Skip to main content

2017 | OriginalPaper | Buchkapitel

18. Nanorobotics

verfasst von : Bradley J. Nelson, Lixin Dong

Erschienen in: Springer Handbook of Nanotechnology

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanorobotics is the study of robotics at the nanometer scale, and includes robots that are nanoscale in size and large robots capable of manipulating objects that have dimensions in the nanoscale range with nanometer resolution. With the ability to position and orient nanometer-scale objects, nanorobotic manipulation is a promising way to enable the assembly of nanosystems including nanorobots.
This chapter overviews the state of the art of nanorobotics, outlines nanoactuation, and focuses on nanorobotic manipulation systems and their application in nanoassembly, biotechnology and the construction and characterization of nanoelectromechanical systems (NEMS) through a hybrid approach.
Because of their exceptional properties and unique structures, carbon nanotubes (CNTs) and SiGe/Si nanocoils are used to show basic processes of nanorobotic manipulation, structuring and assembly, and for the fabrication of NEMS including nano tools, sensors and actuators.
A series of processes of nanorobotic manipulation, structuring and assembly has been demonstrated experimentally. Manipulation of individual CNTs in three-dimensional (3-D) free space has been shown by grasping using dielectrophoresis and placing with both position and orientation control for mechanical and electrical property characterization and assembly of nanostructures and devices. A variety of material property investigations can be performed, including bending, buckling, and pulling to investigate elasticity as well as strength and tribological characterization. Structuring of CNTs can be performed including shape modification, the exposure of nested cores, and connecting CNTs by van der Waals forces, electron-beam-induced deposition and mechanochemical bonding. Nanorobotics provides novel techniques for exploring the biodomain by manipulation and characterization of nanoscale objects such as cellular membranes, DNA and other biomolecules. Nano tools, sensors and actuators can provide measurements and/or movements that are calculated in nanometers, gigahertz, piconewtons, femtograms, etc., and are promising for molecular machines and bio- and nanorobotics applications. Efforts are focused on developing enabling technologies for nanotubes and other nanomaterials and structures for NEMS and nanorobotics. By combining bottom-up nanorobotic manipulation and top-down nanofabrication processes, a hybrid approach is demonstrated for creating complex 3-D nanodevices. Nanomaterial science, bionanotechnology, and nanoelectronics will benefit from advances in nanorobotics.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
18.1
Zurück zum Zitat R.P. Feynman: There’s plenty of room at the bottom, Caltech Eng. Sci. 23, 22–36 (1960) R.P. Feynman: There’s plenty of room at the bottom, Caltech Eng. Sci. 23, 22–36 (1960)
18.2
Zurück zum Zitat M.C. Roco, R.S. Williams, P. Alivisatos: Nanotechnology research directions. In: Interag. Work. Group Nanosci. Eng. Technol. (IWGN) Workshop Rep. (Kluwer, Dordrecht 2000) M.C. Roco, R.S. Williams, P. Alivisatos: Nanotechnology research directions. In: Interag. Work. Group Nanosci. Eng. Technol. (IWGN) Workshop Rep. (Kluwer, Dordrecht 2000)
18.3
Zurück zum Zitat Committee on Technology, M.L. Downey, D.T. Moore, G.R. Bachula, D.M. Etter, E.F. Carey, L.A. Perine: National Nanotechnology Initiative: Leading to the Next Industrial Revolution, A Report by the Interagency Working Group on Nanoscience, Engineering and Technology (National Science and Technology Council, Washington 2000) Committee on Technology, M.L. Downey, D.T. Moore, G.R. Bachula, D.M. Etter, E.F. Carey, L.A. Perine: National Nanotechnology Initiative: Leading to the Next Industrial Revolution, A Report by the Interagency Working Group on Nanoscience, Engineering and Technology (National Science and Technology Council, Washington 2000)
18.4
Zurück zum Zitat K. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley Interscience, New York 1992) K. Drexler: Nanosystems: Molecular Machinery, Manufacturing and Computation (Wiley Interscience, New York 1992)
18.5
Zurück zum Zitat G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982) G. Binnig, H. Rohrer, C. Gerber, E. Weibel: Surface studies by scanning tunneling microscopy, Phys. Rev. Lett. 49, 57–61 (1982)
18.6
Zurück zum Zitat W.F. Degrado: Design of peptides and proteins, Adv. Protein Chem. 39, 51–124 (1998) W.F. Degrado: Design of peptides and proteins, Adv. Protein Chem. 39, 51–124 (1998)
18.7
Zurück zum Zitat J.-M. Lehn: Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim 1995) J.-M. Lehn: Supramolecular Chemistry: Concepts and Perspectives (VCH, Weinheim 1995)
18.8
Zurück zum Zitat G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002) G.M. Whitesides, B. Grzybowski: Self-assembly at all scales, Science 295, 2418–2421 (2002)
18.9
Zurück zum Zitat M. Fujita, N. Fujita, K. Ogura, K. Yamaguchi: Spontaneous assembling of ten small components into a three-dimensionally interlocked compound consisting of the same two cage frameworks, Nature 400, 52–55 (1999) M. Fujita, N. Fujita, K. Ogura, K. Yamaguchi: Spontaneous assembling of ten small components into a three-dimensionally interlocked compound consisting of the same two cage frameworks, Nature 400, 52–55 (1999)
18.10
Zurück zum Zitat T. Ebefors, G. Stemme: Microrobotics. In: The MEMS Handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002) T. Ebefors, G. Stemme: Microrobotics. In: The MEMS Handbook, ed. by M. Gad-el-Hak (CRC, Boca Raton 2002)
18.11
Zurück zum Zitat C.-J. Kim, A.P. Pisano, R.S. Muller: Silicon-processed overhanging microgripper, IEEE/ASME J. MEMS 1, 31–36 (1992) C.-J. Kim, A.P. Pisano, R.S. Muller: Silicon-processed overhanging microgripper, IEEE/ASME J. MEMS 1, 31–36 (1992)
18.12
