Skip to main content

2017 | OriginalPaper | Buchkapitel

13. Nanoporous Palladium Films Based Resistive Hydrogen Sensors

verfasst von : Shuanghong Wu, Han Zhou, Mengmeng Hao, Zhi Chen

Erschienen in: Outlook and Challenges of Nano Devices, Sensors, and MEMS

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen sensing technology is significant in many circumstances, such as in the synthesis process of ammonia and methanol, leak detection during shuttle launches and fuel cells. Palladium (Pd) has been widely used in hydrogen sensors for its noteworthy ability to absorb a large quantity of H2 and its high selective response to H2. Pd based resistive H2 sensors have attracted much attention due to their simple device structure and fabrication process. In this chapter, nanoporous Pd films have been demonstrated for hydrogen sensors using anodic aluminum oxide (AAO) template as substrate. Nanoporous Pd films based on AAOs were found to have a quick and reversible response due to their enhanced absorption and desorption of hydrogen compared with dense Pd films that usually have very slow response. The performance of hydrogen sensors depending on different post-deposition annealing temperatures of Pd films has been investigated. A response time as short as 30 s at 1% hydrogen concentration with an anneal temperature of 200°C has been obtained. Then, the sensing performance of hydrogen sensors based on nanoporous Pd supported by AAOs was enhanced by pore-widening treatment of AAO using phosphoric acid (H3PO4) as etching solution. It is demonstrated that different concentrations of H3PO4 and different pore-widening time lead to different pore-diameters of AAO, resulting in different performance of hydrogen sensors. The optimized hydrogen sensor shows a fast response time of 19 s at hydrogen concentration of 1% and a detection range of H2 concentration from 0.1% to 2% by pore-widening treatment with a time of 30 min and 5% H3PO4 concentration. A novel carbon nanotubes and Pd nanocomposite thin films was introduced for hydrogen sensors, which exhibits very fast response speed with a response time of 8 s at 2% hydrogen gas.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Schwandt, D.J. Frey, Hydrogen sensing in molten aluminum using a commercial electrochemical sensor. Ionics 6, 3–4 (2000)CrossRef C. Schwandt, D.J. Frey, Hydrogen sensing in molten aluminum using a commercial electrochemical sensor. Ionics 6, 3–4 (2000)CrossRef
2.
Zurück zum Zitat W.J. Buttner et al., An overview of hydrogen safety sensors and requirements. Int. J. Hydrog. Energy 36, 2462–2470 (2010)CrossRef W.J. Buttner et al., An overview of hydrogen safety sensors and requirements. Int. J. Hydrog. Energy 36, 2462–2470 (2010)CrossRef
3.
Zurück zum Zitat L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, U. Banach, Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrog. Energy 35, 373–384 (2010)CrossRef L. Boon-Brett, J. Bousek, G. Black, P. Moretto, P. Castello, T. Hübert, U. Banach, Identifying performance gaps in hydrogen safety sensor technology for automotive and stationary applications. Int. J. Hydrog. Energy 35, 373–384 (2010)CrossRef
4.
Zurück zum Zitat A. Katsuki et al., H2 selective gas sensor based on SnO2. Sensors Actuators B Chem. 52, 30–37 (1998)CrossRef A. Katsuki et al., H2 selective gas sensor based on SnO2. Sensors Actuators B Chem. 52, 30–37 (1998)CrossRef
5.
Zurück zum Zitat B.S. Kang et al., AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor. J. Appl. Phy. Lett. 84, 1123 (2004)CrossRef B.S. Kang et al., AlGaN/GaN-based metal-oxide-semiconductor diode-based hydrogen gas sensor. J. Appl. Phy. Lett. 84, 1123 (2004)CrossRef
6.
Zurück zum Zitat Y. Sakamoto et al., Hysteresis behaviour of electrical resistance of the Pd-H system measured by a gas-phase method. J. Phys. Condens. Matter 8, 10511–10520 (1996)CrossRef Y. Sakamoto et al., Hysteresis behaviour of electrical resistance of the Pd-H system measured by a gas-phase method. J. Phys. Condens. Matter 8, 10511–10520 (1996)CrossRef
7.
