Skip to main content
Erschienen in:
Buchtitelbild

2011 | OriginalPaper | Buchkapitel

1. Nanoscale Scratching with Single and Dual Sources Using Atomic Force Microscopes

verfasst von : Ampere A. Tseng

Erschienen in: Tip-Based Nanofabrication

Verlag: Springer New York

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

AFM (atomic force microscope) scratching is a simple yet versatile material removing technique for nanofabrication. It has evolved from a purely mechanical process to one in which the tip can be loaded by additional energy sources, such as thermal, electric, or chemical. In this chapter, scratching techniques using tips with both single and dual sources are reviewed with an emphasis on associated material removing behavior. Recent developments in scratching systems equipped with automated stages or platforms using both single tip and multiple tips are assessed. The characteristics of various approaches for scratching different types of materials, including polymers, metals, and semiconductors, are presented and evaluated. The effects of the major scratching parameters on the final nanostructures are reviewed with the goal of providing quantitative information for guiding the scratching process. Advances in several techniques using dual sources for AFM scratching are then studied with a focus on their versatility and potential for different applications. Finally, following a section on the applications of AFM scratching for fabricating a fairly wide range of nanoscale devices and systems, concluding remarks are presented to recommend subjects for future technological improvement and research emphasis, as well as to provide the author’s perspective on future challenges in the field of AFM scratching.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930 (1986). G. Binnig, C. F. Quate, C. Gerber, Atomic force microscope, Phys. Rev. Lett., 56, 930 (1986).
2.
Zurück zum Zitat A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: a review, J. Vac. Sci. Technol. B, 23, 877–894 (2005). A. A. Tseng, A. Notargiacomo, T. P. Chen, Nanofabrication by scanning probe microscope lithography: a review, J. Vac. Sci. Technol. B, 23, 877–894 (2005).
3.
Zurück zum Zitat A. A. Tseng, S. Jou, A. Notargiacomo, T. P. Chen, Recent developments in tip-based nanofabrication and its roadmap, Nanosci. Nanotechnol., 8, 2167 (2008). A. A. Tseng, S. Jou, A. Notargiacomo, T. P. Chen, Recent developments in tip-based nanofabrication and its roadmap, Nanosci. Nanotechnol., 8, 2167 (2008).
4.
Zurück zum Zitat Y. Kim, C. M. Lieber, Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale, Science, 257, 375–377 (1992). Y. Kim, C. M. Lieber, Machining oxide thin films with an atomic force microscope: pattern and object formation on the nanometer scale, Science, 257, 375–377 (1992).
5.
Zurück zum Zitat A. A. Tseng, A comparison study of scratch and wear properties using atomic force microscopy, Appl. Surf. Sci., 256, 4246–4252 (2010). A. A. Tseng, A comparison study of scratch and wear properties using atomic force microscopy, Appl. Surf. Sci., 256, 4246–4252 (2010).
6.
Zurück zum Zitat Y. Yan, T. Sun, Y. Liang, S. Dong, Investigation on AFM-based micro/nano-CNC machining system, Int. J. Mach. Tools Manuf., 47, 1651–1659 (2007). Y. Yan, T. Sun, Y. Liang, S. Dong, Investigation on AFM-based micro/nano-CNC machining system, Int. J. Mach. Tools Manuf., 47, 1651–1659 (2007).
7.
Zurück zum Zitat A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater., 22, 3361–3365 (2010). A. W. Knoll, D. Pires, O. Coulembier, P. Dubois, J. L. Hedrick, J. Frommer, U. Duerig, Probe-based 3-D nanolithography using self-amplified depolymerization polymers, Adv. Mater., 22, 3361–3365 (2010).
8.
Zurück zum Zitat A. A. Tseng, Recent developments in nanofabrication using scanning near-field optical microscope lithography, Opt. Laser Technol., 39, 514 (2007) A. A. Tseng, Recent developments in nanofabrication using scanning near-field optical microscope lithography, Opt. Laser Technol., 39, 514 (2007)
9.
Zurück zum Zitat C. Santschi, J. Polesel-Maris, J. Brugger, H. Heinzelmann, Scanning probe arrays for nanoscale imaging, sensing and modification, in Nanofabrication: Fundamentals and Applications, A. A. Tseng (Ed.), 65–126, World Scientific, Singapore, 2008. C. Santschi, J. Polesel-Maris, J. Brugger, H. Heinzelmann, Scanning probe arrays for nanoscale imaging, sensing and modification, in Nanofabrication: Fundamentals and Applications, A. A. Tseng (Ed.), 65–126, World Scientific, Singapore, 2008.
10.
Zurück zum Zitat U. Kunze, Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope, Superlatt. Microstruct., 31, 3–17 (2002).MathSciNet U. Kunze, Nanoscale devices fabricated by dynamic ploughing with an atomic force microscope, Superlatt. Microstruct., 31, 3–17 (2002).MathSciNet
11.
Zurück zum Zitat C. K. Hyon, S. C. Choi, S. W. Hwang, D. Ahn, Y. Kim, E. K. Kim, Nano-structure fabrication and manipulation by the cantilever oscillation of an atomic force microscope, Jpn. J. Appl. Phys., 38, 7257–7259 (1999). C. K. Hyon, S. C. Choi, S. W. Hwang, D. Ahn, Y. Kim, E. K. Kim, Nano-structure fabrication and manipulation by the cantilever oscillation of an atomic force microscope, Jpn. J. Appl. Phys., 38, 7257–7259 (1999).
12.
Zurück zum Zitat K. Ashida, N. Morita, Y. Yoshida, Study on nano-machining process using mechanism of a friction force microscope, JSME Int. J. Ser. C, 44, 244–253 (2001). K. Ashida, N. Morita, Y. Yoshida, Study on nano-machining process using mechanism of a friction force microscope, JSME Int. J. Ser. C, 44, 244–253 (2001).
13.
Zurück zum Zitat N. Kawasegi, N. Takano, D. Oka, N. Morita, S. Yamada, K. Kanda, S. Takano, T. Obata, K. Ashida, Nanomachining of silicon surface using atomic force microscope with diamond tip, ASME J. Manuf. Sci. Eng., 128, 723–729 (2006). N. Kawasegi, N. Takano, D. Oka, N. Morita, S. Yamada, K. Kanda, S. Takano, T. Obata, K. Ashida, Nanomachining of silicon surface using atomic force microscope with diamond tip, ASME J. Manuf. Sci. Eng., 128, 723–729 (2006).
14.
Zurück zum Zitat N. Kodera, M. Sakashita, T. Ando, A dynamic PID controller for high-speed atomic force microscopy, Rev. Sci. Instrum., 77, 083704 (2006). N. Kodera, M. Sakashita, T. Ando, A dynamic PID controller for high-speed atomic force microscopy, Rev. Sci. Instrum., 77, 083704 (2006).
15.
Zurück zum Zitat A. D. L. Humphris, M. J. Miles, J. K. Hobbs, A mechanical microscope: high-speed atomic force microscopy, Appl. Phys. Lett., 86, 034106 (2005). A. D. L. Humphris, M. J. Miles, J. K. Hobbs, A mechanical microscope: high-speed atomic force microscopy, Appl. Phys. Lett., 86, 034106 (2005).
16.
Zurück zum Zitat L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton, M. J. Miles, Breaking the speed limit with atomic force microscopy, Nanotechnology, 18, 044030 (2007). L. M. Picco, L. Bozec, A. Ulcinas, D. J. Engledew, M. Antognozzi, M. A. Horton, M. J. Miles, Breaking the speed limit with atomic force microscopy, Nanotechnology, 18, 044030 (2007).
17.
Zurück zum Zitat J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, C. M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B, 105, 743–746 (2001). J. H. Hafner, C. L. Cheung, T. H. Oosterkamp, C. M. Lieber, High-yield assembly of individual single-walled carbon nanotube tips for scanning probe microscopies, J. Phys. Chem. B, 105, 743–746 (2001).
18.
Zurück zum Zitat C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, C. M. Lieber, Growth and fabrication with single-walled carbon nanotube probe microscopy tips, Appl. Phys. Lett., 76, 3136–3138 (2000). C. L. Cheung, J. H. Hafner, T. W. Odom, K. Kim, C. M. Lieber, Growth and fabrication with single-walled carbon nanotube probe microscopy tips, Appl. Phys. Lett., 76, 3136–3138 (2000).
19.
Zurück zum Zitat K. Takami, M. Akai-Kasaya, A. Saito, M. Aono, Y. Kuwahara, Construction of independently driven double-tip scanning tunneling microscope, Jpn. J. Appl. Phys. Part 2, 44, L120 (2005). K. Takami, M. Akai-Kasaya, A. Saito, M. Aono, Y. Kuwahara, Construction of independently driven double-tip scanning tunneling microscope, Jpn. J. Appl. Phys. Part 2, 44, L120 (2005).
20.
Zurück zum Zitat X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett., 5, 1867–1872 (2005). X. F. Wang, C. Liu, Multifunctional probe array for nano patterning and imaging, Nano Lett., 5, 1867–1872 (2005).
