Skip to main content

2017 | OriginalPaper | Buchkapitel

7. Nanostrukturierung

verfasst von : Wolfgang R. Fahrner, Ulrich Hilleringmann, Hella-Christin Scheer, Andreas Dirk Wieck

Erschienen in: Nanotechnologie und Nanoprozesse

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Zusammenfassung

Die Übersicht zu den technologischen Verfahren der Nanotechnolgie beinhaltet die Nanopolitur, die Trockenätztechniken und Lithographieverfahren, fokussierte Ionenstrahltechniken, Nano-Imprint- und Rastermikroskopie. Anhand von Beispielen werden die jeweiligen Techniken erläutert und ihre Einsatzgebiete vorgestellt.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108CrossRef Zaitsev AM, Kosaca G, Richarz B, Raiko V, Job R, Fries T, Fahrner WR (1998) Thermochemical polishing of CVD diamond films. Diamond Relat Mater 7:1108CrossRef
2.
Zurück zum Zitat Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-polishing and subsequent optical characterization of CVD polycrystalline diamond films. In: Proceedings of 25th annual conference of IEEE Industrial Electronics Society. IECON, San Jose, S 50 Weima JA, Zaitsev AM, Job R, Kosaca GC, Blum F, Grabosch G, Fahrner WR (1999) Nano-polishing and subsequent optical characterization of CVD polycrystalline diamond films. In: Proceedings of 25th annual conference of IEEE Industrial Electronics Society. IECON, San Jose, S 50
3.
Zurück zum Zitat Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc 5:112 Weima JA, Fahrner WR, Job R (2001) Experimental investigation of the parameter dependency of the removal rate of thermochemically polished CVD diamonds. J Electrochem Soc 5:112
4.
Zurück zum Zitat Weima JA, Fahrner WR, Job R (2001) A model of the thermochemical polishing of cvd diamond films on transition metals with emphasis on steel. J Electrochem Soc (submitted) Weima JA, Fahrner WR, Job R (2001) A model of the thermochemical polishing of cvd diamond films on transition metals with emphasis on steel. J Electrochem Soc (submitted)
5.
Zurück zum Zitat Weima JA, Job R, Fahrner WR (2002) Thermochemical beveling of CVD diamond films intended for precision cutting and measurement applications. Diamond Relat Mater 11:1537CrossRef Weima JA, Job R, Fahrner WR (2002) Thermochemical beveling of CVD diamond films intended for precision cutting and measurement applications. Diamond Relat Mater 11:1537CrossRef
6.
Zurück zum Zitat Hilleringmann U (2014) Silizium-Halbleitertechnologie. Springer-Vieweg, S 65 Hilleringmann U (2014) Silizium-Halbleitertechnologie. Springer-Vieweg, S 65
7.
Zurück zum Zitat Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M, Iwai H (1996) 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans Electron Devices ED43:1233 Momose HS, Ono M, Yoshitomi T, Ohguro T, Nakamura S, Saito M, Iwai H (1996) 1.5 nm direct-tunneling gate oxide Si MOSFET’s. IEEE Trans Electron Devices ED43:1233
9.
Zurück zum Zitat Cullmann E, Cooper K, Reyerse C (1991) Optimized contact/proximity lithography. Suss Report 5(3):1–4 Cullmann E, Cooper K, Reyerse C (1991) Optimized contact/proximity lithography. Suss Report 5(3):1–4
10.
Zurück zum Zitat Goodberlet JG, Dunn BL (2000) Deep-ultraviolet contact photolithography. Microelectron Eng 53:95–99CrossRef Goodberlet JG, Dunn BL (2000) Deep-ultraviolet contact photolithography. Microelectron Eng 53:95–99CrossRef
11.
12.
Zurück zum Zitat Zell T (2000) Lithographie. Dresdner Sommerschule Mikroelektronik Zell T (2000) Lithographie. Dresdner Sommerschule Mikroelektronik
13.