Zurück zum Zitat T. Hübert et al., Hydrogen sensors-A review. Sensors Actuators B Chem. 157(2), 329–352 (2011)CrossRef T. Hübert et al., Hydrogen sensors-A review. Sensors Actuators B Chem. 157(2), 329–352 (2011)CrossRef
8.
Zurück zum Zitat E. Lee, I. Hwang, J. Cha, H. Lee, W. Lee, J. Pak, J. Lee, B. Ju, Micromachined catalytic combustible hydrogen gas sensors. Sens. Actuators B Chem 153(2), 392–397 (2010)CrossRef E. Lee, I. Hwang, J. Cha, H. Lee, W. Lee, J. Pak, J. Lee, B. Ju, Micromachined catalytic combustible hydrogen gas sensors. Sens. Actuators B Chem 153(2), 392–397 (2010)CrossRef
9.
Zurück zum Zitat R.C. Thomas, R.C. Hughes, Sensors for detecting molecular hydrogen based on Pd metal alloys. J. Electrochem. Soc. 144(9), 3245–3249 (1997)CrossRef R.C. Thomas, R.C. Hughes, Sensors for detecting molecular hydrogen based on Pd metal alloys. J. Electrochem. Soc. 144(9), 3245–3249 (1997)CrossRef
10.
Zurück zum Zitat G. Ertl, J. Koch, Adsorption studies with a Pd(111) surface in Adsorption-Desorption Phenomena: Proceedings of the II International Conference, April 1971, 1971, 345-357. G. Ertl, J. Koch, Adsorption studies with a Pd(111) surface in Adsorption-Desorption Phenomena: Proceedings of the II International Conference, April 1971, 1971, 345-357.
11.
Zurück zum Zitat M.Z. Jacobson, W.G. Colella, D.M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science 308(5730), 1901–1905 (2005)CrossRef M.Z. Jacobson, W.G. Colella, D.M. Golden, Cleaning the air and improving health with hydrogen fuel-cell vehicles[J]. Science 308(5730), 1901–1905 (2005)CrossRef
12.
Zurück zum Zitat J. Lee, J.S. Noh, S.H. Lee, B. Song, H. Jung, W. Kim, W. Lee, Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrog. Energy 37, 7934–7939 (2012)CrossRef J. Lee, J.S. Noh, S.H. Lee, B. Song, H. Jung, W. Kim, W. Lee, Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrog. Energy 37, 7934–7939 (2012)CrossRef
13.
Zurück zum Zitat J.G. Firth, A. Jones, T.A. Jones, The principles of the detection of flammable atmospheres by catalytic devices. Combust. Flame 20, 303–311 (1973)CrossRef J.G. Firth, A. Jones, T.A. Jones, The principles of the detection of flammable atmospheres by catalytic devices. Combust. Flame 20, 303–311 (1973)CrossRef
14.
Zurück zum Zitat V.R. Katti, A.K. Debnath, S.C. Gadkari, S.K. Gupta, V.C. Sahni, Passivated thick film catalytic type H2 sensor operating at low temperature. Sens. Actuators B Chem. 84, 219–225 (2002)CrossRef V.R. Katti, A.K. Debnath, S.C. Gadkari, S.K. Gupta, V.C. Sahni, Passivated thick film catalytic type H2 sensor operating at low temperature. Sens. Actuators B Chem. 84, 219–225 (2002)CrossRef
15.
Zurück zum Zitat E. Jones, in Solid State Gas Sensors, ed by P. Moseley, B. C. Tofield. The pellistor catalytic gas detection (Adam Hilger, Bristol, 1987), pp. 17–31 E. Jones, in Solid State Gas Sensors, ed by P. Moseley, B. C. Tofield. The pellistor catalytic gas detection (Adam Hilger, Bristol, 1987), pp. 17–31
16.
Zurück zum Zitat J.R. Stetter, J. Li, Amperometric gas sensors-a review. Chem. Rev. 108, 352–366 (2008)CrossRef J.R. Stetter, J. Li, Amperometric gas sensors-a review. Chem. Rev. 108, 352–366 (2008)CrossRef
17.
Zurück zum Zitat X. Lu et al., Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sens. Actuator B 107, 812–817 (2005)CrossRef X. Lu et al., Solid-state amperometric hydrogen sensor based on polymer electrolyte membrane fuel cell. Sens. Actuator B 107, 812–817 (2005)CrossRef
18.