21.
Zurück zum Zitat S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, C. F. Quate, Centimeter scale atomic force microscope imaging and lithography, Appl. Phys. Lett., 73, 1742 (1998). S. C. Minne, J. D. Adams, G. Yaralioglu, S. R. Manalis, A. Atalar, C. F. Quate, Centimeter scale atomic force microscope imaging and lithography, Appl. Phys. Lett., 73, 1742 (1998).
22.
Zurück zum Zitat P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “millipede”-nanotechnology entering data storage, IEEE Trans. Nanotechnol., 1, 39–54 (2002). P. Vettiger, G. Cross, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, M. A. Lantz, H. E. Rothuizen, R. Stutz, G. K. Binnig, The “millipede”-nanotechnology entering data storage, IEEE Trans. Nanotechnol., 1, 39–54 (2002).
23.
Zurück zum Zitat H. Pozidis, W. Haberle, D. Wiesmann, U. Drechsler, M. Despont, T. R. Albrecht, E. Eleftheriou, Demonstration of thermomechanical recording at 641 Gbit/in2, IEEE Trans. Magn., 40, 2531–2536 (2004). H. Pozidis, W. Haberle, D. Wiesmann, U. Drechsler, M. Despont, T. R. Albrecht, E. Eleftheriou, Demonstration of thermomechanical recording at 641 Gbit/in2, IEEE Trans. Magn., 40, 2531–2536 (2004).
24.
Zurück zum Zitat B. W. Ahn, S. H. Lee, Characterization and acoustic emission monitoring of AFM nanomachining, J. Micromech. Microeng., 19, 045028 (2009). B. W. Ahn, S. H. Lee, Characterization and acoustic emission monitoring of AFM nanomachining, J. Micromech. Microeng., 19, 045028 (2009).
25.
Zurück zum Zitat H. Chiriac, M. Pletea, E. Hristoforou, Magnetoelastic characterization of thin films dedicated to magnetomechanical microsensor applications, Sens. Actuators A-Phys., 68 (1–3), 414–418 (1998). H. Chiriac, M. Pletea, E. Hristoforou, Magnetoelastic characterization of thin films dedicated to magnetomechanical microsensor applications, Sens. Actuators A-Phys., 68 (1–3), 414–418 (1998).
26.
Zurück zum Zitat T. Takezaki, D. Yagisawa, K. Sueoka, Magnetic field measurement using scanning magneto resistance microscope with spin-valve sensor, Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers, 45, 2251–2254 (2006). T. Takezaki, D. Yagisawa, K. Sueoka, Magnetic field measurement using scanning magneto resistance microscope with spin-valve sensor, Jpn. J. Appl. Phys. Part 1-Regular Papers Brief Communications & Review Papers, 45, 2251–2254 (2006).
27.
Zurück zum Zitat E. Gmelin, R. Fischer, R. Stitzinger, Sub-micrometer thermal physics – An overview on SThM techniques, Thermochim. Acta, 310, 1–17 (1998). E. Gmelin, R. Fischer, R. Stitzinger, Sub-micrometer thermal physics – An overview on SThM techniques, Thermochim. Acta, 310, 1–17 (1998).
28.
Zurück zum Zitat A. J. Bard, F. R. F. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy – introduction and principles, Anal. Chem., 61, 132–138 (1989). A. J. Bard, F. R. F. Fan, J. Kwak, O. Lev, Scanning electrochemical microscopy – introduction and principles, Anal. Chem., 61, 132–138 (1989).
29.
Zurück zum Zitat G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R. S. Popovic, P. Hoffmann, Submicrometer Hall devices fabricated by focused electron-beam-induced deposition, Appl. Phys. Lett., 86, 042503 (2005). G. Boero, I. Utke, T. Bret, N. Quack, M. Todorova, S. Mouaziz, P. Kejik, J. Brugger, R. S. Popovic, P. Hoffmann, Submicrometer Hall devices fabricated by focused electron-beam-induced deposition, Appl. Phys. Lett., 86, 042503 (2005).
30.
Zurück zum Zitat A. J. Brook, S. J. Bending, J. Pinto, A. Oral, D. Ritchie, H. Beere, M. Henini, A. Springthorpe, Integrated piezoresistive sensors for atomic force-guided scanning Hall probe microscopy, Appl. Phys. Lett., 82, 3538–3540 (2003). A. J. Brook, S. J. Bending, J. Pinto, A. Oral, D. Ritchie, H. Beere, M. Henini, A. Springthorpe, Integrated piezoresistive sensors for atomic force-guided scanning Hall probe microscopy, Appl. Phys. Lett., 82, 3538–3540 (2003).
31.
Zurück zum Zitat S. Koshimizu, J. Otsuka, Detection of ductile to brittle transition in micro indentation and micro scratching of single crystal silicon using acoustic emission, J. Mach. Sci. Technol., 5, 101–114 (2001). S. Koshimizu, J. Otsuka, Detection of ductile to brittle transition in micro indentation and micro scratching of single crystal silicon using acoustic emission, J. Mach. Sci. Technol., 5, 101–114 (2001).
32.
Zurück zum Zitat D. E. Lee, I. Hwang, C. M. Valente, J. F. Oliveira, D. A. Dornfeld, Precision manufacturing process monitoring with acoustic emission, Int. J. Mach. Tools Manuf., 46, 176–188 (2006). D. E. Lee, I. Hwang, C. M. Valente, J. F. Oliveira, D. A. Dornfeld, Precision manufacturing process monitoring with acoustic emission, Int. J. Mach. Tools Manuf., 46, 176–188 (2006).
33.
Zurück zum Zitat L. Zhang, H. Tanaka, Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis, Wear, 211, 44–53 (1997). L. Zhang, H. Tanaka, Towards a deeper understanding of wear and friction on the atomic scale-a molecular dynamics analysis, Wear, 211, 44–53 (1997).
34.
Zurück zum Zitat A. A. Tseng, S. Jou, J. C. Huang, J. Shirakashi, T. P. Chen, Scratch properties of nickel thin films using atomic force microscopy, J. Vac. Sci. Technol. B, 28, 202–210 (2010). A. A. Tseng, S. Jou, J. C. Huang, J. Shirakashi, T. P. Chen, Scratch properties of nickel thin films using atomic force microscopy, J. Vac. Sci. Technol. B, 28, 202–210 (2010).
35.
Zurück zum Zitat M. Chandross, C. D. Lorenz, M. J. Stevens, G. S. Grest, Probe-tip induced damage in compliant substrates, ASME J. Manuf. Sci Eng., 132, 0309161-0309164 (2010). M. Chandross, C. D. Lorenz, M. J. Stevens, G. S. Grest, Probe-tip induced damage in compliant substrates, ASME J. Manuf. Sci Eng., 132, 0309161-0309164 (2010).
36.
Zurück zum Zitat S. Kassavetis, K. Mitsakakis, S. Logothetidis, Nanoscale patterning and deformation of soft matter by scanning probe microscopy, Mater. Sci. Eng. C, 27, 1456–1460 (2007). S. Kassavetis, K. Mitsakakis, S. Logothetidis, Nanoscale patterning and deformation of soft matter by scanning probe microscopy, Mater. Sci. Eng. C, 27, 1456–1460 (2007).
37.
Zurück zum Zitat A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, Z. Li, Nanomachining of permalloy for fabricating nanoscale ferromagnetic structures using atomic force microscopy, J. Nanosci. Nanotechnol., 10, 456–466 (2010). A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, Z. Li, Nanomachining of permalloy for fabricating nanoscale ferromagnetic structures using atomic force microscopy, J. Nanosci. Nanotechnol., 10, 456–466 (2010).
38.
Zurück zum Zitat H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett., 69, 433 (1996). H. J. Mamin, Thermal writing using a heated atomic force microscope tip, Appl. Phys. Lett., 69, 433 (1996).
39.
Zurück zum Zitat S. McNamara, A. S. Basu, J. Lee, Y. B. Gianchandani, Ultracompliant thermal probe array for scanning non-planar surfaces without force feedback, J. Micromech. Microeng., 15, 237–243 (2005). S. McNamara, A. S. Basu, J. Lee, Y. B. Gianchandani, Ultracompliant thermal probe array for scanning non-planar surfaces without force feedback, J. Micromech. Microeng., 15, 237–243 (2005).
40.
Zurück zum Zitat H. J. Mamin, B. A. Gurney, D. R. Wilhoit, V. S. Speriosu, High sensitivity spin-valve strain sensor, Appl. Phys. Lett., 72, 3220–3222 (1998). H. J. Mamin, B. A. Gurney, D. R. Wilhoit, V. S. Speriosu, High sensitivity spin-valve strain sensor, Appl. Phys. Lett., 72, 3220–3222 (1998).
41.