Zurück zum Zitat Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE 631:34 ffCrossRef Coopmans F, Roland B (1986) Desire: a novel dry developed resist system. Proc SPIE 631:34 ffCrossRef
14.
Zurück zum Zitat Henderson CC, Wheeler DR, Pollagi TR, O’Connell DJ, Goldsmith JEM, Fisher A, Cardinale GF, Hutchinson JM, Rao V (1998) Top-surface imaging resists for EUV lithography. Emerging lithographic technologies II. Proc SPIE 3331:32CrossRef Henderson CC, Wheeler DR, Pollagi TR, O’Connell DJ, Goldsmith JEM, Fisher A, Cardinale GF, Hutchinson JM, Rao V (1998) Top-surface imaging resists for EUV lithography. Emerging lithographic technologies II. Proc SPIE 3331:32CrossRef
17.
Zurück zum Zitat Instituts für Lasertechnik (2000) Jahresbericht des Fraunhofer Instituts für Lasertechnik (2000) Jahresbericht des Fraunhofer
19.
Zurück zum Zitat Harriott LR (1999) Scalpel: projection electron beam lithography. In: Proceedings of the 1999 IEEE particle accelerator conference, New York Harriott LR (1999) Scalpel: projection electron beam lithography. In: Proceedings of the 1999 IEEE particle accelerator conference, New York
21.
Zurück zum Zitat Pfeiffer H et al (2000) PREVAIL-IBM’s E-beam technology for next-generation lithography. Proc SPIE Pfeiffer H et al (2000) PREVAIL-IBM’s E-beam technology for next-generation lithography. Proc SPIE
22.
Zurück zum Zitat Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 111 ff Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 111 ff
23.
Zurück zum Zitat Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 101 Madou MJ (2012) Manufacturing techniques for microfabrication and nanotechnology, Bd II, 3. Aufl. CRC-Press, Boca Raton, S 101
24.
Zurück zum Zitat Melngailis J (1993) Focused ion beam lithography. Nucl Instrum Methods 80/81:1271CrossRef Melngailis J (1993) Focused ion beam lithography. Nucl Instrum Methods 80/81:1271CrossRef
25.
Zurück zum Zitat Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys A Mater Sci Process 61:99CrossRef Miller T, Knoblauch A, Wilbertz C, Kalbitzer S (1995) Field-ion imaging of a tungsten supertip. Appl Phys A Mater Sci Process 61:99CrossRef
26.
Zurück zum Zitat Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, Taunton Prewett PD, Mair GLR (1991) Focused ion beams from liquid metal ion sources. Research Studies Press, Taunton
27.
Zurück zum Zitat Bischoff L, Pilz W, Mazarov P, Wieck AD (2010) Comparison of bismuth emitting liquid metal ion sources. Appl Phys A Mater Sci Process 99:145–150CrossRef Bischoff L, Pilz W, Mazarov P, Wieck AD (2010) Comparison of bismuth emitting liquid metal ion sources. Appl Phys A Mater Sci Process 99:145–150CrossRef
28.
Zurück zum Zitat Mazarov P, Melnikov A, Wernhardt R, Wieck AD (2008) Long-life bismuth liquid metal ion source for focussed ion beam micromachining application. Appl Surf Sci 254:7401–7404CrossRef Mazarov P, Melnikov A, Wernhardt R, Wieck AD (2008) Long-life bismuth liquid metal ion source for focussed ion beam micromachining application. Appl Surf Sci 254:7401–7404CrossRef
29.
Zurück zum Zitat Mazarov P, Wieck AD, Bischoff L, Pilz W (2009) Alloy liquid metal ion source for carbon focused ion beams. J Vac Sci Technol B 27:L47CrossRef Mazarov P, Wieck AD, Bischoff L, Pilz W (2009) Alloy liquid metal ion source for carbon focused ion beams. J Vac Sci Technol B 27:L47CrossRef
30.
Zurück zum Zitat Pezzagna S, Wildanger D, Mazarov P, Wieck AD, Sarov Y, Rangelow I, Naydenov B, Jelezko F, Hell SW, Meijer J (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121CrossRef Pezzagna S, Wildanger D, Mazarov P, Wieck AD, Sarov Y, Rangelow I, Naydenov B, Jelezko F, Hell SW, Meijer J (2010) Nanoscale engineering and optical addressing of single spins in diamond. Small 6:2117–2121CrossRef