Zurück zum Zitat L.P. Martin, A.-Q. Pham, R.S. Glass, Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175, 527–530 (2004)CrossRef L.P. Martin, A.-Q. Pham, R.S. Glass, Electrochemical hydrogen sensor for safety monitoring. Solid State Ionics 175, 527–530 (2004)CrossRef
19.
Zurück zum Zitat F.C. Lin, Y. Takao, Y. Shimizu, M. Egashira, Zinc oxide varistor gas sensors: effect of the Bi2O3 content on the H2-sensing properties. J. Am. Ceram. Soc. 78, 2301–2306 (1995)CrossRef F.C. Lin, Y. Takao, Y. Shimizu, M. Egashira, Zinc oxide varistor gas sensors: effect of the Bi2O3 content on the H2-sensing properties. J. Am. Ceram. Soc. 78, 2301–2306 (1995)CrossRef
20.
Zurück zum Zitat S.J. Ippolito et al., Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators B Chem. 108, 154–158 (2005)CrossRef S.J. Ippolito et al., Hydrogen sensing characteristics of WO3 thin film conductometric sensors activated by Pt and Au catalysts. Sens. Actuators B Chem. 108, 154–158 (2005)CrossRef
21.
Zurück zum Zitat A. Lee, B. Reedy, Temperature modulation ins emiconductor gas sensing. Sens. Actuators B Chem. 60, 35–42 (1999)CrossRef A. Lee, B. Reedy, Temperature modulation ins emiconductor gas sensing. Sens. Actuators B Chem. 60, 35–42 (1999)CrossRef
22.
Zurück zum Zitat J. Ravi Prakash, A.H. McDaniel, M. Horn, L. Pilione, P. Sunal, R. Messier, R.T. McGrath, F.K. Schweighardt, Hydrogen sensors: role of palladium thin film morphology. Sens. Actuators B Chem. 120, 439–446 (2007)CrossRef J. Ravi Prakash, A.H. McDaniel, M. Horn, L. Pilione, P. Sunal, R. Messier, R.T. McGrath, F.K. Schweighardt, Hydrogen sensors: role of palladium thin film morphology. Sens. Actuators B Chem. 120, 439–446 (2007)CrossRef
23.
Zurück zum Zitat E. Sennik et al., Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 177, 104–107 (2016)CrossRef E. Sennik et al., Sputtered platinum thin films for resistive hydrogen sensor application. Mater. Lett. 177, 104–107 (2016)CrossRef
24.
Zurück zum Zitat S. Öztürka et al., Pd thin films on flexible substrate for hydrogen sensor. J. Alloys Compd. 674, 179–184 (2016)CrossRef S. Öztürka et al., Pd thin films on flexible substrate for hydrogen sensor. J. Alloys Compd. 674, 179–184 (2016)CrossRef
25.
Zurück zum Zitat K. Potje-Kamloth, Semiconductor junction gas sensors. Chem. Rev. 108, 367–399 (2008)CrossRef K. Potje-Kamloth, Semiconductor junction gas sensors. Chem. Rev. 108, 367–399 (2008)CrossRef
26.
Zurück zum Zitat S. Basu, S. Roy, C. Jacob, Ruthenium as Schottky metal for SiC-based high temperature hydrogen sensors. Mater. Technol. Hydrog. Econ. 801, 193–198 (2004) S. Basu, S. Roy, C. Jacob, Ruthenium as Schottky metal for SiC-based high temperature hydrogen sensors. Mater. Technol. Hydrog. Econ. 801, 193–198 (2004)
27.
Zurück zum Zitat C. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A.A. Iliadis, M. Kompitsas, Low-temperature hydrogen sensors based on Au nanoclusters and Schottky contacts on ZnO films deposited by pulsed laser deposition on Si and SiO2 substrates. IEEE Sens. J. 7, 448–454 (2007)CrossRef C. Pandis, N. Brilis, E. Bourithis, D. Tsamakis, H. Ali, S. Krishnamoorthy, A.A. Iliadis, M. Kompitsas, Low-temperature hydrogen sensors based on Au nanoclusters and Schottky contacts on ZnO films deposited by pulsed laser deposition on Si and SiO2 substrates. IEEE Sens. J. 7, 448–454 (2007)CrossRef
28.