Zurück zum Zitat C. Liu, T. Tsao, Y.-C. Tai, C.-M. Ho: Surface micromachined magnetic actuators. In: Proc. 7th IEEE Int. Conf. Micro Electro Mech. Syst., Oiso (IEEE, Piscataway 1994) pp. 57–62 C. Liu, T. Tsao, Y.-C. Tai, C.-M. Ho: Surface micromachined magnetic actuators. In: Proc. 7th IEEE Int. Conf. Micro Electro Mech. Syst., Oiso (IEEE, Piscataway 1994) pp. 57–62
18.13
Zurück zum Zitat J. Judy, D.L. Polla, W.P. Robbins: A linear piezoelectric stepper motor with submicron displacement and centimeter travel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 428–437 (1990) J. Judy, D.L. Polla, W.P. Robbins: A linear piezoelectric stepper motor with submicron displacement and centimeter travel, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37, 428–437 (1990)
18.14
Zurück zum Zitat K. Nakamura, H. Ogura, S. Maeda, U. Sangawa, S. Aoki, T. Sato: Evaluation of the micro wobbler motor fabricated by concentric buildup process. In: Proc. 8th IEEE Int. Conf. Micro Electro Mech. Syst., Amsterdam (IEEE, Piscataway 1995) pp. 374–379 K. Nakamura, H. Ogura, S. Maeda, U. Sangawa, S. Aoki, T. Sato: Evaluation of the micro wobbler motor fabricated by concentric buildup process. In: Proc. 8th IEEE Int. Conf. Micro Electro Mech. Syst., Amsterdam (IEEE, Piscataway 1995) pp. 374–379
18.15
Zurück zum Zitat A. Teshigahara, M. Watanabe, N. Kawahara, I. Ohtsuka, T. Hattori: Performance of a 7-mm microfabricated car, IEEE/ASME J. MEMS 4, 76–80 (1995) A. Teshigahara, M. Watanabe, N. Kawahara, I. Ohtsuka, T. Hattori: Performance of a 7-mm microfabricated car, IEEE/ASME J. MEMS 4, 76–80 (1995)
18.16
Zurück zum Zitat K.R. Udayakumar, S.F. Bart, A.M. Flynn, J. Chen, L.S. Tavrow, L.E. Cross, R.A. Brooks, D.J. Ehrlich: Ferroelectric thin-film ultrasonic micromotors. In: Proc. 4th IEEE Int. Conf. Micro Electro Mech. Syst., Nara (IEEE, Piscataway 1991) pp. 109–113 K.R. Udayakumar, S.F. Bart, A.M. Flynn, J. Chen, L.S. Tavrow, L.E. Cross, R.A. Brooks, D.J. Ehrlich: Ferroelectric thin-film ultrasonic micromotors. In: Proc. 4th IEEE Int. Conf. Micro Electro Mech. Syst., Nara (IEEE, Piscataway 1991) pp. 109–113
18.17
Zurück zum Zitat W. Trimmer, R. Jebens: Actuators for micro robots. In: Proc. 1989 IEEE Int. Conf. Robot. Autom., Scottsdale (IEEE, Piscataway 1989) pp. 1547–1552 W. Trimmer, R. Jebens: Actuators for micro robots. In: Proc. 1989 IEEE Int. Conf. Robot. Autom., Scottsdale (IEEE, Piscataway 1989) pp. 1547–1552
18.18
Zurück zum Zitat P. Dario, R. Valleggi, M.C. Carrozza, M.C. Montesi, M. Cocco: Review – Microactuators for microrobots: A critical survey, J. Micromech. Microeng. 2, 141–157 (1992) P. Dario, R. Valleggi, M.C. Carrozza, M.C. Montesi, M. Cocco: Review – Microactuators for microrobots: A critical survey, J. Micromech. Microeng. 2, 141–157 (1992)
18.19
Zurück zum Zitat I. Shimoyama: Scaling in microrobots. In: Proc. IEEE/RSJ Intell. Robot. Syst., Pittsburgh (IEEE, Piscataway 1995) pp. 208–211 I. Shimoyama: Scaling in microrobots. In: Proc. IEEE/RSJ Intell. Robot. Syst., Pittsburgh (IEEE, Piscataway 1995) pp. 208–211
18.20
Zurück zum Zitat R.S. Fearing: Powering 3-dimensional microrobots: power density limitations. In: Tutorial on Micro Mechatronics and Micro Robotics, Proc. IEEE Int. Conf. Robot. Autom, Leuven, ed. by G. Girait, P. Dario (IEEE, Piscataway 1998) R.S. Fearing: Powering 3-dimensional microrobots: power density limitations. In: Tutorial on Micro Mechatronics and Micro Robotics, Proc. IEEE Int. Conf. Robot. Autom, Leuven, ed. by G. Girait, P. Dario (IEEE, Piscataway 1998)
18.21
Zurück zum Zitat R.G. Gilbertson, J.D. Busch: A survey of micro-actuator technologies for future spacecraft missions, J. Br. Interplanet. Soc. 49, 129–138 (1996) R.G. Gilbertson, J.D. Busch: A survey of micro-actuator technologies for future spacecraft missions, J. Br. Interplanet. Soc. 49, 129–138 (1996)
18.22
Zurück zum Zitat M. Mehregany, P. Nagarkar, S.D. Senturia, J.H. Lang: Operation of microfabricated harmonic and ordinary side-drive motors. In: Proc. 3th IEEE Int. Conf. Micro Electro Mech. Syst., Napa Valley (IEEE, Piscataway 1990) pp. 1–8 M. Mehregany, P. Nagarkar, S.D. Senturia, J.H. Lang: Operation of microfabricated harmonic and ordinary side-drive motors. In: Proc. 3th IEEE Int. Conf. Micro Electro Mech. Syst., Napa Valley (IEEE, Piscataway 1990) pp. 1–8
18.23
Zurück zum Zitat Y.C. Tai, L.S. Fan, R.S. Muller: IC-processed micro-motors: design, technology, and testing. In: Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst., Salt Lake City (IEEE, Piscataway 1989) pp. 1–6 Y.C. Tai, L.S. Fan, R.S. Muller: IC-processed micro-motors: design, technology, and testing. In: Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst., Salt Lake City (IEEE, Piscataway 1989) pp. 1–6
18.24
Zurück zum Zitat T. Ohnstein, T. Fukiura, J. Ridley, U. Bonne: Micromachined silicon microvalve. In: Proc. 3rd IEEE Int. Conf. Micro Electro Mech. Syst., Napa Valley (IEEE, Piscataway 1990) pp. 95–99 T. Ohnstein, T. Fukiura, J. Ridley, U. Bonne: Micromachined silicon microvalve. In: Proc. 3rd IEEE Int. Conf. Micro Electro Mech. Syst., Napa Valley (IEEE, Piscataway 1990) pp. 95–99
18.25
Zurück zum Zitat L.Y. Chen, S.L. Zhang, J.J. Yao, D.C. Thomas, N.C. MacDonald: Selective chemical vapor deposition of tungsten for microdynamic structures. In: Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst., Salt Lake City (IEEE, Piscataway 1989) pp. 82–87 L.Y. Chen, S.L. Zhang, J.J. Yao, D.C. Thomas, N.C. MacDonald: Selective chemical vapor deposition of tungsten for microdynamic structures. In: Proc. 2nd IEEE Int. Conf. Micro Electro Mech. Syst., Salt Lake City (IEEE, Piscataway 1989) pp. 82–87
18.26
Zurück zum Zitat K. Yanagisawa, H. Kuwano, A. Tago: An electromagnetically driven microvalve. In: Proc. 7th Int. Conf. Solid-State Sens. Actuators, Yokohama (IEEE, Piscataway 1993) pp. 102–105 K. Yanagisawa, H. Kuwano, A. Tago: An electromagnetically driven microvalve. In: Proc. 7th Int. Conf. Solid-State Sens. Actuators, Yokohama (IEEE, Piscataway 1993) pp. 102–105
18.27
Zurück zum Zitat S. Brand: New applications of piezo-electric actuators. In: Proc. 3rd Int. Conf. New Actuators (Messe Bremen GmbH, Bremen 1992) p. 59 S. Brand: New applications of piezo-electric actuators. In: Proc. 3rd Int. Conf. New Actuators (Messe Bremen GmbH, Bremen 1992) p. 59
18.28
