Skip to main content

2017 | OriginalPaper | Buchkapitel

10. Nanoribbons

verfasst von : Toshiaki Enoki, Shintaro Sato

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Graphene nanoribbons have intriguing electronic structures, which are large edge geometry dependent. Armchair-edged graphene nanoribbons, which are energetically stable, have a ribbon-width-dependent intrinsic energy gap, while zigzag-edged ones have spin-polarized nonbonding edge states in the vicinity of the edge region. The edge state is the origin of electronic, magnetic and chemical activities. These features of the electronic structures can be characterized using microprobe techniques such as scanning tunneling microscopy/spectroscopy (STM/STS), atomic force microscopy (AFM), transmission electron microscopy (TEM), Raman spectroscopy, x-ray absorption, angle-resolved photoemission spectroscopy, electron transport, and magnetic measurements. Graphene nanostructures are synthesized using top-down and bottom-up methods, in the latter of which graphene nanostructures with atomically precise edges can be created. The presence of bandgap, which varies depending on the ribbon width and the edge geometry, makes graphene an important candidate for electronics device applications. The spin-polarized edge states localized in the vicinity of edges in zigzag-edged nanoribbons are expected to be utilized for spintronics applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
10.1
Zurück zum Zitat K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov: Electric field effect in atomically thin carbon films, Science 306, 666–669 (2004)CrossRef
10.2
Zurück zum Zitat M.S. Dresselhaus, G. Dresselhaus, P. Eklund: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic, San Diego 1996) M.S. Dresselhaus, G. Dresselhaus, P. Eklund: Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications (Academic, San Diego 1996)
10.3
Zurück zum Zitat R. Saito, M.S. Dresselhaus, G. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)CrossRef R. Saito, M.S. Dresselhaus, G. Dresselhaus: Physical Properties of Carbon Nanotubes (Imperial College Press, London 1998)CrossRef
10.4
Zurück zum Zitat A.H.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009)CrossRef A.H.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim: The electronic properties of graphene, Rev. Mod. Phys. 81, 109–162 (2009)CrossRef
10.5
Zurück zum Zitat T. Enoki, T. Ando: Physics and Chemistry of Graphene; Graphene to Nanographene (Pan Stanford, Singapore 2013)CrossRef T. Enoki, T. Ando: Physics and Chemistry of Graphene; Graphene to Nanographene (Pan Stanford, Singapore 2013)CrossRef
10.6
Zurück zum Zitat S. Fujii, T. Enoki: Nanographene and graphene edges: Electronic structure and nanofabrication, Acc. Chem. Res. 46, 2202–2210 (2013)CrossRef S. Fujii, T. Enoki: Nanographene and graphene edges: Electronic structure and nanofabrication, Acc. Chem. Res. 46, 2202–2210 (2013)CrossRef
10.7
Zurück zum Zitat E. Clar: The Aromatic Sextet (Wiley, London 1972) E. Clar: The Aromatic Sextet (Wiley, London 1972)
10.8
Zurück zum Zitat T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri: Clar’s theory, π-electron distribution and geometry of graphene nanoribbons, J. Am. Chem. Soc. 132, 3440–3451 (2010)CrossRef T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, F. Mauri: Clar’s theory, π-electron distribution and geometry of graphene nanoribbons, J. Am. Chem. Soc. 132, 3440–3451 (2010)CrossRef
10.9
Zurück zum Zitat M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920–1923 (1996)CrossRef M. Fujita, K. Wakabayashi, K. Nakada, K. Kusakabe: Peculiar localized state at zigzag graphite edge, J. Phys. Soc. Jpn. 65, 1920–1923 (1996)CrossRef
10.10