Zurück zum Zitat M.A. Butler, Optical fibre hydrogen sensor. Appl. Phys. Lett. 45, 1007–1009 (1984)CrossRef M.A. Butler, Optical fibre hydrogen sensor. Appl. Phys. Lett. 45, 1007–1009 (1984)CrossRef
29.
Zurück zum Zitat A. Trouillet, E. Marin, C. Veillas, Fibre gratings for hydrogen sensing. Meas. Sci. Technol. 17, 1124–1128 (2006)CrossRef A. Trouillet, E. Marin, C. Veillas, Fibre gratings for hydrogen sensing. Meas. Sci. Technol. 17, 1124–1128 (2006)CrossRef
30.
Zurück zum Zitat B. Chadwick, J. Tann, M. Brungs, M. Gal, A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sens. Actuators B Chem. 17, 215–220 (1994)CrossRef B. Chadwick, J. Tann, M. Brungs, M. Gal, A hydrogen sensor based on the optical generation of surface plasmons in a palladium alloy. Sens. Actuators B Chem. 17, 215–220 (1994)CrossRef
31.
Zurück zum Zitat R.C. Hughes, W.K. Schubert, Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J. Appl. Phys. 71, 542–544 (1992)CrossRef R.C. Hughes, W.K. Schubert, Thin films of Pd/Ni alloys for detection of high hydrogen concentrations. J. Appl. Phys. 71, 542–544 (1992)CrossRef
32.
Zurück zum Zitat M.K. Kumar, M.S. Ramachandra Rao, S. Ramaprabhu, Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. J. Phys. D. Appl. Phys. 39, 2791–2795 (2006)CrossRef M.K. Kumar, M.S. Ramachandra Rao, S. Ramaprabhu, Structural, morphological and hydrogen sensing studies on pulsed laser deposited nanostructured palladium thin films. J. Phys. D. Appl. Phys. 39, 2791–2795 (2006)CrossRef
33.
Zurück zum Zitat P. Kumar, L.K. Malhotra, Palladium capped samarium thin films as potential hydrogen sensors. Mater. Chem. Phys. 88, 106–109 (2004)CrossRef P. Kumar, L.K. Malhotra, Palladium capped samarium thin films as potential hydrogen sensors. Mater. Chem. Phys. 88, 106–109 (2004)CrossRef
34.
Zurück zum Zitat R.K. Joshi, S. Krishnan, M. Yoshimura, A. Kumar, Pd nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191–1196 (2009)CrossRef R.K. Joshi, S. Krishnan, M. Yoshimura, A. Kumar, Pd nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191–1196 (2009)CrossRef
35.
Zurück zum Zitat K. Yoshimura et al., New hydrogen sensor based on sputtered Mg-Ni alloy thin film. Vacuum 83, 699–702 (2009)CrossRef K. Yoshimura et al., New hydrogen sensor based on sputtered Mg-Ni alloy thin film. Vacuum 83, 699–702 (2009)CrossRef
36.
Zurück zum Zitat N. Taguchi, Japan. Pat. 45-38200 (1962), 4738840 (1963) 50-23317 N. Taguchi, Japan. Pat. 45-38200 (1962), 4738840 (1963) 50-23317
37.
Zurück zum Zitat S. Shukla et al., Hydrogen-discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. J. Appl. Phys. 98, 104306 (2005)CrossRef S. Shukla et al., Hydrogen-discriminating nanocrystalline doped-tin-oxide room-temperature microsensor. J. Appl. Phys. 98, 104306 (2005)CrossRef
38.
Zurück zum Zitat S. Shukla et al., Room temperature hydrogen response kinectics of nanomicro-integrated doped tin oxide sensor. Sens. Actuators B Chem. 120, 573–583 (2007)CrossRef S. Shukla et al., Room temperature hydrogen response kinectics of nanomicro-integrated doped tin oxide sensor. Sens. Actuators B Chem. 120, 573–583 (2007)CrossRef
39.
Zurück zum Zitat C.-H. Han, S.-D. Han, I. Singh, T. Toupance, Micro-bead of nano-crystalline F doped SnO2 as a sensitive hydrogen gas sensor. Sens. Actuators B Chem. 109, 264–269 (2005)CrossRef C.-H. Han, S.-D. Han, I. Singh, T. Toupance, Micro-bead of nano-crystalline F doped SnO2 as a sensitive hydrogen gas sensor. Sens. Actuators B Chem. 109, 264–269 (2005)CrossRef
40.