Zurück zum Zitat M. Esashi, S. Shoji, A. Nakano: Normally close microvalve and micropump fabricated on a silicon wafer. In: Proc. 4th IEEE Int. Conf. Micro Electro Mech. Syst., Salt Lake City (IEEE, Piscataway 1989) pp. 29–34 M. Esashi, S. Shoji, A. Nakano: Normally close microvalve and micropump fabricated on a silicon wafer. In: Proc. 4th IEEE Int. Conf. Micro Electro Mech. Syst., Salt Lake City (IEEE, Piscataway 1989) pp. 29–34
18.29
Zurück zum Zitat R. Petrucci, K. Simmons: An introduction to piezoelectric crystals, Sens. Mag. May, 26–31 (1994) R. Petrucci, K. Simmons: An introduction to piezoelectric crystals, Sens. Mag. May, 26–31 (1994)
18.30
Zurück zum Zitat G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 93–96 (1986) G. Binnig, C.F. Quate, C. Gerber: Atomic force microscope, Phys. Rev. Lett. 56, 93–96 (1986)
18.31
Zurück zum Zitat A. Ashkin, J.M. Dziedzic: Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987) A. Ashkin, J.M. Dziedzic: Optical trapping and manipulation of viruses and bacteria, Science 235, 1517–1520 (1987)
18.32
Zurück zum Zitat F.H.C. Crick, A.F.W. Hughes: The physical properties of cytoplasm: A study by means of the magnetic particle method, Part I: Experimental, Exp. Cell Res. 1, 37–80 (1950) F.H.C. Crick, A.F.W. Hughes: The physical properties of cytoplasm: A study by means of the magnetic particle method, Part I: Experimental, Exp. Cell Res. 1, 37–80 (1950)
18.33
Zurück zum Zitat M.F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, J.R. Von Ehr, R.S. Ruoff: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10, 244–252 (1999) M.F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, J.R. Von Ehr, R.S. Ruoff: Three-dimensional manipulation of carbon nanotubes under a scanning electron microscope, Nanotechnology 10, 244–252 (1999)
18.34
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: 3-D nanorobotic manipulation of nano-order objects inside SEM. In: Proc. 2000 Int. Symp. Micromechatron. Hum. Sci., Nagoya (IEEE, Piscataway 2000) pp. 151–156 L.X. Dong, F. Arai, T. Fukuda: 3-D nanorobotic manipulation of nano-order objects inside SEM. In: Proc. 2000 Int. Symp. Micromechatron. Hum. Sci., Nagoya (IEEE, Piscataway 2000) pp. 151–156
18.35
Zurück zum Zitat D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526 (1990) D.M. Eigler, E.K. Schweizer: Positioning single atoms with a scanning tunneling microscope, Nature 344, 524–526 (1990)
18.36
Zurück zum Zitat P. Avouris: Manipulation of matter at the atomic and molecular levels, Acc. Chem. Res. 28, 95–102 (1995) P. Avouris: Manipulation of matter at the atomic and molecular levels, Acc. Chem. Res. 28, 95–102 (1995)
18.37
Zurück zum Zitat M.F. Crommie, C.P. Lutz, D.M. Eigler: Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993) M.F. Crommie, C.P. Lutz, D.M. Eigler: Confinement of electrons to quantum corrals on a metal surface, Science 262, 218–220 (1993)
18.38
Zurück zum Zitat L.J. Whitman, J.A. Stroscio, R.A. Dragoset, R.J. Cellota: Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope, Science 251, 1206–1210 (1991) L.J. Whitman, J.A. Stroscio, R.A. Dragoset, R.J. Cellota: Manipulation of adsorbed atoms and creation of new structures on room-temperature surfaces with a scanning tunneling microscope, Science 251, 1206–1210 (1991)
18.39
Zurück zum Zitat I.-W. Lyo, P. Avouris: Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991) I.-W. Lyo, P. Avouris: Field-induced nanometer-scale to atomic-scale manipulation of silicon surfaces with the STM, Science 253, 173–176 (1991)
18.40
Zurück zum Zitat G. Dujardin, R.E. Walkup, P. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232–1235 (1992) G. Dujardin, R.E. Walkup, P. Avouris: Dissociation of individual molecules with electrons from the tip of a scanning tunneling microscope, Science 255, 1232–1235 (1992)
18.41
Zurück zum Zitat T.-C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup: Atomic-scale desorption through electronic and vibrational-excitation mechanisms, Science 268, 1590–1592 (1995) T.-C. Shen, C. Wang, G.C. Abeln, J.R. Tucker, J.W. Lyding, P. Avouris, R.E. Walkup: Atomic-scale desorption through electronic and vibrational-excitation mechanisms, Science 268, 1590–1592 (1995)
18.42
Zurück zum Zitat M.T. Cuberes, R.R. Schittler, J.K. Gimzewski: Room-temperature repositioning of individual C_60 molecules at Cu steps: Operation of a molecular counting device, Appl. Phys. Lett. 69, 3016–3018 (1996) M.T. Cuberes, R.R. Schittler, J.K. Gimzewski: Room-temperature repositioning of individual C_60 molecules at Cu steps: Operation of a molecular counting device, Appl. Phys. Lett. 69, 3016–3018 (1996)
18.43
Zurück zum Zitat H.J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286, 1719–1722 (1999) H.J. Lee, W. Ho: Single-bond formation and characterization with a scanning tunneling microscope, Science 286, 1719–1722 (1999)
18.44
Zurück zum Zitat T. Yamamoto, O. Kurosawa, H. Kabata, N. Shimamoto, M. Washizu: Molecular surgery of DNA based on electrostatic micromanipulation, IEEE Trans. IA 36, 1010–1017 (2000) T. Yamamoto, O. Kurosawa, H. Kabata, N. Shimamoto, M. Washizu: Molecular surgery of DNA based on electrostatic micromanipulation, IEEE Trans. IA 36, 1010–1017 (2000)
18.45
Zurück zum Zitat C. Haber, D. Wirtz: Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum. 71, 4561–4570 (2000) C. Haber, D. Wirtz: Magnetic tweezers for DNA micromanipulation, Rev. Sci. Instrum. 71, 4561–4570 (2000)
18.46
Zurück zum Zitat D.M. Schäfer, R. Reifenberger, A. Patil, R.P. Andres: Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. 66, 1012–1014 (1995) D.M. Schäfer, R. Reifenberger, A. Patil, R.P. Andres: Fabrication of two-dimensional arrays of nanometer-size clusters with the atomic force microscope, Appl. Phys. Lett. 66, 1012–1014 (1995)
18.47
Zurück zum Zitat T. Junno, K. Deppert, L. Montelius, L. Samuelson: Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66, 3627–3629 (1995) T. Junno, K. Deppert, L. Montelius, L. Samuelson: Controlled manipulation of nanoparticles with an atomic force microscope, Appl. Phys. Lett. 66, 3627–3629 (1995)
18.48