Zurück zum Zitat S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki: Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173, 173–199 (2014)CrossRef S. Fujii, M. Ziatdinov, M. Ohtsuka, K. Kusakabe, M. Kiguchi, T. Enoki: Role of edge geometry and chemistry in the electronic properties of graphene nanostructures, Faraday Discuss. 173, 173–199 (2014)CrossRef
10.11
Zurück zum Zitat D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, C. Stampfer: Raman spectroscopy on etched graphene nanoribbons, J. Appl. Phys. 109, 073710 (2011)CrossRef D. Bischoff, J. Güttinger, S. Dröscher, T. Ihn, K. Ensslin, C. Stampfer: Raman spectroscopy on etched graphene nanoribbons, J. Appl. Phys. 109, 073710 (2011)CrossRef
10.12
Zurück zum Zitat L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró: Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography, Nat. Nanotechnol. 3, 397–401 (2008)CrossRef L. Tapasztó, G. Dobrik, P. Lambin, L.P. Biró: Tailoring the atomic structure of graphene nanoribbons by scanning tunneling microscope lithography, Nat. Nanotechnol. 3, 397–401 (2008)CrossRef
10.13
Zurück zum Zitat X. Li, X. Wang, L. Zhang, S. Lee, H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319, 1229–1232 (2008)CrossRef X. Li, X. Wang, L. Zhang, S. Lee, H. Dai: Chemically derived, ultrasmooth graphene nanoribbon semiconductors, Science 319, 1229–1232 (2008)CrossRef
10.14
Zurück zum Zitat L. Chen, Y. Hernandez, X. Feng, K. Müllen: Bottom up from nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis, Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef L. Chen, Y. Hernandez, X. Feng, K. Müllen: Bottom up from nanographene and graphene nanoribbons to graphene sheets: Chemical synthesis, Angew. Chem. Int. Ed. 51, 7640–7654 (2012)CrossRef
10.15
Zurück zum Zitat K. Sasaki, R. Saito: Pseudospin and deformation-induced gauge field in graphene, Prog. Theor. Phys. Suppl. 176, 253–278 (2008)CrossRef K. Sasaki, R. Saito: Pseudospin and deformation-induced gauge field in graphene, Prog. Theor. Phys. Suppl. 176, 253–278 (2008)CrossRef
10.17
Zurück zum Zitat L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie: Quasiparticle energies and bandgaps in graphene nanoribbons, Phys. Rev. Lett. 99, 186801 (2007)CrossRef L. Yang, C.-H. Park, Y.-W. Son, M.L. Cohen, S.G. Louie: Quasiparticle energies and bandgaps in graphene nanoribbons, Phys. Rev. Lett. 99, 186801 (2007)CrossRef
10.18
Zurück zum Zitat Y.-W. Son, M.L. Cohen, S.G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie: Energy gaps in graphene nanoribbons, Phys. Rev. Lett. 97, 216803 (2006)CrossRef
10.19
Zurück zum Zitat Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie: Tuning the bandgap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7, 6123–6128 (2013)CrossRef Y.-C. Chen, D.G. de Oteyza, Z. Pedramrazi, C. Chen, F.R. Fischer, M.F. Crommie: Tuning the bandgap of graphene nanoribbons synthesized from molecular precursors, ACS Nano 7, 6123–6128 (2013)CrossRef
10.20
Zurück zum Zitat P. Ruffieux, J. Cai, N.C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C.A. Pignedoli, R. Fasel: Electronic structure of atomically precise graphene nanoribbons, ACS Nano 8, 6930–6935 (2012)CrossRef P. Ruffieux, J. Cai, N.C. Plumb, L. Patthey, D. Prezzi, A. Ferretti, E. Molinari, X. Feng, K. Müllen, C.A. Pignedoli, R. Fasel: Electronic structure of atomically precise graphene nanoribbons, ACS Nano 8, 6930–6935 (2012)CrossRef
10.21
Zurück zum Zitat A.A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus: Raman Spectroscopy in Graphene Related System (Wiley, Weinheim 2011)CrossRef A.A. Jorio, M.S. Dresselhaus, R. Saito, G. Dresselhaus: Raman Spectroscopy in Graphene Related System (Wiley, Weinheim 2011)CrossRef
10.22
Zurück zum Zitat L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004)CrossRef L.G. Cançado, M.A. Pimenta, B.R.A. Neves, M.S.S. Dantas, A. Jorio: Influence of the atomic structure on the Raman spectra of graphite edges, Phys. Rev. Lett. 93, 247401 (2004)CrossRef