Zurück zum Zitat B. A. Gozen, O. B. Ozdoganlar, A rotating-tip-based mechanical nano-manufacturing process: nanomilling, Nanoscale Res. Lett., 5, 1403–1407 (2010). B. A. Gozen, O. B. Ozdoganlar, A rotating-tip-based mechanical nano-manufacturing process: nanomilling, Nanoscale Res. Lett., 5, 1403–1407 (2010).
42.
Zurück zum Zitat I. A. Mahmood, S. O. R. Moheimani, Fast spiral-scan atomic force microscopy, Nanotechnology, 20, 365503 (2009). I. A. Mahmood, S. O. R. Moheimani, Fast spiral-scan atomic force microscopy, Nanotechnology, 20, 365503 (2009).
43.
Zurück zum Zitat S. K. Hung, Spiral scanning method for atomic force microscopy, J. Nanosci. Nanotechnol., 10, 4511–4516 (2010). S. K. Hung, Spiral scanning method for atomic force microscopy, J. Nanosci. Nanotechnol., 10, 4511–4516 (2010).
44.
Zurück zum Zitat Y. W. Kim, S. C. Choi, J. W. Park, D. W. Lee, The characteristics of machined surface controlled by multi tip arrayed tool and high speed spindle, J. Nanosci. Nanotechnol., 10, 4417–4422 (2010). Y. W. Kim, S. C. Choi, J. W. Park, D. W. Lee, The characteristics of machined surface controlled by multi tip arrayed tool and high speed spindle, J. Nanosci. Nanotechnol., 10, 4417–4422 (2010).
45.
Zurück zum Zitat A.A. Tseng, M. Tanaka, Advanced deposition techniques for freeform fabrication of metal and ceramic parts, Rapid Prototyping J., 7, 6–17 (2001). A.A. Tseng, M. Tanaka, Advanced deposition techniques for freeform fabrication of metal and ceramic parts, Rapid Prototyping J., 7, 6–17 (2001).
46.
Zurück zum Zitat D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science, 328, 732–735 (2010). D. Pires, J. L. Hedrick, A. De Silva, J. Frommer, B. Gotsmann, H. Wolf, M. Despont, U. Duerig, A. W. Knoll, Nanoscale three-dimensional patterning of molecular resists by scanning probes, Science, 328, 732–735 (2010).
47.
Zurück zum Zitat K. Bourne, S. G. Kapoor, R. E. DeVor, Study of a high performance AFM probe-based microscribing process, ASME J. Manuf. Sci. Eng., 132, 030906 (2010). K. Bourne, S. G. Kapoor, R. E. DeVor, Study of a high performance AFM probe-based microscribing process, ASME J. Manuf. Sci. Eng., 132, 030906 (2010).
48.
Zurück zum Zitat Y. T. Mao, K. C. Kuo, C. E. Tseng, J. Y. Huang, Y. C. Lai, J. Y. Yen, C. K. Lee, W. L. Chuang, Research on three dimensional machining effects using atomic force microscope, Rev. Sci. Instrum., 80, 0651051 (2009). Y. T. Mao, K. C. Kuo, C. E. Tseng, J. Y. Huang, Y. C. Lai, J. Y. Yen, C. K. Lee, W. L. Chuang, Research on three dimensional machining effects using atomic force microscope, Rev. Sci. Instrum., 80, 0651051 (2009).
49.
Zurück zum Zitat T. A. Jung, A. Moser, H. J. Hug, D. Brodbeck, R. Hofer, H. R. Hidber, U. D. Schwarz, The atomic force microscope used as a powerful tool for machining surfaces, Ultramicroscopy, 42–44 (Part 2), 1446–1451 (1992). T. A. Jung, A. Moser, H. J. Hug, D. Brodbeck, R. Hofer, H. R. Hidber, U. D. Schwarz, The atomic force microscope used as a powerful tool for machining surfaces, Ultramicroscopy, 42–44 (Part 2), 1446–1451 (1992).
50.
Zurück zum Zitat X. Jin, W. N. Unertl, Submicrometer modification of polymer surfaces with a surface force microscope, Appl. Phys. Lett., 61, 657–659 (1992). X. Jin, W. N. Unertl, Submicrometer modification of polymer surfaces with a surface force microscope, Appl. Phys. Lett., 61, 657–659 (1992).
51.
Zurück zum Zitat S. I. Yamamoto, H. Yamada, H. Tokumoto, Nanometer modifications of non-conductive materials using resist-films by atomic force microscopy, Jpn. J. Appl. Phys., 34, 3396–3399 (1995). S. I. Yamamoto, H. Yamada, H. Tokumoto, Nanometer modifications of non-conductive materials using resist-films by atomic force microscopy, Jpn. J. Appl. Phys., 34, 3396–3399 (1995).
52.
Zurück zum Zitat S. F. Y. Li, H. T. Ng, P. C. Zhang, P. K. H. Ho, L. Zhou, G. W. Bao, S. L. H. Chan, Submicrometer lithography of a silicon substrate by machining of photoresist using atomic force microscopy followed by wet chemical etching, Nanotechnology, 8, 76–81 (1997). S. F. Y. Li, H. T. Ng, P. C. Zhang, P. K. H. Ho, L. Zhou, G. W. Bao, S. L. H. Chan, Submicrometer lithography of a silicon substrate by machining of photoresist using atomic force microscopy followed by wet chemical etching, Nanotechnology, 8, 76–81 (1997).
53.
Zurück zum Zitat U. Kunze, B. Klehn, Plowing on the sub-50 nm scale: nanolithography using scanning force microscopy, Adv. Mater., 11, 473 (1999). U. Kunze, B. Klehn, Plowing on the sub-50 nm scale: nanolithography using scanning force microscopy, Adv. Mater., 11, 473 (1999).
54.
Zurück zum Zitat C. H. Choi, D. J. Lee, J. Sung, M. W. Lee, S. Lee, E. Lee, B. O, A study of AFM-based scratch process on polycarbonate surface and grating application, Appl. Surf. Sci., 256, 7668–7671 (2010). C. H. Choi, D. J. Lee, J. Sung, M. W. Lee, S. Lee, E. Lee, B. O, A study of AFM-based scratch process on polycarbonate surface and grating application, Appl. Surf. Sci., 256, 7668–7671 (2010).
55.
Zurück zum Zitat H. Sugihara, A. Takahara, T. Kajiyama, Mechanical nanofabrication of lignoceric acid monolayer with atomic force microscopy, J. Vac. Sci. Technol. B, 19, 593–595 (2001). H. Sugihara, A. Takahara, T. Kajiyama, Mechanical nanofabrication of lignoceric acid monolayer with atomic force microscopy, J. Vac. Sci. Technol. B, 19, 593–595 (2001).
56.
Zurück zum Zitat Y. Zhang, E. Balaur, P. Schmuki, Nanopatterning of an organic monolayer covered Si (1 1 1) surfaces by atomic force microscope scratching, Electrochim. Acta, 51, 3674–3679 (2006). Y. Zhang, E. Balaur, P. Schmuki, Nanopatterning of an organic monolayer covered Si (1 1 1) surfaces by atomic force microscope scratching, Electrochim. Acta, 51, 3674–3679 (2006).
57.
Zurück zum Zitat M. Müler, T. Fiedler, R. Gröger, T. Koch, S. Walheim, C. Obermair, T. Schimmel, Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching, Surf. Interface Anal., 36, 189–192 (2004). M. Müler, T. Fiedler, R. Gröger, T. Koch, S. Walheim, C. Obermair, T. Schimmel, Controlled structuring of mica surfaces with the tip of an atomic force microscope by mechanically induced local etching, Surf. Interface Anal., 36, 189–192 (2004).
58.
Zurück zum Zitat S. Kopta, M. Salmeron, The atomic scale origin of wear on mica and its contribution to friction, J. Chem. Phys., 113, 8249–8252 (2000). S. Kopta, M. Salmeron, The atomic scale origin of wear on mica and its contribution to friction, J. Chem. Phys., 113, 8249–8252 (2000).
59.
Zurück zum Zitat M. Firtel, G. Henderson, I. Sokolov, Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls, Ultramicroscopy, 101, 105–109 (2004). M. Firtel, G. Henderson, I. Sokolov, Nanosurgery: observation of peptidoglycan strands in Lactobacillus helveticus cell walls, Ultramicroscopy, 101, 105–109 (2004).
60.
Zurück zum Zitat B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, P. G. Hartley, Scanning probe nanolithography and protein patterning of low fouling plasma polymer multilayer films, Adv. Mater. 18, 3079–3082 (2006). B. W. Muir, A. Fairbrother, T. R. Gengenbach, F. Rovere, M. A. Abdo, K. M. McLean, P. G. Hartley, Scanning probe nanolithography and protein patterning of low fouling plasma polymer multilayer films, Adv. Mater. 18, 3079–3082 (2006).
61.
Zurück zum Zitat J. G. Park, C. Zhang, R. Liang, B. Wang, Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes, Nanotechnology, 18, 405306 (2007). J. G. Park, C. Zhang, R. Liang, B. Wang, Nano-machining of highly oriented pyrolytic graphite using conductive atomic force microscope tips and carbon nanotubes, Nanotechnology, 18, 405306 (2007).
