zum Zitat J. Zapien, Y. Liu, Y. Shan, H. Tang, C. Lee, S. Lee, Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons. Appl. Phys. Lett. 90(21), 213114 (2007)ADSCrossRef J. Zapien, Y. Liu, Y. Shan, H. Tang, C. Lee, S. Lee, Continuous near-infrared-to-ultraviolet lasing from II-VI nanoribbons. Appl. Phys. Lett. 90(21), 213114 (2007)ADSCrossRef
112.
Zurück zum Zitat C. Luan, Y. Liu, Y. Jiang, J. Jie, I. Bello, S. Lee, J. Zapien, Composition tuning of room-temperature nanolasers. Vacuum 86(6), 737–741 (2012)ADSCrossRef C. Luan, Y. Liu, Y. Jiang, J. Jie, I. Bello, S. Lee, J. Zapien, Composition tuning of room-temperature nanolasers. Vacuum 86(6), 737–741 (2012)ADSCrossRef
113.
Zurück zum Zitat J. Xu, L. Ma, P. Guo, X. Zhuang, X. Zhu, W. Hu, X. Duan, A. Pan, Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134(30), 12394–12397 (2012)CrossRef J. Xu, L. Ma, P. Guo, X. Zhuang, X. Zhu, W. Hu, X. Duan, A. Pan, Room-temperature dual-wavelength lasing from single-nanoribbon lateral heterostructures. J. Am. Chem. Soc. 134(30), 12394–12397 (2012)CrossRef
114.
Zurück zum Zitat H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015)ADSCrossRef H. Zhu, Y. Fu, F. Meng, X. Wu, Z. Gong, Q. Ding, M.V. Gustafsson, M.T. Trinh, S. Jin, X. Zhu, Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 14(6), 636–642 (2015)ADSCrossRef
115.
Zurück zum Zitat Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, L. Tong, Single-nanowire single-mode laser. Nano Lett. 11(3), 1122–1126 (2011)ADSCrossRef Y. Xiao, C. Meng, P. Wang, Y. Ye, H. Yu, S. Wang, F. Gu, L. Dai, L. Tong, Single-nanowire single-mode laser. Nano Lett. 11(3), 1122–1126 (2011)ADSCrossRef
116.
Zurück zum Zitat Y. Xiao, C. Meng, X. Wu, L. Tong, Single mode lasing in coupled nanowires. Appl. Phys. Lett. 99(2), 023109 (2011)ADSCrossRef Y. Xiao, C. Meng, X. Wu, L. Tong, Single mode lasing in coupled nanowires. Appl. Phys. Lett. 99(2), 023109 (2011)ADSCrossRef
117.
Zurück zum Zitat H. Xu, J.B. Wright, T.-S. Luk, J.J. Figiel, K. Cross, L.F. Lester, G. Balakrishnan, G.T. Wang, I. Brener, Q. Li, Single-mode lasing of GaN nanowire-pairs. Appl. Phys. Lett. 101(11), 113106 (2012)ADSCrossRef H. Xu, J.B. Wright, T.-S. Luk, J.J. Figiel, K. Cross, L.F. Lester, G. Balakrishnan, G.T. Wang, I. Brener, Q. Li, Single-mode lasing of GaN nanowire-pairs. Appl. Phys. Lett. 101(11), 113106 (2012)ADSCrossRef
118.
Zurück zum Zitat H. Gao, A. Fu, S.C. Andrews, P. Yang, Cleaved-coupled nanowire lasers. Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013)ADSCrossRef H. Gao, A. Fu, S.C. Andrews, P. Yang, Cleaved-coupled nanowire lasers. Proc. Natl. Acad. Sci. U.S.A. 110(3), 865–869 (2013)ADSCrossRef
119.
Zurück zum Zitat X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003)ADSCrossRef X. Duan, Y. Huang, R. Agarwal, C.M. Lieber, Single-nanowire electrically driven lasers. Nature 421(6920), 241–245 (2003)ADSCrossRef
120.
Zurück zum Zitat X. Ma, J. Pan, P. Chen, D. Li, H. Zhang, Y. Yang, D. Yang, Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Opt. Express 17(16), 14426–14433 (2009)ADSCrossRef X. Ma, J. Pan, P. Chen, D. Li, H. Zhang, Y. Yang, D. Yang, Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si. Opt. Express 17(16), 14426–14433 (2009)ADSCrossRef
121.
Zurück zum Zitat S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6(8), 506–510 (2011)ADSCrossRef S. Chu, G. Wang, W. Zhou, Y. Lin, L. Chernyak, J. Zhao, J. Kong, L. Li, J. Ren, J. Liu, Electrically pumped waveguide lasing from ZnO nanowires. Nat. Nanotechnol. 6(8), 506–510 (2011)ADSCrossRef
122.