10.23
Zurück zum Zitat L.G. Cançado, M.A. Pimenta, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, A. Jorio: Anisotropy of the Raman spectra of nanographite ribbons, Phys. Rev. Lett. 93, 047403 (2004)CrossRef L.G. Cançado, M.A. Pimenta, B.R.A. Neves, G. Medeiros-Ribeiro, T. Enoki, Y. Kobayashi, K. Takai, K. Fukui, M.S. Dresselhaus, R. Saito, A. Jorio: Anisotropy of the Raman spectra of nanographite ribbons, Phys. Rev. Lett. 93, 047403 (2004)CrossRef
10.24
Zurück zum Zitat K. Sasaki, R. Saito, K. Wakabayashi, T. Enoki: Identifying the orientation of edge of graphene using G-band Raman spectra, J. Phys. Soc. Jpn. 79, 044603 (2010)CrossRef K. Sasaki, R. Saito, K. Wakabayashi, T. Enoki: Identifying the orientation of edge of graphene using G-band Raman spectra, J. Phys. Soc. Jpn. 79, 044603 (2010)CrossRef
10.25
Zurück zum Zitat M. Kiguchi, K. Takai, V.L.J. Joly, T. Enoki, R. Sumii, K. Amemiya: Magnetic edge state and dangling bond state on nanographene in activated carbon fibers, Phys. Rev. B 84, 045421 (2011)CrossRef M. Kiguchi, K. Takai, V.L.J. Joly, T. Enoki, R. Sumii, K. Amemiya: Magnetic edge state and dangling bond state on nanographene in activated carbon fibers, Phys. Rev. B 84, 045421 (2011)CrossRef
10.26
Zurück zum Zitat Z. Hou, X. Wang, T. Ikeda, S.-F. Huang, K. Terakura, M. Boero, M. Oshima, M. Kakimoto, S. Miyata: Effect of hydrogen termination on carbon K-edge x-ray absorption spectra of nanographene, J. Phys. Chem. C 115, 5392–5403 (2011)CrossRef Z. Hou, X. Wang, T. Ikeda, S.-F. Huang, K. Terakura, M. Boero, M. Oshima, M. Kakimoto, S. Miyata: Effect of hydrogen termination on carbon K-edge x-ray absorption spectra of nanographene, J. Phys. Chem. C 115, 5392–5403 (2011)CrossRef
10.27
Zurück zum Zitat K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468, 1088–1090 (2010)CrossRef K. Suenaga, M. Koshino: Atom-by-atom spectroscopy at graphene edge, Nature 468, 1088–1090 (2010)CrossRef
10.28
Zurück zum Zitat K. Sugawara, T. Sato, S. Souma, T. Takahashi, H. Suematsu: Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy, Phys. Rev. B 73, 045124 (2006)CrossRef K. Sugawara, T. Sato, S. Souma, T. Takahashi, H. Suematsu: Fermi surface and edge-localized states in graphite studied by high-resolution angle-resolved photoemission spectroscopy, Phys. Rev. B 73, 045124 (2006)CrossRef
10.29
Zurück zum Zitat M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)CrossRef M.Y. Han, B. Özyilmaz, Y. Zhang, P. Kim: Energy band-gap engineering of graphene nanoribbons, Phys. Rev. Lett. 98, 206805 (2007)CrossRef
10.30
Zurück zum Zitat D. Kondo, H. Nakano, B. Zhou, I.A.K. Hayashi, M. Takahashi, S. Sato, N. Yokoyama: Sub-10-nm-wide intercalated multi-layer graphene interconnects with low resistivity. In: IEEE Int. Interconnect Technol./Adv. Metallization Conf. (2014) pp. 189–192CrossRef D. Kondo, H. Nakano, B. Zhou, I.A.K. Hayashi, M. Takahashi, S. Sato, N. Yokoyama: Sub-10-nm-wide intercalated multi-layer graphene interconnects with low resistivity. In: IEEE Int. Interconnect Technol./Adv. Metallization Conf. (2014) pp. 189–192CrossRef
10.31
Zurück zum Zitat P. Gallagher, K. Todd, D. Goldhaber-Gordon: Disorder-induced gap behavior in graphene nanoribbons, Phys. Rev. B 81, 115409 (2010)CrossRef P. Gallagher, K. Todd, D. Goldhaber-Gordon: Disorder-induced gap behavior in graphene nanoribbons, Phys. Rev. B 81, 115409 (2010)CrossRef
10.32
Zurück zum Zitat M.Y. Han, J.C. Brant, P. Kim: Electron transport in disordered graphene nanoribbons, Phys. Rev. Lett. 104, 056801 (2010)CrossRef M.Y. Han, J.C. Brant, P. Kim: Electron transport in disordered graphene nanoribbons, Phys. Rev. Lett. 104, 056801 (2010)CrossRef
10.33