Zurück zum Zitat P.E. Sheehan, C.M. Lieber: Nanomachining, manipulation and fabrication by force microscopy, Nanotechnology 7, 236–240 (1996) P.E. Sheehan, C.M. Lieber: Nanomachining, manipulation and fabrication by force microscopy, Nanotechnology 7, 236–240 (1996)
18.49
Zurück zum Zitat C. Baur, B.C. Gazen, B. Koel, T.R. Ramachandran, A.A.G. Requicha, L. Zini: Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Technol. B 15, 1577–1580 (1997) C. Baur, B.C. Gazen, B. Koel, T.R. Ramachandran, A.A.G. Requicha, L. Zini: Robotic nanomanipulation with a scanning probe microscope in a networked computing environment, J. Vac. Sci. Technol. B 15, 1577–1580 (1997)
18.50
Zurück zum Zitat R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will: Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14, 6613–6616 (1998) R. Resch, C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, A.A.G. Requicha, P. Will: Building and manipulating 3-D and linked 2-D structures of nanoparticles using scanning force microscopy, Langmuir 14, 6613–6616 (1998)
18.51
Zurück zum Zitat J. Hu, Z.-H. Zhang, Z.-Q. Ouyang, S.-F. Chen, M.-Q. Li, F.-J. Yang: Stretch and align virus in nanometer scale on an atomically flat surface, J. Vac. Sci. Technol. B 16, 2841–2843 (1998) J. Hu, Z.-H. Zhang, Z.-Q. Ouyang, S.-F. Chen, M.-Q. Li, F.-J. Yang: Stretch and align virus in nanometer scale on an atomically flat surface, J. Vac. Sci. Technol. B 16, 2841–2843 (1998)
18.52
Zurück zum Zitat M. Sitti, S. Horiguchi, H. Hashimoto: Controlled pushing of nanoparticles: Modeling and experiments, IEEE/ASME Trans. Mechatron. 5, 199–211 (2000) M. Sitti, S. Horiguchi, H. Hashimoto: Controlled pushing of nanoparticles: Modeling and experiments, IEEE/ASME Trans. Mechatron. 5, 199–211 (2000)
18.53
Zurück zum Zitat M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson, S. Washburn, D.A. Erie, R. Superfine, F.P. Brooks Jr., R.M. Taylor II: Controlled manipulation of molecular samples with the nanoManipulator, IEEE/ASME Trans. Mechatron. 5, 189–198 (2000) M. Guthold, M.R. Falvo, W.G. Matthews, S. Paulson, S. Washburn, D.A. Erie, R. Superfine, F.P. Brooks Jr., R.M. Taylor II: Controlled manipulation of molecular samples with the nanoManipulator, IEEE/ASME Trans. Mechatron. 5, 189–198 (2000)
18.54
Zurück zum Zitat F. Arai, D. Andou, T. Fukuda: Micro manipulation based on micro physics – strategy based on attractive force reduction and stress measurement. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Pittsburgh (IEEE, Piscataway 1995) pp. 236–241 F. Arai, D. Andou, T. Fukuda: Micro manipulation based on micro physics – strategy based on attractive force reduction and stress measurement. In: Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., Pittsburgh (IEEE, Piscataway 1995) pp. 236–241
18.55
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: 3-D nanorobotic manipulations of nanometer scale objects, J. Robot. Mechatron. 13, 146–153 (2001) L.X. Dong, F. Arai, T. Fukuda: 3-D nanorobotic manipulations of nanometer scale objects, J. Robot. Mechatron. 13, 146–153 (2001)
18.56
Zurück zum Zitat H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994) H.W.P. Koops, J. Kretz, M. Rudolph, M. Weber, G. Dahm, K.L. Lee: Characterization and application of materials grown by electron-beam-induced deposition, Jpn. J. Appl. Phys. 33, 7099–7107 (1994)
18.57
Zurück zum Zitat S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991) S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56–58 (1991)
18.58
Zurück zum Zitat S.J. Tans, A.R.M. Verchueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998) S.J. Tans, A.R.M. Verchueren, C. Dekker: Room-temperature transistor based on a single carbon nanotube, Nature 393, 49–52 (1998)
18.59
Zurück zum Zitat Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber: Logic gates and computation from assembled nanowire building blocks, Science 294, 1313–1317 (2001) Y. Huang, X.F. Duan, Y. Cui, L.J. Lauhon, K.-H. Kim, C.M. Lieber: Logic gates and computation from assembled nanowire building blocks, Science 294, 1313–1317 (2001)
18.60
Zurück zum Zitat A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001) A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker: Logic circuits with carbon nanotube transistors, Science 294, 1317–1320 (2001)
18.61
Zurück zum Zitat R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes – the route toward applications, Science 297, 787–792 (2002) R.H. Baughman, A.A. Zakhidov, W.A. de Heer: Carbon nanotubes – the route toward applications, Science 297, 787–792 (2002)
18.62
Zurück zum Zitat N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000) N. Wang, Z.K. Tang, G.D. Li, J.S. Chen: Single-walled 4 Å carbon nanotube arrays, Nature 408, 50–51 (2000)
18.63
Zurück zum Zitat Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian: Very long carbon nanotubes, Nature 394, 631–632 (1998) Z.W. Pan, S.S. Xie, B.H. Chang, C.Y. Wang, L. Lu, W. Liu, W.Y. Zhou, W.Z. Li, L.X. Qian: Very long carbon nanotubes, Nature 394, 631–632 (1998)
18.64
Zurück zum Zitat H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan: Direct synthesis of long single-walled carbon nanotube strands, Science 296, 884–886 (2002) H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, P.M. Ajayan: Direct synthesis of long single-walled carbon nanotube strands, Science 296, 884–886 (2002)
18.65
Zurück zum Zitat M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996) M.J. Treacy, T.W. Ebbesen, J.M. Gibson: Exceptionally high Young’s modulus observed for individual carbon nanotubes, Nature 381, 678–680 (1996)
18.66
Zurück zum Zitat E.W. Wong, P.E. Sheehan, C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971–1975 (1997) E.W. Wong, P.E. Sheehan, C.M. Lieber: Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes, Science 277, 1971–1975 (1997)
18.67
Zurück zum Zitat P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513–1516 (1999) P. Poncharal, Z.L. Wang, D. Ugarte, W.A. de Heer: Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513–1516 (1999)
18.68
Zurück zum Zitat M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000) M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelley, R.S. Ruoff: Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load, Science 287, 637–640 (2000)