Zurück zum Zitat C. Liu, H. Xu, J. Ma, X. Li, X. Zhang, Y. Liu, R. Mu, Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl. Phys. Lett. 99(6), 063115 (2011)ADSCrossRef C. Liu, H. Xu, J. Ma, X. Li, X. Zhang, Y. Liu, R. Mu, Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl. Phys. Lett. 99(6), 063115 (2011)ADSCrossRef
123.
Zurück zum Zitat X.-Y. Liu, C.-X. Shan, S.-P. Wang, Z.-Z. Zhang, D.-Z. Shen, Electrically pumped random lasers fabricated from ZnO nanowire arrays. Nanoscale 4(9), 2843–2846 (2012)ADSCrossRef X.-Y. Liu, C.-X. Shan, S.-P. Wang, Z.-Z. Zhang, D.-Z. Shen, Electrically pumped random lasers fabricated from ZnO nanowire arrays. Nanoscale 4(9), 2843–2846 (2012)ADSCrossRef
124.
Zurück zum Zitat K. Li, X. Liu, Q. Wang, S. Zhao, Z. Mi, Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol. 10(2), 140–144 (2015)ADSCrossRef K. Li, X. Liu, Q. Wang, S. Zhao, Z. Mi, Ultralow-threshold electrically injected AlGaN nanowire ultraviolet lasers on Si operating at low temperature. Nat. Nanotechnol. 10(2), 140–144 (2015)ADSCrossRef
125.
Zurück zum Zitat F. Omnes, Introduction to semiconductor photodetectors. In Optoelectronic Sensors (ISTE, Arlington, VA, 2010), pp. 1–14 F. Omnes, Introduction to semiconductor photodetectors. In Optoelectronic Sensors (ISTE, Arlington, VA, 2010), pp. 1–14
126.
Zurück zum Zitat H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 14(2), 158–160 (2002)CrossRef H. Kind, H. Yan, B. Messer, M. Law, P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches. Adv. Mater. 14(2), 158–160 (2002)CrossRef
127.
Zurück zum Zitat C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo, D. Wang, Nanowire photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010)CrossRef C. Soci, A. Zhang, X.-Y. Bao, H. Kim, Y. Lo, D. Wang, Nanowire photodetectors. J. Nanosci. Nanotechnol. 10(3), 1430–1449 (2010)CrossRef
128.
Zurück zum Zitat M. Son, S. Im, Y. Park, C. Park, T. Kang, K.-H. Yoo, Ultraviolet photodetector based on single GaN nanorod p–n junctions. Mater. Sci. Eng., C 26(5), 886–888 (2006)CrossRef M. Son, S. Im, Y. Park, C. Park, T. Kang, K.-H. Yoo, Ultraviolet photodetector based on single GaN nanorod p–n junctions. Mater. Sci. Eng., C 26(5), 886–888 (2006)CrossRef
129.
Zurück zum Zitat H. Pettersson, J. Trägårdh, A.I. Persson, L. Landin, D. Hessman, L. Samuelson, Infrared photodetectors in heterostructure nanowires. Nano Lett. 6(2), 229–232 (2006)ADSCrossRef H. Pettersson, J. Trägårdh, A.I. Persson, L. Landin, D. Hessman, L. Samuelson, Infrared photodetectors in heterostructure nanowires. Nano Lett. 6(2), 229–232 (2006)ADSCrossRef
130.
Zurück zum Zitat Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li, Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Appl. Phys. Lett. 93(16), 163501–163501-3 (2008) Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li, Visible and ultraviolet light alternative photodetector based on ZnO nanowire/n-Si heterojunction. Appl. Phys. Lett. 93(16), 163501–163501-3 (2008)
131.
Zurück zum Zitat O. Hayden, R. Agarwal, C.M. Lieber, Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 5(5), 352–356 (2006)ADSCrossRef O. Hayden, R. Agarwal, C.M. Lieber, Nanoscale avalanche photodiodes for highly sensitive and spatially resolved photon detection. Nat. Mater. 5(5), 352–356 (2006)ADSCrossRef
132.
Zurück zum Zitat C. Yang, C.J. Barrelet, F. Capasso, C.M. Lieber, Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 6(12), 2929–2934 (2006)ADSCrossRef C. Yang, C.J. Barrelet, F. Capasso, C.M. Lieber, Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 6(12), 2929–2934 (2006)ADSCrossRef
133.
Zurück zum Zitat Y. Ahn, J. Dunning, J. Park, Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 5(7), 1367–1370 (2005)ADSCrossRef Y. Ahn, J. Dunning, J. Park, Scanning photocurrent imaging and electronic band studies in silicon nanowire field effect transistors. Nano Lett. 5(7), 1367–1370 (2005)ADSCrossRef
134.
Zurück zum Zitat Y. Gu, E.-S. Kwak, J. Lensch, J. Allen, T.W. Odom, L.J. Lauhon, Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87(4), 043111 (2005)ADSCrossRef Y. Gu, E.-S. Kwak, J. Lensch, J. Allen, T.W. Odom, L.J. Lauhon, Near-field scanning photocurrent microscopy of a nanowire photodetector. Appl. Phys. Lett. 87(4), 043111 (2005)ADSCrossRef
135.