Zurück zum Zitat X. Liang, S. Wi: Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons, ACS Nano 6, 9700–9710 (2012)CrossRef X. Liang, S. Wi: Transport characteristics of multichannel transistors made from densely aligned sub-10 nm half-pitch graphene nanoribbons, ACS Nano 6, 9700–9710 (2012)CrossRef
10.34
Zurück zum Zitat H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, T. Kato: Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays, Nat. Commun. 7, 11797 (2016)CrossRef H. Suzuki, T. Kaneko, Y. Shibuta, M. Ohno, Y. Maekawa, T. Kato: Wafer-scale fabrication and growth dynamics of suspended graphene nanoribbon arrays, Nat. Commun. 7, 11797 (2016)CrossRef
10.35
Zurück zum Zitat S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama: Gating operation of transport current in graphene nanoribbon fabricated by helium ion microscope. In: Int. Conf. Solid State Devices Mater., Nagoya (2011) p. 1300 S. Nakaharai, T. Iijima, S. Ogawa, H. Miyazaki, S. Li, K. Tsukagoshi, S. Sato, N. Yokoyama: Gating operation of transport current in graphene nanoribbon fabricated by helium ion microscope. In: Int. Conf. Solid State Devices Mater., Nagoya (2011) p. 1300
10.36
Zurück zum Zitat A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou: Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography, ACS Nano 8, 1538–1546 (2014)CrossRef A.N. Abbas, G. Liu, B. Liu, L. Zhang, H. Liu, D. Ohlberg, W. Wu, C. Zhou: Patterning, characterization and chemical sensing applications of graphene nanoribbon arrays down to 5 nm using helium ion beam lithography, ACS Nano 8, 1538–1546 (2014)CrossRef
10.37
Zurück zum Zitat J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470–473 (2010)CrossRef J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, R. Fasel: Atomically precise bottom-up fabrication of graphene nanoribbons, Nature 466, 470–473 (2010)CrossRef
10.38
Zurück zum Zitat P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C.A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel: On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531, 489–492 (2016)CrossRef P. Ruffieux, S. Wang, B. Yang, C. Sánchez-Sánchez, J. Liu, T. Dienel, L. Talirz, P. Shinde, C.A. Pignedoli, D. Passerone, T. Dumslaff, X. Feng, K. Müllen, R. Fasel: On-surface synthesis of graphene nanoribbons with zigzag edge topology, Nature 531, 489–492 (2016)CrossRef
10.39
Zurück zum Zitat P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P.S. Weiss, N. Asao, T. Hitosugi: Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity, ACS Nano 8, 9181–9187 (2014)CrossRef P. Han, K. Akagi, F. Federici Canova, H. Mutoh, S. Shiraki, K. Iwaya, P.S. Weiss, N. Asao, T. Hitosugi: Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity, ACS Nano 8, 9181–9187 (2014)CrossRef
10.40
Zurück zum Zitat M. Koch, F. Ample, C. Joachim, L. Grill: Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nano 7, 713–717 (2012)CrossRef M. Koch, F. Ample, C. Joachim, L. Grill: Voltage-dependent conductance of a single graphene nanoribbon, Nat. Nano 7, 713–717 (2012)CrossRef
10.41
Zurück zum Zitat J. Björk, S. Stafström, F. Hanke: Zipping up: Cooperativity drives the synthesis of graphene nanoribbons, J. Am. Chem. Soc. 133, 14884–14887 (2011)CrossRef J. Björk, S. Stafström, F. Hanke: Zipping up: Cooperativity drives the synthesis of graphene nanoribbons, J. Am. Chem. Soc. 133, 14884–14887 (2011)CrossRef
10.42
Zurück zum Zitat J. Björk, F. Hanke, S. Stafström: Mechanisms of halogen-based covalent self-assembly on metal surfaces, J. Am. Chem. Soc. 135, 5768–5775 (2013)CrossRef J. Björk, F. Hanke, S. Stafström: Mechanisms of halogen-based covalent self-assembly on metal surfaces, J. Am. Chem. Soc. 135, 5768–5775 (2013)CrossRef
10.43