62.
Zurück zum Zitat E. Gnecco, R. Bennewitz, E. Meyer, Abrasive wear on the atomic scale, Phys. Rev. Lett., 88, 2155011 (2002). E. Gnecco, R. Bennewitz, E. Meyer, Abrasive wear on the atomic scale, Phys. Rev. Lett., 88, 2155011 (2002).
63.
Zurück zum Zitat R. Rank, H. Brueckl, J. Kretz, I. Moench, G. Reiss, Nanoscale modification of conducting lines with a scanning force microscope, Vacuum, 48, 467–472 (1997). R. Rank, H. Brueckl, J. Kretz, I. Moench, G. Reiss, Nanoscale modification of conducting lines with a scanning force microscope, Vacuum, 48, 467–472 (1997).
64.
Zurück zum Zitat T. Sumomogi, T. Endo, K. Kuwahara, R. Kaneko, T. Miyamoto, Micromachining of metal surfaces by scanning probe microscope, J. Vac. Sci. Technol. B, 12, 1876–1880 (1994). T. Sumomogi, T. Endo, K. Kuwahara, R. Kaneko, T. Miyamoto, Micromachining of metal surfaces by scanning probe microscope, J. Vac. Sci. Technol. B, 12, 1876–1880 (1994).
65.
Zurück zum Zitat M. Watanabe, H. Minoda, K. Takayanagi, Fabrication of gold nanowires using contact mode atomic force microscope, Jpn. J. Appl. Phys., 43, 6347–6349 (2004). M. Watanabe, H. Minoda, K. Takayanagi, Fabrication of gold nanowires using contact mode atomic force microscope, Jpn. J. Appl. Phys., 43, 6347–6349 (2004).
66.
Zurück zum Zitat X. Li, P. Nardi, C. W. Baek, J. M. Kim, Y. K. Kim, Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope, J. Micromech. Microeng., 15, 551–556 (2005). X. Li, P. Nardi, C. W. Baek, J. M. Kim, Y. K. Kim, Direct nanomechanical machining of gold nanowires using a nanoindenter and an atomic force microscope, J. Micromech. Microeng., 15, 551–556 (2005).
67.
Zurück zum Zitat T. H. Fang, J. G. Chang, C. I. Weng, Nanoindentation and nanomachining characteristics of gold and platinum thin films, Mater. Sci. Eng. A, 430, 332–340 (2006). T. H. Fang, J. G. Chang, C. I. Weng, Nanoindentation and nanomachining characteristics of gold and platinum thin films, Mater. Sci. Eng. A, 430, 332–340 (2006).
68.
Zurück zum Zitat H. D. F. Filho, M. H. P. Mauricio, C. R. Ponciano, R. Prioli, Metal layer mask patterning by force microscopy lithography, Mater. Sci. Eng. B, 112, 194–199 (2004). H. D. F. Filho, M. H. P. Mauricio, C. R. Ponciano, R. Prioli, Metal layer mask patterning by force microscopy lithography, Mater. Sci. Eng. B, 112, 194–199 (2004).
69.
Zurück zum Zitat T. H. Fang, C. I. Weng, J. G. Chang, Machining characterization of the nano-lithography process using atomic force microscopy, Nanotechnology, 11, 181–187 (2000). T. H. Fang, C. I. Weng, J. G. Chang, Machining characterization of the nano-lithography process using atomic force microscopy, Nanotechnology, 11, 181–187 (2000).
70.
Zurück zum Zitat A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti, C. Nicolini, Atomic force microscopy lithography as a nanodevice development technique, Nanotechnology, 10, 458–463 (1999). A. Notargiacomo, V. Foglietti, E. Cianci, G. Capellini, M. Adami, P. Faraci, F. Evangelisti, C. Nicolini, Atomic force microscopy lithography as a nanodevice development technique, Nanotechnology, 10, 458–463 (1999).
71.
Zurück zum Zitat A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, A. Notargiacomo, Scratching properties of nickel-iron thin film and silicon using atomic force microscopy, J. Appl. Phys., 106, 044314 (2009). A. A. Tseng, J. Shirakashi, S. Nishimura, K. Miyashita, A. Notargiacomo, Scratching properties of nickel-iron thin film and silicon using atomic force microscopy, J. Appl. Phys., 106, 044314 (2009).
72.
Zurück zum Zitat N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, H. Ofune, Nanomachining Zr-based metallic glass surfaces using an atomic force microscope, Int. J. Mach. Mach. Mater., 2, 3–16 (2007). N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, H. Ofune, Nanomachining Zr-based metallic glass surfaces using an atomic force microscope, Int. J. Mach. Mach. Mater., 2, 3–16 (2007).
73.
Zurück zum Zitat L. Santinacci, T. Djenizian, H. Hildebrand, S. Ecoffey, H. Mokdad, T. Campanella, P. Schmuki, Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces, Electrochim. Acta, 48, 3123–3130 (2003). L. Santinacci, T. Djenizian, H. Hildebrand, S. Ecoffey, H. Mokdad, T. Campanella, P. Schmuki, Selective palladium electrochemical deposition onto AFM-scratched silicon surfaces, Electrochim. Acta, 48, 3123–3130 (2003).
74.
Zurück zum Zitat T. Ogino, S. Nishimura, J. Shirakashi, Scratch nanolithography on Si surface using scanning probe microscopy: influence of scanning parameters on groove size, Jpn. J. Appl. Phys., 47, 712–714 (2008). T. Ogino, S. Nishimura, J. Shirakashi, Scratch nanolithography on Si surface using scanning probe microscopy: influence of scanning parameters on groove size, Jpn. J. Appl. Phys., 47, 712–714 (2008).
75.
Zurück zum Zitat E. B. Brousseau, F. Krohs, E. Caillaud, S. Dimov, O. Gibaru, S. Fatikow, Development of a novel process chain based on atomic force microscopy scratching for small and medium series production of polymer nanostructured components, J. Manuf. Sci. Eng., 132, 0309011 (2010). E. B. Brousseau, F. Krohs, E. Caillaud, S. Dimov, O. Gibaru, S. Fatikow, Development of a novel process chain based on atomic force microscopy scratching for small and medium series production of polymer nanostructured components, J. Manuf. Sci. Eng., 132, 0309011 (2010).
76.
Zurück zum Zitat A. A. Tseng, A. Notargiacomo, Nanoscale fabrication by nonconventional approaches, J. Nanosci. Nanotechnol., 5, 683–702 (2005). A. A. Tseng, A. Notargiacomo, Nanoscale fabrication by nonconventional approaches, J. Nanosci. Nanotechnol., 5, 683–702 (2005).
77.
Zurück zum Zitat S. Miyake, J. Kim, Nanoprocessing of silicon by mechanochemical reaction using atomic force microscopy and additional potassium hydroxide solution etching, Nanotechnology, 16, 149–157 (2005). S. Miyake, J. Kim, Nanoprocessing of silicon by mechanochemical reaction using atomic force microscopy and additional potassium hydroxide solution etching, Nanotechnology, 16, 149–157 (2005).
78.
Zurück zum Zitat J. W. Park, N. Kawasegi, N. Morita, D. W. Lee, Tribonanolithography of silicon in aqueous solution based on atomic force microscopy, Appl. Phys. Lett., 85, 1766–1768 (2004). J. W. Park, N. Kawasegi, N. Morita, D. W. Lee, Tribonanolithography of silicon in aqueous solution based on atomic force microscopy, Appl. Phys. Lett., 85, 1766–1768 (2004).
79.
Zurück zum Zitat N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, Etch stop of silicon surface induced by tribo-nanolithography, Nanotechnology, 16, 1411–1414 (2005). N. Kawasegi, N. Morita, S. Yamada, N. Takano, T. Oyama, K. Ashida, Etch stop of silicon surface induced by tribo-nanolithography, Nanotechnology, 16, 1411–1414 (2005).
80.
Zurück zum Zitat Y. D. Yan, T. Sun, X. S. Zhao, Z. J. Hu, S. Dong, Fabrication of microstructures on the surface of a micro/hollow target ball by AFM, J. Micromech. Microeng., 18, 035002 (2008). Y. D. Yan, T. Sun, X. S. Zhao, Z. J. Hu, S. Dong, Fabrication of microstructures on the surface of a micro/hollow target ball by AFM, J. Micromech. Microeng., 18, 035002 (2008).
81.
Zurück zum Zitat T. G. Bifano, T. A. Dow, R. O. Scattergood, Ductile regime grinding: a new technology for machining brittle materials, J. Eng. Ind., Trans. ASME, 113, 184–189 (1991). T. G. Bifano, T. A. Dow, R. O. Scattergood, Ductile regime grinding: a new technology for machining brittle materials, J. Eng. Ind., Trans. ASME, 113, 184–189 (1991).
82.