18.69
Zurück zum Zitat A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Young’s modulus of single-walled nanotubes, Phys. Rev. B 58, 14–013–14–019 (1998) A. Krishnan, E. Dujardin, T.W. Ebbesen, P.N. Yianilos, M.M.J. Treacy: Young’s modulus of single-walled nanotubes, Phys. Rev. B 58, 14–013–14–019 (1998)
18.70
Zurück zum Zitat J.P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro: Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett. 82, 944–947 (1999) J.P. Salvetat, G.A.D. Briggs, J.-M. Bonard, R.R. Bacsa, A.J. Kulik, T. Stockli, N.A. Burnham, L. Forro: Elastic and shear moduli of single-walled carbon nanotube ropes, Phys. Rev. Lett. 82, 944–947 (1999)
18.71
Zurück zum Zitat M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552–5555 (2000) M.F. Yu, B.S. Files, S. Arepalli, R.S. Ruoff: Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties, Phys. Rev. Lett. 84, 5552–5555 (2000)
18.72
Zurück zum Zitat D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999) D.A. Walters, L.M. Ericson, M.J. Casavant, J. Liu, D.T. Colbert, K.A. Smith, R.E. Smalley: Elastic strain of freely suspended single-wall carbon nanotube ropes, Appl. Phys. Lett. 74, 3803–3805 (1999)
18.73
Zurück zum Zitat R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804–1811 (1992) R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus: Electronic structure of graphene tubules based on C60, Phys. Rev. B 46, 1804–1811 (1992)
18.74
Zurück zum Zitat T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio: Electrical conductivity of individual carbon nanotubes, Nature 382, 54–56 (1996) T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio: Electrical conductivity of individual carbon nanotubes, Nature 382, 54–56 (1996)
18.75
Zurück zum Zitat H.J. Dai, E.W. Wong, C.M. Lieber: Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science 272, 523–526 (1996) H.J. Dai, E.W. Wong, C.M. Lieber: Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes, Science 272, 523–526 (1996)
18.76
Zurück zum Zitat P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001) P. Kim, L. Shi, A. Majumdar, P.L. McEuen: Thermal transport measurements of individual multiwalled nanotubes, Phys. Rev. Lett. 87, 215502 (2001)
18.77
Zurück zum Zitat W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001) W.J. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park: Fabry–Perot interference in a nanotube electron waveguide, Nature 411, 665–669 (2001)
18.78
Zurück zum Zitat S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998) S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer: Carbon nanotube quantum resistors, Science 280, 1744–1746 (1998)
18.79
Zurück zum Zitat X.B. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelincks, J. Van Landuyt, V. Ivanov, J.B. Nagy, P. Lambin, A.A. Lucas: The texture of catalytically grown coil-shaped carbon nanotubules, Europhys. Lett. 27, 141–146 (1994) X.B. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelincks, J. Van Landuyt, V. Ivanov, J.B. Nagy, P. Lambin, A.A. Lucas: The texture of catalytically grown coil-shaped carbon nanotubules, Europhys. Lett. 27, 141–146 (1994)
18.80
Zurück zum Zitat X.Y. Kong, Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett. 3, 1625–1631 (2003) X.Y. Kong, Z.L. Wang: Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts, Nano Lett. 3, 1625–1631 (2003)
18.81
Zurück zum Zitat S.V. Golod, V.Y. Prinz, V.I. Mashanov, A.K. Gutakovsky: Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils, Semicond. Sci. Technol. 16, 181–185 (2001) S.V. Golod, V.Y. Prinz, V.I. Mashanov, A.K. Gutakovsky: Fabrication of conducting GeSi/Si micro- and nanotubes and helical microcoils, Semicond. Sci. Technol. 16, 181–185 (2001)
18.82
Zurück zum Zitat L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, D. Grützmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nanotechnology 16, 655–663 (2005) L. Zhang, E. Deckhardt, A. Weber, C. Schönenberger, D. Grützmacher: Controllable fabrication of SiGe/Si and SiGe/Si/Cr helical nanobelts, Nanotechnology 16, 655–663 (2005)
18.83
Zurück zum Zitat D.J. Bell, L.X. Dong, Y. Sun, L. Zhang, B.J. Nelson, D. Grützmacher: Manipulation of nanocoils for nanoelectromagnets. In: Proc. 5th IEEE Conf. Nanotechnol., Nagoya (IEEE, Piscataway 2005) pp. 149–152 D.J. Bell, L.X. Dong, Y. Sun, L. Zhang, B.J. Nelson, D. Grützmacher: Manipulation of nanocoils for nanoelectromagnets. In: Proc. 5th IEEE Conf. Nanotechnol., Nagoya (IEEE, Piscataway 2005) pp. 149–152
18.84
Zurück zum Zitat D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grützmacher: Three-dimensional nanosprings for electromechanical sensors. In: Proc. 13th Int. Conf. Solid-State Sens. Actuators Microsyst., Seoul (IEEE, Piscataway 2005) pp. 15–18 D.J. Bell, Y. Sun, L. Zhang, L.X. Dong, B.J. Nelson, D. Grützmacher: Three-dimensional nanosprings for electromechanical sensors. In: Proc. 13th Int. Conf. Solid-State Sens. Actuators Microsyst., Seoul (IEEE, Piscataway 2005) pp. 15–18
18.85
Zurück zum Zitat S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993) S. Iijima, T. Ichihashi: Single-shell carbon nanotubes of 1-nm diameter, Nature 363, 603–605 (1993)
18.86
Zurück zum Zitat D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993) D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers: Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 605–607 (1993)
18.87
Zurück zum Zitat R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998) R. Martel, T. Schmidt, H.R. Shea, T. Hertel, P. Avouris: Single- and multi-wall carbon nanotube field-effect transistors, Appl. Phys. Lett. 73, 2447–2449 (1998)
18.88
Zurück zum Zitat N.R. Franklin, Y.M. Li, R.J. Chen, A. Javey, H.J. Dai: Patterned growth of single-walled carbon nanotubes on full 4-inch wafers, Appl. Phys. Lett. 79, 4571–4573 (2001) N.R. Franklin, Y.M. Li, R.J. Chen, A. Javey, H.J. Dai: Patterned growth of single-walled carbon nanotubes on full 4-inch wafers, Appl. Phys. Lett. 79, 4571–4573 (2001)
18.89