Zurück zum Zitat K.A. Simonov, N.A. Vinogradov, A.S. Vinogradov, A.V. Generalov, E.M. Zagrebina, N. Mårtensson, A.A. Cafolla, T. Carpy, J.P. Cunniffe, A.B. Preobrajenski: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: Combined core-level spectroscopy and STM study, J. Phys. Chem. C 118, 12532–12540 (2014)CrossRef K.A. Simonov, N.A. Vinogradov, A.S. Vinogradov, A.V. Generalov, E.M. Zagrebina, N. Mårtensson, A.A. Cafolla, T. Carpy, J.P. Cunniffe, A.B. Preobrajenski: Effect of substrate chemistry on the bottom-up fabrication of graphene nanoribbons: Combined core-level spectroscopy and STM study, J. Phys. Chem. C 118, 12532–12540 (2014)CrossRef
10.44
Zurück zum Zitat C. Bronner, J. Björk, P. Tegeder: Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon, J. Phys. Chem. C 119, 486–493 (2015)CrossRef C. Bronner, J. Björk, P. Tegeder: Tracking and removing Br during the on-surface synthesis of a graphene nanoribbon, J. Phys. Chem. C 119, 486–493 (2015)CrossRef
10.45
Zurück zum Zitat J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen: Toward cove-edged low bandgap graphene nanoribbons, J. Am. Chem. Soc. 137, 6097–6103 (2015)CrossRef J. Liu, B.-W. Li, Y.-Z. Tan, A. Giannakopoulos, C. Sanchez-Sanchez, D. Beljonne, P. Ruffieux, R. Fasel, X. Feng, K. Müllen: Toward cove-edged low bandgap graphene nanoribbons, J. Am. Chem. Soc. 137, 6097–6103 (2015)CrossRef
10.46
Zurück zum Zitat R.R. Cloke, T. Marangoni, G.D. Nguyen, T. Joshi, D.J. Rizzo, C. Bronner, T. Cao, S.G. Louie, M.F. Crommie, F.R. Fischer: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons, J. Am. Chem. Soc. 137, 8872–8875 (2015)CrossRef R.R. Cloke, T. Marangoni, G.D. Nguyen, T. Joshi, D.J. Rizzo, C. Bronner, T. Cao, S.G. Louie, M.F. Crommie, F.R. Fischer: Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons, J. Am. Chem. Soc. 137, 8872–8875 (2015)CrossRef
10.47
Zurück zum Zitat S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer: Atomically controlled substitutional boron-doping of graphene nanoribbons, Nat. Commun. 6, 8098 (2015)CrossRef S. Kawai, S. Saito, S. Osumi, S. Yamaguchi, A.S. Foster, P. Spijker, E. Meyer: Atomically controlled substitutional boron-doping of graphene nanoribbons, Nat. Commun. 6, 8098 (2015)CrossRef
10.48
Zurück zum Zitat H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi: On-surface synthesis of rylene-type graphene nanoribbons, J. Am. Chem. Soc. 137, 4022–4025 (2015)CrossRef H. Zhang, H. Lin, K. Sun, L. Chen, Y. Zagranyarski, N. Aghdassi, S. Duhm, Q. Li, D. Zhong, Y. Li, K. Müllen, H. Fuchs, L. Chi: On-surface synthesis of rylene-type graphene nanoribbons, J. Am. Chem. Soc. 137, 4022–4025 (2015)CrossRef
10.49
Zurück zum Zitat A. Basagni, F. Sedona, C.A. Pignedoli, M. Cattelan, L. Nicolas, M. Casarin, M. Sambi: Molecules–oligomers–nanowires–graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order, J. Am. Chem. Soc. 137, 1802–1808 (2015)CrossRef A. Basagni, F. Sedona, C.A. Pignedoli, M. Cattelan, L. Nicolas, M. Casarin, M. Sambi: Molecules–oligomers–nanowires–graphene nanoribbons: A bottom-up stepwise on-surface covalent synthesis preserving long-range order, J. Am. Chem. Soc. 137, 1802–1808 (2015)CrossRef
10.50
Zurück zum Zitat L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai: Facile synthesis of high-quality graphene nanoribbons, Nat. Nano 5, 321–325 (2010)CrossRef L. Jiao, X. Wang, G. Diankov, H. Wang, H. Dai: Facile synthesis of high-quality graphene nanoribbons, Nat. Nano 5, 321–325 (2010)CrossRef
10.51
Zurück zum Zitat L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai: Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877–880 (2009)CrossRef L.Y. Jiao, L. Zhang, X.R. Wang, G. Diankov, H.J. Dai: Narrow graphene nanoribbons from carbon nanotubes, Nature 458, 877–880 (2009)CrossRef
10.52
Zurück zum Zitat D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872–876 (2009)CrossRef D.V. Kosynkin, A.L. Higginbotham, A. Sinitskii, J.R. Lomeda, A. Dimiev, B.K. Price, J.M. Tour: Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons, Nature 458, 872–876 (2009)CrossRef
10.53