Zurück zum Zitat H. T. Young, H. T. Liao, H. Y. Huang, Novel method to investigate the critical depth of cut of ground silicon wafer, J. Mater. Process. Technol., 182, 157–162 (2007). H. T. Young, H. T. Liao, H. Y. Huang, Novel method to investigate the critical depth of cut of ground silicon wafer, J. Mater. Process. Technol., 182, 157–162 (2007).
83.
Zurück zum Zitat J. W. Park, C. M. Lee, S. C. Choi, Y. W. Kim, D. W. Lee, Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication, Nanotechnology, 19, 085301 (2008). J. W. Park, C. M. Lee, S. C. Choi, Y. W. Kim, D. W. Lee, Surface patterning for brittle amorphous material using nanoindenter-based mechanochemical nanofabrication, Nanotechnology, 19, 085301 (2008).
84.
Zurück zum Zitat R. Prioli, M. Chhowalla, E. L. Freire, Friction and wear at nanometer scale: a comparative study of hard carbon films, Diam. Relat. Mater., 12, 2195–2202 (2003). R. Prioli, M. Chhowalla, E. L. Freire, Friction and wear at nanometer scale: a comparative study of hard carbon films, Diam. Relat. Mater., 12, 2195–2202 (2003).
85.
Zurück zum Zitat N. Yasui, H. Inaba, K. Furusawa, M. Saito, N. Ohtake, Characterization of head overcoat for 1 Tb/in2 magnetic recording, IEEE Trans. Magn., 45, 805–809 (2009). N. Yasui, H. Inaba, K. Furusawa, M. Saito, N. Ohtake, Characterization of head overcoat for 1 Tb/in2 magnetic recording, IEEE Trans. Magn., 45, 805–809 (2009).
86.
Zurück zum Zitat S. Tsuchitani, R. Kaneko, S. Hirono, Effects of humidity on nanometer scale wear of a carbon film, Trib. Int., 40, 306–312 (2007). S. Tsuchitani, R. Kaneko, S. Hirono, Effects of humidity on nanometer scale wear of a carbon film, Trib. Int., 40, 306–312 (2007).
87.
Zurück zum Zitat M. Bai, K. Koji, U. Noritsugu, M. Yoshihiko, X. Junguo, T. Hiromitsu, Scratch-wear resistance of nanoscale super thin carbon nitride overcoat evaluated by AFM with a diamond tip, Surf. Coat. Technol., 126, 181–194 (2000). M. Bai, K. Koji, U. Noritsugu, M. Yoshihiko, X. Junguo, T. Hiromitsu, Scratch-wear resistance of nanoscale super thin carbon nitride overcoat evaluated by AFM with a diamond tip, Surf. Coat. Technol., 126, 181–194 (2000).
88.
Zurück zum Zitat F. Z. Fang, G. X. Zhang, An experimental study of optical glass machining, Int. J. Adv. Manuf. Technol., 23, 155–160 (2004). F. Z. Fang, G. X. Zhang, An experimental study of optical glass machining, Int. J. Adv. Manuf. Technol., 23, 155–160 (2004).
89.
Zurück zum Zitat G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir, 26, 6164–6166 (2010). G. Lu, X. Zhou, H. Li, Z. Yin, B. Li, L. Huang, F. Boey, H. Zhang, Nanolithography of single-layer graphene oxide films by atomic force microscopy, Langmuir, 26, 6164–6166 (2010).
90.
Zurück zum Zitat D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersion of graphene nanosheets, Nat. Nanotechnol., 3, 101–105 (2008). D. Li, M. B. Müller, S. Gilje, R. B. Kaner, G. G. Wallace, Processable aqueous dispersion of graphene nanosheets, Nat. Nanotechnol., 3, 101–105 (2008).
91.
Zurück zum Zitat D. H. Kim, J. Y. Koo, J. J. Kim, Cutting of multiwalled carbon nanotubes by a negative voltage tip of an atomic force microscope: a possible mechanism, Phys. Rev. B Cond. Matt., 68, 113406 (2003). D. H. Kim, J. Y. Koo, J. J. Kim, Cutting of multiwalled carbon nanotubes by a negative voltage tip of an atomic force microscope: a possible mechanism, Phys. Rev. B Cond. Matt., 68, 113406 (2003).
92.
Zurück zum Zitat Z. Lu, Y. Zhou, Y. Du, R. Moate, D. Wilton, G. Pan, Y. Chen, Z. Cui, Current-assisted magnetization switching in a mesoscopic NiFe ring with nanoconstrictions of a wire, Appl. Phys. Lett., 88, 142507 (2006). Z. Lu, Y. Zhou, Y. Du, R. Moate, D. Wilton, G. Pan, Y. Chen, Z. Cui, Current-assisted magnetization switching in a mesoscopic NiFe ring with nanoconstrictions of a wire, Appl. Phys. Lett., 88, 142507 (2006).
93.
Zurück zum Zitat K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida, S. Sasaki, The effect of pile-up and contact area on hardness test by nanoindentation, Jpn. J. Appl. Phys. Part 1, 43, 4602–4605 (2004). K. Miyake, S. Fujisawa, A. Korenaga, T. Ishida, S. Sasaki, The effect of pile-up and contact area on hardness test by nanoindentation, Jpn. J. Appl. Phys. Part 1, 43, 4602–4605 (2004).
94.
Zurück zum Zitat Y. D. Yan, T. Sun, Y. C. Liang, S. Dong, Effects of scratching directions on AFM-based abrasive abrasion process, Tribol. Int., 42, 66–70 (2009). Y. D. Yan, T. Sun, Y. C. Liang, S. Dong, Effects of scratching directions on AFM-based abrasive abrasion process, Tribol. Int., 42, 66–70 (2009).
95.
Zurück zum Zitat B. Mills, A. H. Redford, Machinability of Engineering Materials, Applied Science, London, 1983. B. Mills, A. H. Redford, Machinability of Engineering Materials, Applied Science, London, 1983.
96.
Zurück zum Zitat H. Kuramochi, K. Ando, T. Tokizaki, M. Yasutake, F. Perez-Murano, J. A. Dagata, H. Yokoyama, Large scale high precision nano-oxidation using an atomic force microscope, Surf. Sci., 566–568, 343–348 (2004). H. Kuramochi, K. Ando, T. Tokizaki, M. Yasutake, F. Perez-Murano, J. A. Dagata, H. Yokoyama, Large scale high precision nano-oxidation using an atomic force microscope, Surf. Sci., 566–568, 343–348 (2004).
97.
Zurück zum Zitat Z. Kato, M. Sakairi, H. Takahashi, Nanopatterning on aluminum surfaces with AFM probe, Surf. Coat. Technol., 169–170, 195–198 (2003). Z. Kato, M. Sakairi, H. Takahashi, Nanopatterning on aluminum surfaces with AFM probe, Surf. Coat. Technol., 169–170, 195–198 (2003).
98.
Zurück zum Zitat S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, NY, 1970 (Name after H. Hertz, whose work was originally published in 1881).MATH S. P. Timoshenko, J. N. Goodier, Theory of Elasticity, 3rd ed., McGraw-Hill, New York, NY, 1970 (Name after H. Hertz, whose work was originally published in 1881).MATH
99.
Zurück zum Zitat R. W. Carpick, M. Salmeron, Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev., 97, 1163–1194 (1997). R. W. Carpick, M. Salmeron, Scratching the surface: Fundamental investigations of tribology with atomic force microscopy, Chem. Rev., 97, 1163–1194 (1997).
100.
Zurück zum Zitat D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, UK, 1951. D. Tabor, The Hardness of Metals, Clarendon Press, Oxford, UK, 1951.
101.
Zurück zum Zitat C. Klein, Anisotropy of Young’s modulus and Poisson’s ratio in diamond, Mater. Res. Bull., 27, 1407–1414 (1992). C. Klein, Anisotropy of Young’s modulus and Poisson’s ratio in diamond, Mater. Res. Bull., 27, 1407–1414 (1992).
102.
Zurück zum Zitat T. Namazu, S. Inoue, Characterization of single crystal silicon and electroplated nickel films by uniaxial tensile test with in situ X-ray diffraction measurement, Fatigue Fract. Eng. Mater. Struct., 30, 13–20 (2007). T. Namazu, S. Inoue, Characterization of single crystal silicon and electroplated nickel films by uniaxial tensile test with in situ X-ray diffraction measurement, Fatigue Fract. Eng. Mater. Struct., 30, 13–20 (2007).
103.
Zurück zum Zitat L. Zhou, Y. Yao, Single crystal bulk material micro/nano indentation hardness testing by nanoindentation instrument and AFM, Mater. Sci. Eng. A, 460–461, 95–100 (2007). L. Zhou, Y. Yao, Single crystal bulk material micro/nano indentation hardness testing by nanoindentation instrument and AFM, Mater. Sci. Eng. A, 460–461, 95–100 (2007).
104.