Zurück zum Zitat M.M. Jamshidi et al., Development of palladium-based hydrogen thin film sensor using silicon oxide substrate. Indian J. Phys. 87, 511–515 (2013)CrossRef M.M. Jamshidi et al., Development of palladium-based hydrogen thin film sensor using silicon oxide substrate. Indian J. Phys. 87, 511–515 (2013)CrossRef
41.
Zurück zum Zitat B. Liu et al., Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens. Actuators B 193, 28–34 (2014)CrossRef B. Liu et al., Improved room-temperature hydrogen sensing performance of directly formed Pd/WO3 nanocomposite. Sens. Actuators B 193, 28–34 (2014)CrossRef
42.
Zurück zum Zitat X.Q. Zeng, Y.L. Wang, H. Deng, M.L. Latimer, Z.L. Xiao, J. Pearson, W.K. Kwok, Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano 4, 7443–7452 (2011)CrossRef X.Q. Zeng, Y.L. Wang, H. Deng, M.L. Latimer, Z.L. Xiao, J. Pearson, W.K. Kwok, Networks of ultrasmall Pd/Cr nanowires as high performance hydrogen sensors. ACS Nano 4, 7443–7452 (2011)CrossRef
43.
Zurück zum Zitat J.Y. Wang, E.H. Yue, G. Yu, Y.K. Xiao, Z.Z. Chen, Preparation of Pd-Ni alloy nanowires by AAO template. Rare Metal Mater. Eng. 36, 126–129 (2007) J.Y. Wang, E.H. Yue, G. Yu, Y.K. Xiao, Z.Z. Chen, Preparation of Pd-Ni alloy nanowires by AAO template. Rare Metal Mater. Eng. 36, 126–129 (2007)
44.
Zurück zum Zitat F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001)CrossRef F. Favier, E.C. Walter, M.P. Zach, T. Benter, R.M. Penner, Hydrogen sensors and switches from electrodeposited palladium mesowire arrays. Science 293, 2227–2231 (2001)CrossRef
45.
Zurück zum Zitat N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)CrossRef N. Liu, M.L. Tang, M. Hentschel, H. Giessen, A.P. Alivisatos, Nanoantenna-enhanced gas sensing in a single tailored nanofocus. Nat. Mater. 10, 631–636 (2011)CrossRef
46.
Zurück zum Zitat B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, M. Han, Response behavior of a palladium nanoparticle array based hydrogen sensor in hydrogen–nitrogen mixture. Sens. Actuators A Phys. 181, 20–24 (2012)CrossRef B. Xie, S. Zhang, F. Liu, X. Peng, F. Song, G. Wang, M. Han, Response behavior of a palladium nanoparticle array based hydrogen sensor in hydrogen–nitrogen mixture. Sens. Actuators A Phys. 181, 20–24 (2012)CrossRef
47.
Zurück zum Zitat D. Ding, Z. Chen, A pyrolytic, carbon-stabilized, nanoporous Pd film for wide-range H2 sensing. Adv. Mater. 19, 1996–1999 (2007)CrossRef D. Ding, Z. Chen, A pyrolytic, carbon-stabilized, nanoporous Pd film for wide-range H2 sensing. Adv. Mater. 19, 1996–1999 (2007)CrossRef
48.
Zurück zum Zitat D. Ding, Z. Chen, S. Rajaputra, V. Singh, Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens. Actuators B Chem. 124, 12–17 (2007)CrossRef D. Ding, Z. Chen, S. Rajaputra, V. Singh, Hydrogen sensors based on aligned carbon nanotubes in an anodic aluminum oxide template with palladium as a top electrode. Sens. Actuators B Chem. 124, 12–17 (2007)CrossRef
49.
Zurück zum Zitat D. Ding, Z. Chen, C. Lu, Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides. Sens. Actuators B Chem. 120, 182–186 (2006)CrossRef D. Ding, Z. Chen, C. Lu, Hydrogen sensing of nanoporous palladium films supported by anodic aluminum oxides. Sens. Actuators B Chem. 120, 182–186 (2006)CrossRef
50.