Zurück zum Zitat T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based non-volatile random access memory for molecular computing, Science 289, 94–97 (2000) T. Rueckes, K. Kim, E. Joselevich, G.Y. Tseng, C.-L. Cheung, C.M. Lieber: Carbon nanotube-based non-volatile random access memory for molecular computing, Science 289, 94–97 (2000)
18.90
Zurück zum Zitat A. Subramanian, B. Vikramaditya, L.X. Dong, D. Bell, B.J. Nelson: Micro and nanorobotic assembly using dielectrophoresis. In: Robotics: Science and Systems I, ed. by S. Thrun, G.S. Sukhatme, S. Schaal, O. Brock (MIT Press, Cambridge 2005) pp. 327–334 A. Subramanian, B. Vikramaditya, L.X. Dong, D. Bell, B.J. Nelson: Micro and nanorobotic assembly using dielectrophoresis. In: Robotics: Science and Systems I, ed. by S. Thrun, G.S. Sukhatme, S. Schaal, O. Brock (MIT Press, Cambridge 2005) pp. 327–334
18.91
Zurück zum Zitat T. Fukuda, F. Arai, L.X. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proc. IEEE 91, 1803–1818 (2003) T. Fukuda, F. Arai, L.X. Dong: Assembly of nanodevices with carbon nanotubes through nanorobotic manipulations, Proc. IEEE 91, 1803–1818 (2003)
18.92
Zurück zum Zitat M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature 389, 582–584 (1997) M.R. Falvo, G.J. Clary, R.M. Taylor, V. Chi, F.P. Brooks, S. Washburn, R. Superfine: Bending and buckling of carbon nanotubes under large strain, Nature 389, 582–584 (1997)
18.93
Zurück zum Zitat H.W.C. Postma, A. Sellmeijer, C. Dekker: Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope, Adv. Mater. 12, 1299–1302 (2000) H.W.C. Postma, A. Sellmeijer, C. Dekker: Manipulation and imaging of individual single-walled carbon nanotubes with an atomic force microscope, Adv. Mater. 12, 1299–1302 (2000)
18.94
Zurück zum Zitat H.W.C. Postma, M. de Jonge, Z. Yao, C. Dekker: Electrical transport through carbon nanotube junctions created by mechanical manipulation, Phys. Rev. B 62, R10653–R10656 (2000) H.W.C. Postma, M. de Jonge, Z. Yao, C. Dekker: Electrical transport through carbon nanotube junctions created by mechanical manipulation, Phys. Rev. B 62, R10653–R10656 (2000)
18.95
Zurück zum Zitat T. Hertel, R. Martel, P. Avouris: Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B 102, 910–915 (1998) T. Hertel, R. Martel, P. Avouris: Manipulation of individual carbon nanotubes and their interaction with surfaces, J. Phys. Chem. B 102, 910–915 (1998)
18.96
Zurück zum Zitat P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup: Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201–209 (1999) P. Avouris, T. Hertel, R. Martel, T. Schmidt, H.R. Shea, R.E. Walkup: Carbon nanotubes: nanomechanics, manipulation, and electronic devices, Appl. Surf. Sci. 141, 201–209 (1999)
18.97
Zurück zum Zitat L. Roschier, J. Penttila, M. Martin, P. Hakonen, M. Paalanen, U. Tapper, E.I. Kauppinen, C. Journet, P. Bernier: Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation, Appl. Phys. Lett. 75, 728–730 (1999) L. Roschier, J. Penttila, M. Martin, P. Hakonen, M. Paalanen, U. Tapper, E.I. Kauppinen, C. Journet, P. Bernier: Single-electron transistor made of multiwalled carbon nanotube using scanning probe manipulation, Appl. Phys. Lett. 75, 728–730 (1999)
18.98
Zurück zum Zitat M. Ahlskog, R. Tarkiainen, L. Roschier, P. Hakonen: Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties, Appl. Phys. Lett. 77, 4037–4039 (2000) M. Ahlskog, R. Tarkiainen, L. Roschier, P. Hakonen: Single-electron transistor made of two crossing multiwalled carbon nanotubes and its noise properties, Appl. Phys. Lett. 77, 4037–4039 (2000)
18.99
Zurück zum Zitat M.R. Falvo, R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr, S. Washburn, R. Superfine: Nanometre-scale rolling and sliding of carbon nanotubes, Nature 397, 236–238 (1999) M.R. Falvo, R.M. Taylor II, A. Helser, V. Chi, F.P. Brooks Jr, S. Washburn, R. Superfine: Nanometre-scale rolling and sliding of carbon nanotubes, Nature 397, 236–238 (1999)
18.100
Zurück zum Zitat M.R. Falvo, J. Steele, R.M. Taylor II, R. Superfine: Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG, Phys. Rev. B 62, R10665–R10667 (2000) M.R. Falvo, J. Steele, R.M. Taylor II, R. Superfine: Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG, Phys. Rev. B 62, R10665–R10667 (2000)
18.101
Zurück zum Zitat L.X. Dong: Nanorobotic Manipulations of Carbon Nanotubes, Ph.D. Thesis (Nagoya University, Nagoya 2003) L.X. Dong: Nanorobotic Manipulations of Carbon Nanotubes, Ph.D. Thesis (Nagoya University, Nagoya 2003)
18.102
Zurück zum Zitat J.H. Hafner, C.-L. Cheung, T.H. Oosterkamp, C.M. Lieber: High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 105, 743–746 (2001) J.H. Hafner, C.-L. Cheung, T.H. Oosterkamp, C.M. Lieber: High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B 105, 743–746 (2001)
18.103
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: Electron-beam-induced deposition with carbon nanotube emitters, Appl. Phys. Lett. 81, 1919–1921 (2002) L.X. Dong, F. Arai, T. Fukuda: Electron-beam-induced deposition with carbon nanotube emitters, Appl. Phys. Lett. 81, 1919–1921 (2002)
18.104
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: 3-D nanorobotic manipulations of multi-walled carbon nanotubes. In: Proc. 2001 IEEE Int. Conf. Robot. Autom. (ICRA2001), Seoul (IEEE, Piscataway 2001) pp. 632–637 L.X. Dong, F. Arai, T. Fukuda: 3-D nanorobotic manipulations of multi-walled carbon nanotubes. In: Proc. 2001 IEEE Int. Conf. Robot. Autom. (ICRA2001), Seoul (IEEE, Piscataway 2001) pp. 632–637
18.105
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: Three-dimensional nanorobotic manipulations of carbon nanotubes, J. Robot. Mechatron. JSME 14, 245–252 (2002) L.X. Dong, F. Arai, T. Fukuda: Three-dimensional nanorobotic manipulations of carbon nanotubes, J. Robot. Mechatron. JSME 14, 245–252 (2002)
18.106
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: Inter-process measurement of MWNT rigidity and fabrication of MWNT junctions through nanorobotic manipulations. In: Conf. Proc. Nanonetw. Mater. Fuller. Nanotub. Relat. Mater., Vol. 590, (AIP, Melville 2001) pp. 71–74 L.X. Dong, F. Arai, T. Fukuda: Inter-process measurement of MWNT rigidity and fabrication of MWNT junctions through nanorobotic manipulations. In: Conf. Proc. Nanonetw. Mater. Fuller. Nanotub. Relat. Mater., Vol. 590, (AIP, Melville 2001) pp. 71–74