Zurück zum Zitat V. Mulloni, R. Bartali, S. Colpo, F. Giacomozzi, N. Laidani, B. Margesin, Electrical and mechanical properties of layered gold–chromium thin films for ohmic contacts in RF-MEMS switches, Mater. Sci. Eng. B, 163, 199–203 (2009). V. Mulloni, R. Bartali, S. Colpo, F. Giacomozzi, N. Laidani, B. Margesin, Electrical and mechanical properties of layered gold–chromium thin films for ohmic contacts in RF-MEMS switches, Mater. Sci. Eng. B, 163, 199–203 (2009).
105.
Zurück zum Zitat A. A. Volinsky, J. Vella, I. S. Adhihetty, V. Sarihan, L. Mercado, B. H. Yeung, W. W. Gerberich, Microstructure and mechanical properties of electroplated Cu thin films, Mat. Res. Soc. Symp., 649, Q5.3.1–Q5.3.6 (2001). A. A. Volinsky, J. Vella, I. S. Adhihetty, V. Sarihan, L. Mercado, B. H. Yeung, W. W. Gerberich, Microstructure and mechanical properties of electroplated Cu thin films, Mat. Res. Soc. Symp., 649, Q5.3.1–Q5.3.6 (2001).
106.
Zurück zum Zitat T. W. Wu, C. Hwang, J. Lo, P. Alexopoulos, Microhardness and microstructure of ion-beamsputtered, nitrogen-doped NiFe films, Thin Solid Films, 166, 299–308 (1988). T. W. Wu, C. Hwang, J. Lo, P. Alexopoulos, Microhardness and microstructure of ion-beamsputtered, nitrogen-doped NiFe films, Thin Solid Films, 166, 299–308 (1988).
107.
Zurück zum Zitat M. J. Madou, Fundamentals of Microfabrication: The Science of Minizturization, 2nd ed., CRC, Boca Raton, FL, 2002. M. J. Madou, Fundamentals of Microfabrication: The Science of Minizturization, 2nd ed., CRC, Boca Raton, FL, 2002.
108.
Zurück zum Zitat M. Kuruvilla, T. S. Srivatsan, M. Petraroli, L. Park, An investigation of microstructure, hardness, tensile behaviour of a titanium alloy: role of orientation, Sadhana, 33, 235–250 (2008). M. Kuruvilla, T. S. Srivatsan, M. Petraroli, L. Park, An investigation of microstructure, hardness, tensile behaviour of a titanium alloy: role of orientation, Sadhana, 33, 235–250 (2008).
109.
Zurück zum Zitat Y. I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films: A review, Phys. Solid State, 50, 2205–2236 (2008). Y. I. Golovin, Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers and films: A review, Phys. Solid State, 50, 2205–2236 (2008).
110.
Zurück zum Zitat L. Calabri, N. Pugno, A. Rota, D. Marchetto, S. Valeri, Nanoindentation shape effect: experiments, simulations and modelling, J. Phys. Condens. Matter, 19, 395002 (2007). L. Calabri, N. Pugno, A. Rota, D. Marchetto, S. Valeri, Nanoindentation shape effect: experiments, simulations and modelling, J. Phys. Condens. Matter, 19, 395002 (2007).
111.
Zurück zum Zitat Z. Zhou, Y. Zhou, M. Wang, C. Yang, J. Chen, W. Ding, X. Gao, T. Zhang, Evaluation of Young’s modulus and residual stress of NiFe film by microbridge testing, J. Mater. Sci. Technol., 22, 345–348 (2006). Z. Zhou, Y. Zhou, M. Wang, C. Yang, J. Chen, W. Ding, X. Gao, T. Zhang, Evaluation of Young’s modulus and residual stress of NiFe film by microbridge testing, J. Mater. Sci. Technol., 22, 345–348 (2006).
112.
Zurück zum Zitat J. F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24, 981(1953). J. F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24, 981(1953).
113.
Zurück zum Zitat M. Srivastava, V. K. W. Grips, K. S. Rajam, Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles, Appl. Surf. Sci., 253, 3814–3824 (2007). M. Srivastava, V. K. W. Grips, K. S. Rajam, Electrochemical deposition and tribological behaviour of Ni and Ni-Co metal matrix composites with SiC nano-particles, Appl. Surf. Sci., 253, 3814–3824 (2007).
114.
Zurück zum Zitat K. H. Chung, H. J. Kim, L. Y. Lin, D. E. Kim, Tribological characteristics of ZnO nanowires investigated by atomic force microscope, Appl. Phys. A, 92, 267–274 (2008). K. H. Chung, H. J. Kim, L. Y. Lin, D. E. Kim, Tribological characteristics of ZnO nanowires investigated by atomic force microscope, Appl. Phys. A, 92, 267–274 (2008).
115.
Zurück zum Zitat M. C. Kong, W. B. Lee, C. F. Cheung, S. To, A study of materials swelling and recovery in single-point diamond turning of ductile materials, J. Mater. Process. Technol., 180, 210–215 (2006). M. C. Kong, W. B. Lee, C. F. Cheung, S. To, A study of materials swelling and recovery in single-point diamond turning of ductile materials, J. Mater. Process. Technol., 180, 210–215 (2006).
116.
Zurück zum Zitat A. A. Tseng, K. P. Jen, T. C. Chen, R. Kondetimmamhalli, Y. V. Murty, Forming properties and springback evaluation of copper beryllium sheets, Metall. Mater. Trans. A, 26, 2111–2121 (1995). A. A. Tseng, K. P. Jen, T. C. Chen, R. Kondetimmamhalli, Y. V. Murty, Forming properties and springback evaluation of copper beryllium sheets, Metall. Mater. Trans. A, 26, 2111–2121 (1995).
117.
Zurück zum Zitat C. Xiang, H. J. Sue, J. Chu, B. Coleman, Scratch behavior and material property relationship in polymers, J. Polym. Sci. B, 39, 47–59 (2001). C. Xiang, H. J. Sue, J. Chu, B. Coleman, Scratch behavior and material property relationship in polymers, J. Polym. Sci. B, 39, 47–59 (2001).
118.
Zurück zum Zitat A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Sci., 29, 505–585 (1999). A. Majumdar, Scanning thermal microscopy, Annu. Rev. Mater. Sci., 29, 505–585 (1999).
119.
Zurück zum Zitat R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett., 7, 1064–1069 (2007). R. Szoszkiewicz, T. Okada, S. C. Jones, T. D. Li, W. P. King, S. R. Marder, E. Riedo, High-speed, sub-15 nm feature size thermochemical nanolithography, Nano Lett., 7, 1064–1069 (2007).
120.
Zurück zum Zitat C. H. Chiou, S. J.Chang, G. B. Lee, H. H. Lee, New fabrication process for monolithic probes with integrated heaters for nanothermal machining, Jpn. J. Appl. Phys., Part 1, 45, 208–214 (2006). C. H. Chiou, S. J.Chang, G. B. Lee, H. H. Lee, New fabrication process for monolithic probes with integrated heaters for nanothermal machining, Jpn. J. Appl. Phys., Part 1, 45, 208–214 (2006).
121.
Zurück zum Zitat A. Boisen, O. Hanseny, S. Bouwstray, AFM probes with directly fabricated tips, J. Micromech. Microeng., 6, 58–62 (1996). A. Boisen, O. Hanseny, S. Bouwstray, AFM probes with directly fabricated tips, J. Micromech. Microeng., 6, 58–62 (1996).
122.
Zurück zum Zitat B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar, Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage, IEEE J. Microelectromech. Syst., 7, 69–78 (1998). B. W. Chui, T. D. Stowe, Y. S. Ju, K. E. Goodson, T. W. Kenny, H. J. Mamin, B. D. Terris, R. P. Ried, D. Rugar, Low-stiffness silicon cantilevers with integrated heaters and piezoresistive sensors for high-density AFM thermomechanical data storage, IEEE J. Microelectromech. Syst., 7, 69–78 (1998).
123.
Zurück zum Zitat D. W. Lee, T. Ono, M. Esashi, Electrical and thermal recording techniques using a heater integrated microprobe, J. Micromech. Microeng., 12, 841–848 (2002). D. W. Lee, T. Ono, M. Esashi, Electrical and thermal recording techniques using a heater integrated microprobe, J. Micromech. Microeng., 12, 841–848 (2002).
124.
Zurück zum Zitat H. Okabe, T. Tsumura, J. Shimizu, L. Zhou, H. Eda, Experimental and simulation research on influence of temperature on nano-scratching process of silicon wafer, Key Eng. Mater., 329, 379 (2007). H. Okabe, T. Tsumura, J. Shimizu, L. Zhou, H. Eda, Experimental and simulation research on influence of temperature on nano-scratching process of silicon wafer, Key Eng. Mater., 329, 379 (2007).
125.
Zurück zum Zitat Y. Hua, W. P. King, C. L. Henderson, Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography, Microelectron. Eng., 85, 934–936 (2008). Y. Hua, W. P. King, C. L. Henderson, Nanopatterning materials using area selective atomic layer deposition in conjunction with thermochemical surface modification via heated AFM cantilever probe lithography, Microelectron. Eng., 85, 934–936 (2008).
126.