Zurück zum Zitat X. Yang, X. Wei, S. Wu, T. Wu, Z. Chen, S. Li, High-quality self-ordered TiO2 nanotubes on fluorine-doped tin oxide glass. J. Mater. Sci. Mater. Electron. 26, 7081 (2015)CrossRef X. Yang, X. Wei, S. Wu, T. Wu, Z. Chen, S. Li, High-quality self-ordered TiO2 nanotubes on fluorine-doped tin oxide glass. J. Mater. Sci. Mater. Electron. 26, 7081 (2015)CrossRef
51.
Zurück zum Zitat M. Hao, S. Wu, H. Zhou, et al., Room-temperature and fast response hydrogen sensor based on annealed nanoporous palladium film[J]. J. Mater. Sci. 51(5), 2420–2426 (2016)CrossRef M. Hao, S. Wu, H. Zhou, et al., Room-temperature and fast response hydrogen sensor based on annealed nanoporous palladium film[J]. J. Mater. Sci. 51(5), 2420–2426 (2016)CrossRef
52.
Zurück zum Zitat C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B Chem. 122, 556–559 (2007)CrossRef C. Lu, Z. Chen, K. Saito, Hydrogen sensors based on Ni/SiO2/Si MOS capacitors. Sens. Actuators B Chem. 122, 556–559 (2007)CrossRef
53.
Zurück zum Zitat F. Yang, S.C. Kung, M. Cheng, J.C. Hemminger, R.M. Penner, Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010)CrossRef F. Yang, S.C. Kung, M. Cheng, J.C. Hemminger, R.M. Penner, Smaller is faster and more sensitive: the effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244 (2010)CrossRef
54.
Zurück zum Zitat K.J. Laidler, Chemical Kinetics (McGraw-Hill Book Company, New York, 1965) K.J. Laidler, Chemical Kinetics (McGraw-Hill Book Company, New York, 1965)
55.
Zurück zum Zitat T. Xu, M.P. Zach, Z.L. Xiao, D. Rosenmann, U. Welp, W.K. Kwok, G.W. Crabtree, Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 86, 203104 (2005)CrossRef T. Xu, M.P. Zach, Z.L. Xiao, D. Rosenmann, U. Welp, W.K. Kwok, G.W. Crabtree, Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films. Appl. Phys. Lett. 86, 203104 (2005)CrossRef
56.
Zurück zum Zitat Z. Zhao, M.A. Carpenter, Annealing enhanced hydrogen absorption in nanocrystalline Pd Au sensing films. J. Appl. Phys. 97, 124301–124307 (2005)CrossRef Z. Zhao, M.A. Carpenter, Annealing enhanced hydrogen absorption in nanocrystalline Pd Au sensing films. J. Appl. Phys. 97, 124301–124307 (2005)CrossRef
57.
Zurück zum Zitat A.S. Ivanova, E.M. Slavinskaya, R.V. Gulyaev, V.I. Zaikovskii, O.A. Stonkus, I.G. Danilova, L.M. Plyasova, I.A. Polukhina, A.I. Boronin, Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B Environ. 97, 57–71 (2010)CrossRef A.S. Ivanova, E.M. Slavinskaya, R.V. Gulyaev, V.I. Zaikovskii, O.A. Stonkus, I.G. Danilova, L.M. Plyasova, I.A. Polukhina, A.I. Boronin, Metal–support interactions in Pt/Al2O3 and Pd/Al2O3 catalysts for CO oxidation. Appl. Catal. B Environ. 97, 57–71 (2010)CrossRef
58.
Zurück zum Zitat C. Lu, Z. Chen. Anodic Aluminum Oxide-Based Nanostructures and Devices[M] Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, 2011, 11(259): 235-259. C. Lu, Z. Chen. Anodic Aluminum Oxide-Based Nanostructures and Devices[M] Encyclopedia of Nanoscience and Nanotechnology. American Scientific Publishers, 2011, 11(259): 235-259.
59.
Zurück zum Zitat T. Kiefer, L.G. Villanueva, F. Fargier, J. Brugger, The transition in hydrogen sensing behavior in noncontinuous palladium films [J]. Appl. Phys. Lett. 97(12), 121911 (2010)CrossRef T. Kiefer, L.G. Villanueva, F. Fargier, J. Brugger, The transition in hydrogen sensing behavior in noncontinuous palladium films [J]. Appl. Phys. Lett. 97(12), 121911 (2010)CrossRef
60.