18.107
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: Shape modification of carbon nanotubes and its applications in nanotube scissors. In: Proc. IEEE Int. Conf. Nanotechnol. (IEEE-NANO2002), Washington (IEEE, Piscataway 2002) pp. 443–446 L.X. Dong, F. Arai, T. Fukuda: Shape modification of carbon nanotubes and its applications in nanotube scissors. In: Proc. IEEE Int. Conf. Nanotechnol. (IEEE-NANO2002), Washington (IEEE, Piscataway 2002) pp. 443–446
18.108
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulations, IEEE/ASME Trans. Mechatron. 9, 350–357 (2004) L.X. Dong, F. Arai, T. Fukuda: Destructive constructions of nanostructures with carbon nanotubes through nanorobotic manipulations, IEEE/ASME Trans. Mechatron. 9, 350–357 (2004)
18.109
Zurück zum Zitat J. Cumings, P.G. Collins, A. Zettl: Peeling and sharpening multiwall nanotubes, Nature 406, 58 (2000) J. Cumings, P.G. Collins, A. Zettl: Peeling and sharpening multiwall nanotubes, Nature 406, 58 (2000)
18.110
Zurück zum Zitat J. Cumings, A. Zettl: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602–604 (2000) J. Cumings, A. Zettl: Low-friction nanoscale linear bearing realized from multiwall carbon nanotubes, Science 289, 602–604 (2000)
18.111
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: 3-D nanoassembly of carbon nanotubes through nanorobotic manipulations. In: Proc. 2002 IEEE Int. Conf. Robot. Autom. (ICRA2002), Washington (IEEE, Piscataway 2002) pp. 1477–1482 L.X. Dong, F. Arai, T. Fukuda: 3-D nanoassembly of carbon nanotubes through nanorobotic manipulations. In: Proc. 2002 IEEE Int. Conf. Robot. Autom. (ICRA2002), Washington (IEEE, Piscataway 2002) pp. 1477–1482
18.112
Zurück zum Zitat L.X. Dong, F. Arai, T. Fukuda: Mechanochemical nanorobotic manipulations of carbon nanotubes, Jpn. J. Appl. Phys. 42, 295–298 (2003) L.X. Dong, F. Arai, T. Fukuda: Mechanochemical nanorobotic manipulations of carbon nanotubes, Jpn. J. Appl. Phys. 42, 295–298 (2003)
18.113
Zurück zum Zitat R. Saito, G. Dresselhaus, M.S. Dresselhaus: Tunneling conductance of connected carbon nanotubes, Phys. Rev. B 53, 2044–2050 (1996) R. Saito, G. Dresselhaus, M.S. Dresselhaus: Tunneling conductance of connected carbon nanotubes, Phys. Rev. B 53, 2044–2050 (1996)
18.114
Zurück zum Zitat L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Pure carbon nanoscale devices: nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996) L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen: Pure carbon nanoscale devices: nanotube heterojunctions, Phys. Rev. Lett. 76, 971–974 (1996)
18.115
Zurück zum Zitat M. Menon, D. Srivastava: Carbon nanotube T junctions: nanoscale metal–semiconductor–metal contact devices, Phys. Rev. Lett. 79, 4453–4456 (1997) M. Menon, D. Srivastava: Carbon nanotube T junctions: nanoscale metal–semiconductor–metal contact devices, Phys. Rev. Lett. 79, 4453–4456 (1997)
18.116
Zurück zum Zitat Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999) Z. Yao, H.W.C. Postma, L. Balents, C. Dekker: Carbon nanotube intramolecular junctions, Nature 402, 273–276 (1999)
18.117
Zurück zum Zitat H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001) H.W.C. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker: Carbon nanotube single-electron transistors at room temperature, Science 293, 76–79 (2001)
18.118
Zurück zum Zitat M.S. Fuhrer, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000) M.S. Fuhrer, L. Shih, M. Forero, Y.-G. Yoon, M.S.C. Mazzoni, H.J. Choi, J. Ihm, S.G. Louie, A. Zettl, P.L. McEuen: Crossed nanotube junctions, Science 288, 494–497 (2000)
18.119
Zurück zum Zitat T. Rueckes, K. Kim, E. Joselevich, G.Y. Treng, C.L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing science, Science 289, 94–97 (2000) T. Rueckes, K. Kim, E. Joselevich, G.Y. Treng, C.L. Cheung, C.M. Lieber: Carbon nanotube-based nonvolatile random access memory for molecular computing science, Science 289, 94–97 (2000)
18.120
Zurück zum Zitat A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley: Unraveling nanotubes: field emission from an atomic wire, Science 269, 1550–1553 (1995) A.G. Rinzler, J.H. Hafner, P. Nikolaev, L. Lou, S.G. Kim, D. Tománek, P. Nordlander, D.T. Colbert, R.E. Smalley: Unraveling nanotubes: field emission from an atomic wire, Science 269, 1550–1553 (1995)
18.121
Zurück zum Zitat Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasaya, Y. Nishina: Conical beams from open nanotubes, Nature 389, 554 (1997) Y. Saito, K. Hamaguchi, K. Hata, K. Uchida, Y. Tasaka, F. Ikazaki, M. Yumura, A. Kasaya, Y. Nishina: Conical beams from open nanotubes, Nature 389, 554 (1997)
18.122
Zurück zum Zitat S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, J. Zesch, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998) S.C. Minne, G. Yaralioglu, S.R. Manalis, J.D. Adams, J. Zesch, A. Atalar, C.F. Quate: Automated parallel high-speed atomic force microscopy, Appl. Phys. Lett. 72, 2340–2342 (1998)
18.123
Zurück zum Zitat G.D. Skidmore, E. Parker, M. Ellis, N. Sarkar, R. Merkle: Exponential assembly, Nanotechnology 11, 316–321 (2001) G.D. Skidmore, E. Parker, M. Ellis, N. Sarkar, R. Merkle: Exponential assembly, Nanotechnology 11, 316–321 (2001)
18.124
Zurück zum Zitat Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001) Y. Cui, Q.Q. Wei, H.K. Park, C.M. Lieber: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289–1292 (2001)
18.125
Zurück zum Zitat Y. Sun, B.J. Nelson: Microrobotic cell injection. In: Proc. 2001 IEEE Int. Conf. Robot. Autom. (ICRA2001), Seoul (IEEE, Piscataway 2001) pp. 620–625 Y. Sun, B.J. Nelson: Microrobotic cell injection. In: Proc. 2001 IEEE Int. Conf. Robot. Autom. (ICRA2001), Seoul (IEEE, Piscataway 2001) pp. 620–625
18.126
Zurück zum Zitat Y. Sun, B.J. Nelson: Autonomous injection of biological cells using visual servoing. In: Int. Symp. Exp. Robot. (ISER) (Lecture Notes Control Inform. Sci., Hawaii 2000) pp. 175–184 Y. Sun, B.J. Nelson: Autonomous injection of biological cells using visual servoing. In: Int. Symp. Exp. Robot. (ISER) (Lecture Notes Control Inform. Sci., Hawaii 2000) pp. 175–184