Zurück zum Zitat O. Coulembier, A. Knoll, D. Pires, B. Gotsmann, U. Duerig, J. Frommer, R. D. Miller, P. Dubois, J. L. Hedrick, Probe-based nanolithography: self-amplified depolymerization media for dry lithography, Macromolecules, 43, 572 (2010). O. Coulembier, A. Knoll, D. Pires, B. Gotsmann, U. Duerig, J. Frommer, R. D. Miller, P. Dubois, J. L. Hedrick, Probe-based nanolithography: self-amplified depolymerization media for dry lithography, Macromolecules, 43, 572 (2010).
127.
Zurück zum Zitat D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett., 95, 233108 (2009). D. Wang, S. Kim, W. D. Underwood, A. J. Giordano, C. L. Henderson, Z. T. Dai, W. P. King, S. R. Marder, E. Riedo, Direct writing and characterization of poly(p-phenylene vinylene) nanostructures, Appl. Phys. Lett., 95, 233108 (2009).
128.
Zurück zum Zitat M. Lantz, D. Wiesmann, B. Gotsmann, Dynamic superlubricity and the elimination of wear on the nanoscale, Nat. Nanotechnol., 4, 586 (2009). M. Lantz, D. Wiesmann, B. Gotsmann, Dynamic superlubricity and the elimination of wear on the nanoscale, Nat. Nanotechnol., 4, 586 (2009).
129.
Zurück zum Zitat J. Michler, R. Gassilloud, P. Gasser, L. Santinacci, P. Schmuki, Defect-free AFM scratching at the Si/SiO2 interface used for selective electrodeposition of nanowires, Electrochem Solid-State Lett., 7, A41 (2004). J. Michler, R. Gassilloud, P. Gasser, L. Santinacci, P. Schmuki, Defect-free AFM scratching at the Si/SiO2 interface used for selective electrodeposition of nanowires, Electrochem Solid-State Lett., 7, A41 (2004).
130.
Zurück zum Zitat M. Seo, D. Kawamata, Nano-scratching in solution to the single-crystal Ta(100) subjected to anodic oxidation, J. Phys. D, 39, 3150 (2006). M. Seo, D. Kawamata, Nano-scratching in solution to the single-crystal Ta(100) subjected to anodic oxidation, J. Phys. D, 39, 3150 (2006).
131.
Zurück zum Zitat M. Pendergast, A. A. Volinsky, X. Pang, R. Shields, in Nanoscale Tribology - Impact for Materials and Devices, Materials Research Society Symposium Proceedings, Vol. 1085, 19–24 (2008). M. Pendergast, A. A. Volinsky, X. Pang, R. Shields, in Nanoscale Tribology - Impact for Materials and Devices, Materials Research Society Symposium Proceedings, Vol. 1085, 19–24 (2008).
132.
Zurück zum Zitat A. A. Tseng, T. W. Lee, A. Notargiacomo, T. P. Chen, Formation of uniform nanoscale oxide layers assembled by overlapping oxide lines using atomic force microscopy, J. Micro/Nanolith. MEMS & MOEMS, 8, 043050 (2009). A. A. Tseng, T. W. Lee, A. Notargiacomo, T. P. Chen, Formation of uniform nanoscale oxide layers assembled by overlapping oxide lines using atomic force microscopy, J. Micro/Nanolith. MEMS & MOEMS, 8, 043050 (2009).
133.
Zurück zum Zitat S. Miyake, H. Zheng, J. Kim, M. Wang, Nanofabrication by mechanical and electrical processes using electrically conductive diamond tip, J. Vac. Sci. Technol. B, 26, 1660 (2008). S. Miyake, H. Zheng, J. Kim, M. Wang, Nanofabrication by mechanical and electrical processes using electrically conductive diamond tip, J. Vac. Sci. Technol. B, 26, 1660 (2008).
134.
Zurück zum Zitat M. Koinuma, K. Uosaki, AFM tip induced selective electrochemical etching of and metal deposition on p-GaAs(100) surface, Surf. Sci., 357–358, 565–570 (1996). M. Koinuma, K. Uosaki, AFM tip induced selective electrochemical etching of and metal deposition on p-GaAs(100) surface, Surf. Sci., 357–358, 565–570 (1996).
135.
Zurück zum Zitat R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, “Dip-pen” nanolithography, Science, 283, 661–663 (1999). R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, “Dip-pen” nanolithography, Science, 283, 661–663 (1999).
136.
Zurück zum Zitat L. Guangming, W. B. Larry, Controlled patterning of polymer films using an AFM tip as a nano-hammer, Nanotechnology, 18, 245302 (2007). L. Guangming, W. B. Larry, Controlled patterning of polymer films using an AFM tip as a nano-hammer, Nanotechnology, 18, 245302 (2007).
137.
Zurück zum Zitat F. Yang, E. Wornyo, K. Gall, W. P. King, Nanoscale indent formation in shape memory polymers using a heated probe tip, Nanotechnology, 18, 285302 (2007). F. Yang, E. Wornyo, K. Gall, W. P. King, Nanoscale indent formation in shape memory polymers using a heated probe tip, Nanotechnology, 18, 285302 (2007).
138.
Zurück zum Zitat X. Hu, J. Yu, J. Chen, X. Hu, Analysis of electric field-induced fabrication on Au and Ti with an STM in air, Appl. Surf. Sci., 187, 173–178 (2002). X. Hu, J. Yu, J. Chen, X. Hu, Analysis of electric field-induced fabrication on Au and Ti with an STM in air, Appl. Surf. Sci., 187, 173–178 (2002).
139.
Zurück zum Zitat G. Lee, H. Jung, J. Son, K. Nam, T. Kwon, G. Lim, Y. H. Kim, J. Seo, S. W. Lee, D. S. Yoon, Experimental and numerical study of electrochemical nanomachining using an AFM cantilever tip, Nanotechnology, 21, 185301 (2010). G. Lee, H. Jung, J. Son, K. Nam, T. Kwon, G. Lim, Y. H. Kim, J. Seo, S. W. Lee, D. S. Yoon, Experimental and numerical study of electrochemical nanomachining using an AFM cantilever tip, Nanotechnology, 21, 185301 (2010).
140.
Zurück zum Zitat J. C. Rosa, M. Wendel, H. Lorenz, J. P. Kotthaus, M. Thomas, H. Kroemer, Direct patterning of surface quantum wells with an atomic force microscope, Appl. Phys. Lett., 73, 2684–2686 (1998). J. C. Rosa, M. Wendel, H. Lorenz, J. P. Kotthaus, M. Thomas, H. Kroemer, Direct patterning of surface quantum wells with an atomic force microscope, Appl. Phys. Lett., 73, 2684–2686 (1998).
141.
Zurück zum Zitat H. W. Schumacher, U. F. Keyser, U. Zeitler, R. J. Haug, K. Eberl, Nanomachining of mesoscopic electronic devices using an atomic force microscope, Appl. Phys. Lett., 75, 1107 (1999). H. W. Schumacher, U. F. Keyser, U. Zeitler, R. J. Haug, K. Eberl, Nanomachining of mesoscopic electronic devices using an atomic force microscope, Appl. Phys. Lett., 75, 1107 (1999).
142.
Zurück zum Zitat M. Versen, B. Klehn, U. Kunze, D. Reuter, A. D. Wieck, Nanoscale devices fabricated by direct machining of GaAs with an atomic force microscope, Ultramicroscopy, 82, 159–163 (2000). M. Versen, B. Klehn, U. Kunze, D. Reuter, A. D. Wieck, Nanoscale devices fabricated by direct machining of GaAs with an atomic force microscope, Ultramicroscopy, 82, 159–163 (2000).
143.
Zurück zum Zitat C. C. Faulkner, D. A. Allwood, R. P. Cowburn, Tuning of biased domain wall depinning fields at Permalloy nanoconstrictions, J. Appl. Phys., 103, 073914 (2008). C. C. Faulkner, D. A. Allwood, R. P. Cowburn, Tuning of biased domain wall depinning fields at Permalloy nanoconstrictions, J. Appl. Phys., 103, 073914 (2008).
144.
Zurück zum Zitat M. Hirtz, M. K. Brinks, S. Miele, A. Studer, H. Fuchs, L. Chi, Structured polymer brushes by AFM lithography, Small, 5, 919–923 (2009). M. Hirtz, M. K. Brinks, S. Miele, A. Studer, H. Fuchs, L. Chi, Structured polymer brushes by AFM lithography, Small, 5, 919–923 (2009).
145.
Zurück zum Zitat R. R. Bhat, B. N. Chaney, J. Rowley, A. Liebmann-Vinson, J. Genzer, Tailoring cell adhesion using surface-grafted polymer gradient assemblies, Adv. Mater., 17, 2802–2807 (2005). R. R. Bhat, B. N. Chaney, J. Rowley, A. Liebmann-Vinson, J. Genzer, Tailoring cell adhesion using surface-grafted polymer gradient assemblies, Adv. Mater., 17, 2802–2807 (2005).
146.