Zurück zum Zitat G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed. Appl. Phys. Lett. 99(20), 203105 (2011)ADSCrossRef G. Cheng, X. Wu, B. Liu, B. Li, X. Zhang, Z. Du, ZnO nanowire Schottky barrier ultraviolet photodetector with high sensitivity and fast recovery speed. Appl. Phys. Lett. 99(20), 203105 (2011)ADSCrossRef
136.
Zurück zum Zitat A. Fujiwara, K. Yamazaki, Y. Takahashi, Detection of single charges and their generation-recombination dynamics in Si nanowires at room temperature. Appl. Phys. Lett. 80(24), 4567–4569 (2002)ADSCrossRef A. Fujiwara, K. Yamazaki, Y. Takahashi, Detection of single charges and their generation-recombination dynamics in Si nanowires at room temperature. Appl. Phys. Lett. 80(24), 4567–4569 (2002)ADSCrossRef
137.
Zurück zum Zitat Y. Ahn, J. Park, Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 91(16), 162102 (2007)ADSCrossRef Y. Ahn, J. Park, Efficient visible light detection using individual germanium nanowire field effect transistors. Appl. Phys. Lett. 91(16), 162102 (2007)ADSCrossRef
138.
Zurück zum Zitat J.K. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol’tsman, B. Voronov, R. Sobolewski, W.E. Keicher, K.K. Berggren, Fabrication development for nanowire GHz-counting-rate single-photon detectors. IEEE T. Appl. Supercon. 15(2), 626–630 (2005)CrossRef J.K. Yang, E. Dauler, A. Ferri, A. Pearlman, A. Verevkin, G. Gol’tsman, B. Voronov, R. Sobolewski, W.E. Keicher, K.K. Berggren, Fabrication development for nanowire GHz-counting-rate single-photon detectors. IEEE T. Appl. Supercon. 15(2), 626–630 (2005)CrossRef
139.
Zurück zum Zitat K.M. Rosfjord, J.K. Yang, E.A. Dauler, A.J. Kerman, V. Anant, B.M. Voronov, G.N. Gol’Tsman, K.K. Berggren, Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14(2), 527–534 (2006)ADSCrossRef K.M. Rosfjord, J.K. Yang, E.A. Dauler, A.J. Kerman, V. Anant, B.M. Voronov, G.N. Gol’Tsman, K.K. Berggren, Nanowire single-photon detector with an integrated optical cavity and anti-reflection coating. Opt. Express 14(2), 527–534 (2006)ADSCrossRef
140.
Zurück zum Zitat F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, F. Lévy, High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16(5), 3191–3196 (2008)ADSCrossRef F. Marsili, D. Bitauld, A. Fiore, A. Gaggero, F. Mattioli, R. Leoni, M. Benkahoul, F. Lévy, High efficiency NbN nanowire superconducting single photon detectors fabricated on MgO substrates from a low temperature process. Opt. Express 16(5), 3191–3196 (2008)ADSCrossRef
141.
Zurück zum Zitat S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A.J. Miller, R.H. Hadfield, S.W. Nam, Z. Wang, Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates. Appl. Phys. Lett. 92(6), 061116 (2008)ADSCrossRef S. Miki, M. Fujiwara, M. Sasaki, B. Baek, A.J. Miller, R.H. Hadfield, S.W. Nam, Z. Wang, Large sensitive-area NbN nanowire superconducting single-photon detectors fabricated on single-crystal MgO substrates. Appl. Phys. Lett. 92(6), 061116 (2008)ADSCrossRef
142.
Zurück zum Zitat F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R.J. Molnar, K.K. Berggren, Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett. 11(5), 2048–2053 (2011)ADSCrossRef F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R.J. Molnar, K.K. Berggren, Single-photon detectors based on ultranarrow superconducting nanowires. Nano Lett. 11(5), 2048–2053 (2011)ADSCrossRef
143.
Zurück zum Zitat S. Ferrari, O. Kahl, V. Kovalyuk, G.N. Goltsman, A. Korneev, W.H. Pernice, Waveguide-integrated single-and multi-photon detection at telecom wavelengths using superconducting nanowires. Appl. Phys. Lett. 106(15), 151101 (2015)ADSCrossRef S. Ferrari, O. Kahl, V. Kovalyuk, G.N. Goltsman, A. Korneev, W.H. Pernice, Waveguide-integrated single-and multi-photon detection at telecom wavelengths using superconducting nanowires. Appl. Phys. Lett. 106(15), 151101 (2015)ADSCrossRef
144.
Zurück zum Zitat C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)ADSCrossRef C.M. Natarajan, M.G. Tanner, R.H. Hadfield, Superconducting nanowire single-photon detectors: physics and applications. Supercond. Sci. Technol. 25(6), 063001 (2012)ADSCrossRef
Metadaten
Titel
Nanophotonics
verfasst von
Anqi Zhang
Gengfeng Zheng
Charles M. Lieber
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-41981-7_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.