Zurück zum Zitat Y. Gong, M. Long, G. Liu, S. Gao, C. Zhu, X. Wei, X. Geng, M. Sun, C. Yang, L. Lu, L. Liu: Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes, Phys. Rev. B 87, 165404 (2013)CrossRef Y. Gong, M. Long, G. Liu, S. Gao, C. Zhu, X. Wei, X. Geng, M. Sun, C. Yang, L. Lu, L. Liu: Electronic transport properties of graphene nanoribbon arrays fabricated by unzipping aligned nanotubes, Phys. Rev. B 87, 165404 (2013)CrossRef
10.54
Zurück zum Zitat K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, N. Yokoyama: Selective graphene formation on copper twin crystals, J. Am. Chem. Soc. 134, 12492–12498 (2012)CrossRef K. Hayashi, S. Sato, M. Ikeda, C. Kaneta, N. Yokoyama: Selective graphene formation on copper twin crystals, J. Am. Chem. Soc. 134, 12492–12498 (2012)CrossRef
10.55
Zurück zum Zitat L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Ultrahigh strength and high electrical conductivity in copper, Science 304, 422–426 (2004)CrossRef L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Ultrahigh strength and high electrical conductivity in copper, Science 304, 422–426 (2004)CrossRef
10.56
Zurück zum Zitat R.M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P.L. Levesque, K.M. McElhinny, G.J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M.G. Lagally, P.G. Evans, P. Desjardins, R. Martel, M.C. Hersam, N.P. Guisinger, M.S. Arnold: Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)CrossRef R.M. Jacobberger, B. Kiraly, M. Fortin-Deschenes, P.L. Levesque, K.M. McElhinny, G.J. Brady, R. Rojas Delgado, S. Singha Roy, A. Mannix, M.G. Lagally, P.G. Evans, P. Desjardins, R. Martel, M.C. Hersam, N.P. Guisinger, M.S. Arnold: Direct oriented growth of armchair graphene nanoribbons on germanium, Nat. Commun. 6, 8006 (2015)CrossRef
10.57
Zurück zum Zitat M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. de Heer: Scalable templated growth of graphene nanoribbons on SiC, Nat. Nano 5, 727–731 (2010)CrossRef M. Sprinkle, M. Ruan, Y. Hu, J. Hankinson, M. Rubio-Roy, B. Zhang, X. Wu, C. Berger, W.A. de Heer: Scalable templated growth of graphene nanoribbons on SiC, Nat. Nano 5, 727–731 (2010)CrossRef
10.58
Zurück zum Zitat S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)CrossRef S. Datta: Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge 1995)CrossRef
10.59
Zurück zum Zitat Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 7, 1469–1473 (2007)CrossRef Q. Yan, B. Huang, J. Yu, F. Zheng, J. Zang, J. Wu, B.-L. Gu, F. Liu, W. Duan: Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping, Nano Lett. 7, 1469–1473 (2007)CrossRef
10.60
Zurück zum Zitat Y. Ouyang, Y. Yoon, J. Guo: Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study, IEEE Trans. Electron Devices 54, 2223–2231 (2007)CrossRef Y. Ouyang, Y. Yoon, J. Guo: Scaling behaviors of graphene nanoribbon FETs: A three-dimensional quantum simulation study, IEEE Trans. Electron Devices 54, 2223–2231 (2007)CrossRef
10.61
Zurück zum Zitat G. Fiori, G. Iannaccone: Simulation of graphene nanoribbon field-effect transistors, IEEE Electron Device Lett. 28, 760–762 (2007)CrossRef G. Fiori, G. Iannaccone: Simulation of graphene nanoribbon field-effect transistors, IEEE Electron Device Lett. 28, 760–762 (2007)CrossRef
10.62
Zurück zum Zitat N. Harada, S. Sato, N. Yokoyama: Theoretical investigation of graphene nanoribbon field-effect transistors designed for digital applications, Jpn. J. Appl. Phys. 52, 094301 (2013)CrossRef N. Harada, S. Sato, N. Yokoyama: Theoretical investigation of graphene nanoribbon field-effect transistors designed for digital applications, Jpn. J. Appl. Phys. 52, 094301 (2013)CrossRef
10.63