Zurück zum Zitat S. Lenhert, A. Sesma, M. Hirtz, L. F. Chi, H. Fuchs, H. P. Wiesmann, A. E. Osbourn, B. M. Moerschbacher, Capillary-induced contact guidance, Langmuir, 23, 10216–10223 (2007). S. Lenhert, A. Sesma, M. Hirtz, L. F. Chi, H. Fuchs, H. P. Wiesmann, A. E. Osbourn, B. M. Moerschbacher, Capillary-induced contact guidance, Langmuir, 23, 10216–10223 (2007).
147.
Zurück zum Zitat M. Motornov, S. Minko, K. J. Eichhorn, M. Nitschke, F. Simon, M., Stamm, Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes, Langmuir, 19, 8077–8085 (2003). M. Motornov, S. Minko, K. J. Eichhorn, M. Nitschke, F. Simon, M., Stamm, Reversible tuning of wetting behavior of polymer surface with responsive polymer brushes, Langmuir, 19, 8077–8085 (2003).
148.
Zurück zum Zitat J. I. Shirakashi, Scanning probe microscope lithography at the micro- and nano-scales, J. Nanosci. Nanotechnol., 10, 4486–4494 (2010). J. I. Shirakashi, Scanning probe microscope lithography at the micro- and nano-scales, J. Nanosci. Nanotechnol., 10, 4486–4494 (2010).
149.
Zurück zum Zitat X. L. Zhao, S. Dong, Y. C. Liang, T. Sun, Y. D. Yan, AFM for preparing Si masters in soft lithography, Key Eng. Mater., 315–316, 762–765 (2006). X. L. Zhao, S. Dong, Y. C. Liang, T. Sun, Y. D. Yan, AFM for preparing Si masters in soft lithography, Key Eng. Mater., 315–316, 762–765 (2006).
150.
Zurück zum Zitat T. Plecenik, M. Gregor, M. Prascak, R. Micunek, M. Grajcar, A. Lugstein, E. Bertagnolli, M. Zahoran, T. Roch, P. Kúš, A. Plecenik, Superconducting MgB2 weak links and superconducting quantum interference devices prepared by AFM nanolithography, Physica C, 468, 789–792 (2008). T. Plecenik, M. Gregor, M. Prascak, R. Micunek, M. Grajcar, A. Lugstein, E. Bertagnolli, M. Zahoran, T. Roch, P. Kúš, A. Plecenik, Superconducting MgB2 weak links and superconducting quantum interference devices prepared by AFM nanolithography, Physica C, 468, 789–792 (2008).
151.
Zurück zum Zitat J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 410, 63–64 (2001). J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, J. Akimitsu, Superconductivity at 39 K in magnesium diboride, Nature, 410, 63–64 (2001).
152.
Zurück zum Zitat F. Iwata, K. Saigo, T. Asao, M. Yasutake, O. Takaoka, T. Nakaue, S. Kikuchi, Removal method of nano-cut debris for photomask repair using an atomic force microscopy system, Jpn. J. Appl. Phys., 48, 08JB2 (2009). F. Iwata, K. Saigo, T. Asao, M. Yasutake, O. Takaoka, T. Nakaue, S. Kikuchi, Removal method of nano-cut debris for photomask repair using an atomic force microscopy system, Jpn. J. Appl. Phys., 48, 08JB2 (2009).
153.
Zurück zum Zitat T. Robinson, A. Dinsdale, M. Archuletta, R. Bozak, R. White, Nanomachining photomask repair of complex patterns, in Photomask Technology 2008, Proceedings of SPIE, Vol. 7122, The International Society for Optical Engineering, 2008. T. Robinson, A. Dinsdale, M. Archuletta, R. Bozak, R. White, Nanomachining photomask repair of complex patterns, in Photomask Technology 2008, Proceedings of SPIE, Vol. 7122, The International Society for Optical Engineering, 2008.
154.
Zurück zum Zitat C. L. Henderson, W. P. King, C. E. White, H. R. Rowland, Microsystem manufacturing via embossing of thermally sacrificial polymers, in Materials Research Society Symposium Procceedings, EXS, 17-20, Materials Research Society, 2004. C. L. Henderson, W. P. King, C. E. White, H. R. Rowland, Microsystem manufacturing via embossing of thermally sacrificial polymers, in Materials Research Society Symposium Procceedings, EXS, 17-20, Materials Research Society, 2004.
155.
Zurück zum Zitat J. W. Jang, D. Maspoch, T. Fujigaya, C. A. Mirkin, A ‘molecular eraser’ for dip-pen nanolithography, Small, 3, 600–605 (2007). J. W. Jang, D. Maspoch, T. Fujigaya, C. A. Mirkin, A ‘molecular eraser’ for dip-pen nanolithography, Small, 3, 600–605 (2007).
156.
Zurück zum Zitat E. Henderson, Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy, Nucleic Acids Res., 20, 445–447, 1992. E. Henderson, Imaging and nanodissection of individual supercoiled plasmids by atomic force microscopy, Nucleic Acids Res., 20, 445–447, 1992.
157.
Zurück zum Zitat J. Hu, Y. Zhang, H. B. Gao, M. Q. Li, U. Hartmann, Artificial DNA patterns by mechanical nanomanipulation, Nano Lett., 2, 55–57, 2002. J. Hu, Y. Zhang, H. B. Gao, M. Q. Li, U. Hartmann, Artificial DNA patterns by mechanical nanomanipulation, Nano Lett., 2, 55–57, 2002.
158.
Zurück zum Zitat M. Washizu, Microsystems for single-molecule handling and modification, in Micromachines as Tools for Nanotechnology, H. Fujita (Ed.), Chapter 2, 22–43, Springer, Berlin, 2003. M. Washizu, Microsystems for single-molecule handling and modification, in Micromachines as Tools for Nanotechnology, H. Fujita (Ed.), Chapter 2, 22–43, Springer, Berlin, 2003.
159.
Zurück zum Zitat D. Kim, N. K. Chung, J. S. Kim, J. W. Park, Immobilizing a single DNA molecule at the apex of AFM tips through picking and ligation, Soft Matter, 6, 3979–3984, 2010. D. Kim, N. K. Chung, J. S. Kim, J. W. Park, Immobilizing a single DNA molecule at the apex of AFM tips through picking and ligation, Soft Matter, 6, 3979–3984, 2010.
160.
Zurück zum Zitat N. X. Randall, G. Favaro, C. H. Frankel, The effect of intrinsic parameters on the critical load as measured with the scratch test method, Surf. Coat. Technol., 137, 146–151 (2001). N. X. Randall, G. Favaro, C. H. Frankel, The effect of intrinsic parameters on the critical load as measured with the scratch test method, Surf. Coat. Technol., 137, 146–151 (2001).
161.
Zurück zum Zitat J. Li, W. Beres, Scratch test for coating/substrate systems – A literature review, Can. Metall. Quart., 46, 155–174 (2007). J. Li, W. Beres, Scratch test for coating/substrate systems – A literature review, Can. Metall. Quart., 46, 155–174 (2007).
162.
Zurück zum Zitat H. Y. Lin, H. A. Chen, Y. J. Wu, J. H. Huang, H. N. Lin, Fabrication of metal nanostructures by atomic force microscopy nanomachining and related applications, J. Nanosci. Nanotechnol., 10, 4482–4485 (2010). H. Y. Lin, H. A. Chen, Y. J. Wu, J. H. Huang, H. N. Lin, Fabrication of metal nanostructures by atomic force microscopy nanomachining and related applications, J. Nanosci. Nanotechnol., 10, 4482–4485 (2010).
163.
Zurück zum Zitat B. Gotsmann, U. Duerig, J. Frommer, C. J. Hawker, Exploiting chemical switching in a diels-alder polymer for nanoscale probe lithography and data storage, Adv. Funct. Mater., 16, 1499–1505 (2006). B. Gotsmann, U. Duerig, J. Frommer, C. J. Hawker, Exploiting chemical switching in a diels-alder polymer for nanoscale probe lithography and data storage, Adv. Funct. Mater., 16, 1499–1505 (2006).
164.
Zurück zum Zitat A. K. Geim, Graphene: status and prospects, Science, 324, 1530–1534 (2009). A. K. Geim, Graphene: status and prospects, Science, 324, 1530–1534 (2009).
165.
Zurück zum Zitat N. Farkas, R. D. Ramsier, J. A. Dagata, High-voltage nanoimprint lithography of refractory metal films, J. Nanosci. Nanotechnol., 10, 4423–4433 (2010). N. Farkas, R. D. Ramsier, J. A. Dagata, High-voltage nanoimprint lithography of refractory metal films, J. Nanosci. Nanotechnol., 10, 4423–4433 (2010).
Metadaten
Titel
Nanoscale Scratching with Single and Dual Sources Using Atomic Force Microscopes
verfasst von
Ampere A. Tseng
Copyright-Jahr
2011
Verlag
Springer New York
DOI
https://doi.org/10.1007/978-1-4419-9899-6_1

Neuer Inhalt