Zurück zum Zitat B.D. Adams, A. Chen, The role of palladium in a hydrogen economy [J]. Mater. Today 14(6), 282–289 (2011)CrossRef B.D. Adams, A. Chen, The role of palladium in a hydrogen economy [J]. Mater. Today 14(6), 282–289 (2011)CrossRef
61.
Zurück zum Zitat L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72, 819–824 (2007)CrossRef L.Q. Rong, C. Yang, Q.Y. Qian, X.H. Xia, Study of the nonenzymatic glucose sensor based on highly dispersed Pt nanoparticles supported on carbon nanotubes. Talanta 72, 819–824 (2007)CrossRef
62.
Zurück zum Zitat C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J. Nygård, J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads. Appl. Phys. Lett. 79, 2106–2108 (2001)CrossRef C. Thelander, M.H. Magnusson, K. Deppert, L. Samuelson, P.R. Poulsen, J. Nygård, J. Borggreen, Gold nanoparticle single-electron transistor with carbon nanotube leads. Appl. Phys. Lett. 79, 2106–2108 (2001)CrossRef
63.
Zurück zum Zitat J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater. 13, 1384 (2001)CrossRef J. Kong, M.G. Chapline, H. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors [J]. Adv. Mater. 13, 1384 (2001)CrossRef
64.
Zurück zum Zitat A. Fediai, D.A. Ryndyk, G. Cuniberti, Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method. Phys. Rev. B 91, 165404 (2015)CrossRef A. Fediai, D.A. Ryndyk, G. Cuniberti, Electron transport in extended carbon-nanotube/metal contacts: Ab initio based Green function method. Phys. Rev. B 91, 165404 (2015)CrossRef
65.
Zurück zum Zitat I. Sayago, E. Terrado, E. Lafuente, M.C. Horrillo, W.K. Maser, A.M. Benito, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 148, 15–19 (2005)CrossRef I. Sayago, E. Terrado, E. Lafuente, M.C. Horrillo, W.K. Maser, A.M. Benito, J. Gutierrez, Hydrogen sensors based on carbon nanotubes thin films. Synth. Met. 148, 15–19 (2005)CrossRef
66.
Zurück zum Zitat J. Sippel-Oakley, H.T. Wang, B.S. Kang, Z. Wu, F. Ren, A.G. Rinzler, S.J. Pearton, Carbon nanotube films for room temperature hydrogen sensing. Nanotechnology 16, 2218 (2005)CrossRef J. Sippel-Oakley, H.T. Wang, B.S. Kang, Z. Wu, F. Ren, A.G. Rinzler, S.J. Pearton, Carbon nanotube films for room temperature hydrogen sensing. Nanotechnology 16, 2218 (2005)CrossRef
67.
Zurück zum Zitat S. Ju, J.M. Lee, Y. Jung, E. Lee, W. Lee, S.J. Kim, Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles. Sens. Actuators B Chem. 146, 122–128 (2010)CrossRef S. Ju, J.M. Lee, Y. Jung, E. Lee, W. Lee, S.J. Kim, Highly sensitive hydrogen gas sensors using single-walled carbon nanotubes grafted with Pd nanoparticles. Sens. Actuators B Chem. 146, 122–128 (2010)CrossRef
68.
Zurück zum Zitat Y. Du, Q. Xue, Z. Zhang, F. Xia, Z. Liu, W. Xing, Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO2/Si heterostructure. AIP Adv. 5, 027136 (2015)CrossRef Y. Du, Q. Xue, Z. Zhang, F. Xia, Z. Liu, W. Xing, Enhanced hydrogen gas response of Pd nanoparticles-decorated single walled carbon nanotube film/SiO2/Si heterostructure. AIP Adv. 5, 027136 (2015)CrossRef
69.
Zurück zum Zitat J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRef J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Nanotube molecular wires as chemical sensors. Science 287, 622–625 (2000)CrossRef
Metadaten
Titel
Nanoporous Palladium Films Based Resistive Hydrogen Sensors
verfasst von
Shuanghong Wu
Han Zhou
Mengmeng Hao
Zhi Chen
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-50824-5_13

Neuer Inhalt