18.127
Zurück zum Zitat Y. Sun, B.J. Nelson, D.P. Potasek, E. Enikov: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives, J. Micromech. Microeng. 12, 832–840 (2002) Y. Sun, B.J. Nelson, D.P. Potasek, E. Enikov: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives, J. Micromech. Microeng. 12, 832–840 (2002)
18.128
Zurück zum Zitat Y. Sun, K. Wan, K.P. Roberts, J.C. Bischof, B.J. Nelson: Mechanical property characterization of mouse zona pellucida, IEEE Trans. Nanobiosci. 2, 279–286 (2003) Y. Sun, K. Wan, K.P. Roberts, J.C. Bischof, B.J. Nelson: Mechanical property characterization of mouse zona pellucida, IEEE Trans. Nanobiosci. 2, 279–286 (2003)
18.129
Zurück zum Zitat H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996) H.J. Dai, J.H. Hafner, A.G. Rinzler, D.T. Colbert, R.E. Smalley: Nanotubes as nanoprobes in scanning probe microscopy, Nature 384, 147–150 (1996)
18.130
Zurück zum Zitat J.H. Hafner, C.L. Cheung, C.M. Lieber: Growth of nanotubes for probe microscopy tips, Nature 398, 761–762 (1999) J.H. Hafner, C.L. Cheung, C.M. Lieber: Growth of nanotubes for probe microscopy tips, Nature 398, 761–762 (1999)
18.131
Zurück zum Zitat H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K.I. Hohmura, S.H. Yoshimura, K. Takeyasu: Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett. 74, 4061–4063 (1999) H. Nishijima, S. Kamo, S. Akita, Y. Nakayama, K.I. Hohmura, S.H. Yoshimura, K. Takeyasu: Carbon-nanotube tips for scanning probe microscopy: preparation by a controlled process and observation of deoxyribonucleic acid, Appl. Phys. Lett. 74, 4061–4063 (1999)
18.132
Zurück zum Zitat L.X. Dong, F. Arai, M. Nakajima, P. Liu, T. Fukuda: Nanotube devices fabricated in a nano laboratory. In: Proc. 2003 IEEE Int. Conf. Robot. Autom. (ICRA2003), Taipei (IEEE, Piscataway 2003) pp. 3624–3629 L.X. Dong, F. Arai, M. Nakajima, P. Liu, T. Fukuda: Nanotube devices fabricated in a nano laboratory. In: Proc. 2003 IEEE Int. Conf. Robot. Autom. (ICRA2003), Taipei (IEEE, Piscataway 2003) pp. 3624–3629
18.133
Zurück zum Zitat M. Nakajima, F. Arai, L.X. Dong, T. Fukuda: Pico-Newton order force measurement using a calibrated carbon nanotube probe inside a scanning electron microscope, J. Robot. Mechatron. JSME 16(2), 155–162 (2004) M. Nakajima, F. Arai, L.X. Dong, T. Fukuda: Pico-Newton order force measurement using a calibrated carbon nanotube probe inside a scanning electron microscope, J. Robot. Mechatron. JSME 16(2), 155–162 (2004)
18.134
Zurück zum Zitat A. Subramanian, B.J. Nelson, L.X. Dong, D. Bell: Dielectrophoretic nanoassembly of nanotube-based NEMS with nanoelectrodes. In: 6th IEEE Int. Symp. Assem. Task Plan., Montréal (IEEE, Piscataway 2005) pp. 200–205 A. Subramanian, B.J. Nelson, L.X. Dong, D. Bell: Dielectrophoretic nanoassembly of nanotube-based NEMS with nanoelectrodes. In: 6th IEEE Int. Symp. Assem. Task Plan., Montréal (IEEE, Piscataway 2005) pp. 200–205
18.135
Zurück zum Zitat J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000) J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, H.J. Dai: Nanotube molecular wires as chemical sensors, Science 287, 622–625 (2000)
18.136
Zurück zum Zitat L.X. Dong, B.J. Nelson, T. Fukuda, F. Arai: Towards linear nano servomotors with integrated position sensing. In: Proc. 2005 IEEE Int. Conf. Robot. Autom., Barcelona (IEEE, Piscataway 2005) pp. 867–872 L.X. Dong, B.J. Nelson, T. Fukuda, F. Arai: Towards linear nano servomotors with integrated position sensing. In: Proc. 2005 IEEE Int. Conf. Robot. Autom., Barcelona (IEEE, Piscataway 2005) pp. 867–872
18.137
Zurück zum Zitat Y.H. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002) Y.H. Gao, Y. Bando: Carbon nanothermometer containing gallium, Nature 415, 599 (2002)
18.138
Zurück zum Zitat R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284, 1340–1344 (1999) R.H. Baughman, C.X. Cui, A.A. Zakhidov, Z. Iqbal, J.N. Barisci, G.M. Spinks, G.G. Wallace, A. Mazzoldi, D. De Rossi, A.G. Rinzler, O. Jaschinski, S. Roth, M. Kertesz: Carbon nanotube actuators, Science 284, 1340–1344 (1999)
18.139
Zurück zum Zitat S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.E.B. Campbell: A three-terminal carbon nano-relay, Nano Lett. 4, 2027–2030 (2004) S.W. Lee, D.S. Lee, R.E. Morjan, S.H. Jhang, M. Sveningsson, O.A. Nerushev, Y.W. Park, E.E.B. Campbell: A three-terminal carbon nano-relay, Nano Lett. 4, 2027–2030 (2004)
18.140
Zurück zum Zitat A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature 424, 408–410 (2003) A.M. Fennimore, T.D. Yuzvinsky, W.-Q. Han, M.S. Fuhrer, J. Cumings, A. Zettl: Rotational actuators based on carbon nanotubes, Nature 424, 408–410 (2003)
18.141
Zurück zum Zitat P. Kim, C.M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999) P. Kim, C.M. Lieber: Nanotube nanotweezers, Science 286, 2148–2150 (1999)
18.142
Zurück zum Zitat C.K.M. Fung, V.T.S. Wong, R.H.M. Chan, W.J. Li: Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors, IEEE Trans. Nanotech. 3, 395–403 (2004) C.K.M. Fung, V.T.S. Wong, R.H.M. Chan, W.J. Li: Dielectrophoretic batch fabrication of bundled carbon nanotube thermal sensors, IEEE Trans. Nanotech. 3, 395–403 (2004)
18.143
Zurück zum Zitat A. Subramanian, L.X. Dong, B.J. Nelson: Selective eradication of individual nanotubes from vertically aligned arrays. In: Proc. 2005 IEEE/ASME Int. Conf. Adv. Intell. Mechatron., Monterey (IEEE, Piscataway 2005) pp. 105–110 A. Subramanian, L.X. Dong, B.J. Nelson: Selective eradication of individual nanotubes from vertically aligned arrays. In: Proc. 2005 IEEE/ASME Int. Conf. Adv. Intell. Mechatron., Monterey (IEEE, Piscataway 2005) pp. 105–110
18.144
Zurück zum Zitat L.X. Dong, A. Subramanian, B.J. Nelson: Nano encoders based on arrays of single nanotube emitter. In: Proc. 5th IEEE Conf. Nanotechnol., Nagoya (IEEE, Piscataway 2005) pp. 211–214 L.X. Dong, A. Subramanian, B.J. Nelson: Nano encoders based on arrays of single nanotube emitter. In: Proc. 5th IEEE Conf. Nanotechnol., Nagoya (IEEE, Piscataway 2005) pp. 211–214
Metadaten
Titel
Nanorobotics
verfasst von
Bradley J. Nelson
Lixin Dong
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-54357-3_18

Neuer Inhalt