Zurück zum Zitat S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J.H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias: Electronic structure of spatially aligned graphene nanoribbons on Au(788), Phys. Rev. Lett. 108, 216801 (2012)CrossRef S. Linden, D. Zhong, A. Timmer, N. Aghdassi, J.H. Franke, H. Zhang, X. Feng, K. Müllen, H. Fuchs, L. Chi, H. Zacharias: Electronic structure of spatially aligned graphene nanoribbons on Au(788), Phys. Rev. Lett. 108, 216801 (2012)CrossRef
10.64
Zurück zum Zitat S. Souma, M. Ueyama, M. Ogawa: Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect, Appl. Phys. Lett. 104, 213505 (2014)CrossRef S. Souma, M. Ueyama, M. Ogawa: Simulation-based design of a strained graphene field effect transistor incorporating the pseudo magnetic field effect, Appl. Phys. Lett. 104, 213505 (2014)CrossRef
10.65
Zurück zum Zitat A.M. Ionescu, H. Riel: Tunnel field-effect transistors as energy-efficient electronic switches, Nature 479, 329–337 (2011)CrossRef A.M. Ionescu, H. Riel: Tunnel field-effect transistors as energy-efficient electronic switches, Nature 479, 329–337 (2011)CrossRef
10.66
Zurück zum Zitat K.T. Lam, D. Seah, S.K. Chin, S.B. Kumar, G. Samudra, Y.C. Yeo, G. Liang: A simulation study of graphene-nanoribbon tunneling FET with heterojunction channel, IEEE Electron Device Lett. 31, 555–557 (2010)CrossRef K.T. Lam, D. Seah, S.K. Chin, S.B. Kumar, G. Samudra, Y.C. Yeo, G. Liang: A simulation study of graphene-nanoribbon tunneling FET with heterojunction channel, IEEE Electron Device Lett. 31, 555–557 (2010)CrossRef
10.67
Zurück zum Zitat R. Grassi, A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani: Simulation study of graphene nanoribbon tunneling transistors including edge roughness effects. In: 10th Int. Conf. Ultimate Integr. Silicon (2009) pp. 57–60 R. Grassi, A. Gnudi, S. Reggiani, E. Gnani, G. Baccarani: Simulation study of graphene nanoribbon tunneling transistors including edge roughness effects. In: 10th Int. Conf. Ultimate Integr. Silicon (2009) pp. 57–60
10.68
Zurück zum Zitat F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson, K.S. Novoselov: Detection of individual gas molecules adsorbed on graphene, Nat. Mater. 6, 652–655 (2007)CrossRef
10.69
Zurück zum Zitat P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, J. Bokor: Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett. 103, 253114 (2013)CrossRef P.B. Bennett, Z. Pedramrazi, A. Madani, Y.-C. Chen, D.G. de Oteyza, C. Chen, F.R. Fischer, M.F. Crommie, J. Bokor: Bottom-up graphene nanoribbon field-effect transistors, Appl. Phys. Lett. 103, 253114 (2013)CrossRef
10.70
Zurück zum Zitat J.P. Llinas, A. Fairbrother, G. Barin, P. Ruffieux, W. Shi, K. Lee, B.Y. Choi, R. Braganza, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, F. Fischer, K. Müllen, A. Zettl, M. Crommie, R. Fasel, J. Bokor: Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons, arXiv:1605.06730 (2016) J.P. Llinas, A. Fairbrother, G. Barin, P. Ruffieux, W. Shi, K. Lee, B.Y. Choi, R. Braganza, N. Kau, W. Choi, C. Chen, Z. Pedramrazi, T. Dumslaff, A. Narita, X. Feng, F. Fischer, K. Müllen, A. Zettl, M. Crommie, R. Fasel, J. Bokor: Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons, arXiv:1605.06730 (2016)
10.71
Zurück zum Zitat R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl: Breakdown current density of graphene nanoribbons, Appl. Phys. Lett. 94, 243114 (2009)CrossRef R. Murali, Y. Yang, K. Brenner, T. Beck, J.D. Meindl: Breakdown current density of graphene nanoribbons, Appl. Phys. Lett. 94, 243114 (2009)CrossRef
10.72
Zurück zum Zitat D. Kondo, H. Nakano, B. Zhou, I. Kubota, K. Hayashi, K. Yagi, M. Takahashi, M. Sato, S. Sato, N. Yokoyama: Intercalated multi-layer graphene grown by CVD for LSI interconnects. In: IEEE Int. Interconnect Technol. Conf.-IITC (2013) pp. 1–3 D. Kondo, H. Nakano, B. Zhou, I. Kubota, K. Hayashi, K. Yagi, M. Takahashi, M. Sato, S. Sato, N. Yokoyama: Intercalated multi-layer graphene grown by CVD for LSI interconnects. In: IEEE Int. Interconnect Technol. Conf.-IITC (2013) pp. 1–3
10.73
Zurück zum Zitat S. Sato: Nanocarbon interconnects: Demonstration of properties better than Cu and remaining issues. In: IEEE Int. Interconnect Technol. Conf./IEEE Mater. Adv. Metallization Conf. (IITC/MAM) (2015) pp. 313–316 S. Sato: Nanocarbon interconnects: Demonstration of properties better than Cu and remaining issues. In: IEEE Int. Interconnect Technol. Conf./IEEE Mater. Adv. Metallization Conf. (IITC/MAM) (2015) pp. 313–316
10.74
Zurück zum Zitat C. Xu, H. Li, K. Banerjee: Modeling, analysis and design of graphene nano-ribbon interconnects, IEEE Trans. Electron Devices 56, 1567–1578 (2009)CrossRef C. Xu, H. Li, K. Banerjee: Modeling, analysis and design of graphene nano-ribbon interconnects, IEEE Trans. Electron Devices 56, 1567–1578 (2009)CrossRef
10.75
Zurück zum Zitat A. Naeemi, J.D. Meindl: Compact physics-based circuit models for graphene nanoribbon interconnects, IEEE Trans. Electron Devices 56, 1822–1833 (2009)CrossRef A. Naeemi, J.D. Meindl: Compact physics-based circuit models for graphene nanoribbon interconnects, IEEE Trans. Electron Devices 56, 1822–1833 (2009)CrossRef
10.76
Zurück zum Zitat J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, I. Taleb, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer: Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506, 349–354 (2014)CrossRef J. Baringhaus, M. Ruan, F. Edler, A. Tejeda, M. Sicot, I. Taleb, A.-P. Li, Z. Jiang, E.H. Conrad, C. Berger, C. Tegenkamp, W.A. de Heer: Exceptional ballistic transport in epitaxial graphene nanoribbons, Nature 506, 349–354 (2014)CrossRef
10.77
Zurück zum Zitat M.S. Dresselhaus, G. Dresselhaus: Intercalation compounds of graphite, Adv. Phys. 51, 1–186 (2002)CrossRef M.S. Dresselhaus, G. Dresselhaus: Intercalation compounds of graphite, Adv. Phys. 51, 1–186 (2002)CrossRef
10.78
Zurück zum Zitat Y.-W. Son, M.L. Cohen, S.G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347–349 (2006)CrossRef Y.-W. Son, M.L. Cohen, S.G. Louie: Half-metallic graphene nanoribbons, Nature 444, 347–349 (2006)CrossRef
10.79
Zurück zum Zitat E. Kan, Z. Li, J. Yang, J.G. Hou: Half-metallicity in edge-modified zigzag graphene nanoribbons, J. Am. Chem. Soc. 130, 4224–4225 (2008)CrossRef E. Kan, Z. Li, J. Yang, J.G. Hou: Half-metallicity in edge-modified zigzag graphene nanoribbons, J. Am. Chem. Soc. 130, 4224–4225 (2008)CrossRef
10.80
Zurück zum Zitat G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514, 608–611 (2014)CrossRef G.Z. Magda, X. Jin, I. Hagymasi, P. Vancso, Z. Osvath, P. Nemes-Incze, C. Hwang, L.P. Biro, L. Tapaszto: Room-temperature magnetic order on zigzag edges of narrow graphene nanoribbons, Nature 514, 608–611 (2014)CrossRef
10.81
Zurück zum Zitat B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard: Spin qubits in graphene quantum dots, Nat. Phys. 3, 192–196 (2007)CrossRef B. Trauzettel, D.V. Bulaev, D. Loss, G. Burkard: Spin qubits in graphene quantum dots, Nat. Phys. 3, 192–196 (2007)CrossRef
10.82
Zurück zum Zitat S. Konabe, N.T. Cuong, M. Otani, S. Okada: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations, Appl. Phys. Express 6, 045104 (2013)CrossRef S. Konabe, N.T. Cuong, M. Otani, S. Okada: High-efficiency photoelectric conversion in graphene–diamond hybrid structures: Model and first-principles calculations, Appl. Phys. Express 6, 045104 (2013)CrossRef
10.83
Zurück zum Zitat S. Konabe, S. Okada: Multiple exciton generation by a single photon in single-walled carbon nanotubes, Phys. Rev. Lett. 108, 227401 (2012)CrossRef S. Konabe, S. Okada: Multiple exciton generation by a single photon in single-walled carbon nanotubes, Phys. Rev. Lett. 108, 227401 (2012)CrossRef
Metadaten
Titel
Nanoribbons
verfasst von
Toshiaki Enoki
Shintaro Sato
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_10

Neuer Inhalt