31.
Zurück zum Zitat Wieck AD, Sakai D, Kawasaki T (2011) International Patent Number WO. 122687 A1 Wieck AD, Sakai D, Kawasaki T (2011) International Patent Number WO. 122687 A1
32.
Zurück zum Zitat Chou YS, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in olymers. Appl Phys Lett 67:3114CrossRef Chou YS, Krauss PR, Renstrom PJ (1995) Imprint of sub-25 nm vias and trenches in olymers. Appl Phys Lett 67:3114CrossRef
33.
Zurück zum Zitat Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153CrossRef Xia Y, Whitesides GM (1998) Soft lithography. Ann Rev Mater Sci 28:153CrossRef
34.
Zurück zum Zitat Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol B15:2897CrossRef Chou SY, Krauss PR, Zhang W, Guo L, Zhuang I (1997) Sub-10 nm lithography and applications. J Vac Sci Technol B15:2897CrossRef
35.
Zurück zum Zitat Ye M, Li J-X, Li J, Li W, Lu B-R, Huang G, Mei Y, Chen Y, Liu R (2012) Humido-responsive nanostructures prepared by nanoimprinting. Microelectron Eng 98:634CrossRef Ye M, Li J-X, Li J, Li W, Lu B-R, Huang G, Mei Y, Chen Y, Liu R (2012) Humido-responsive nanostructures prepared by nanoimprinting. Microelectron Eng 98:634CrossRef
36.
Zurück zum Zitat Moro M, Taniguchi J, Hiwasa S (2014) Fabrication of antireflection structure film by roll-to-roll ultraviolet nanoimprint lithography. J Vac Sci Technol B32:06FG09CrossRef Moro M, Taniguchi J, Hiwasa S (2014) Fabrication of antireflection structure film by roll-to-roll ultraviolet nanoimprint lithography. J Vac Sci Technol B32:06FG09CrossRef
37.
Zurück zum Zitat Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold CB, Chou SY (2014) Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J Vac Sci Technol B32:06FG10CrossRef Mills E, Cannarella J, Zhang Q, Bhadra S, Arnold CB, Chou SY (2014) Silicon nanopillar anodes for lithium-ion batteries using nanoimprint lithography with flexible molds. J Vac Sci Technol B32:06FG10CrossRef
38.
Zurück zum Zitat Scheer H-C, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology – imprint techniques. In: Pavesi L, Buzaneva E (Hrsg) Frontiers of nano-optoelectronic systems. Kluwer, Dordrecht, S 319CrossRef Scheer H-C, Schulz H, Lyebyedyev D (2000) New directions in nanotechnology – imprint techniques. In: Pavesi L, Buzaneva E (Hrsg) Frontiers of nano-optoelectronic systems. Kluwer, Dordrecht, S 319CrossRef
39.
Zurück zum Zitat Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (2001) Nanoimprint techniques. In: Nalwa HS (Hrsg) Handbook of thin film materials, Bd 5. Academic, S 1 Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (2001) Nanoimprint techniques. In: Nalwa HS (Hrsg) Handbook of thin film materials, Bd 5. Academic, S 1
40.
Zurück zum Zitat Schift H, Heyderman LJ (2003) Kap 3: Nanorheology; squeeze flow in hot embossing of thin films. In: Sotomayor Torres C-M (Hrsg) Nanostructure science and technology, Volume on alternative lithography. Kluwer, New York Schift H, Heyderman LJ (2003) Kap 3: Nanorheology; squeeze flow in hot embossing of thin films. In: Sotomayor Torres C-M (Hrsg) Nanostructure science and technology, Volume on alternative lithography. Kluwer, New York
41.
Zurück zum Zitat Schift H (2007) Nanoimprint lithography. In: Bushan B (Hrsg) Springer handbook of nanotechnology. Springer, Berlin, S 239CrossRef Schift H (2007) Nanoimprint lithography. In: Bushan B (Hrsg) Springer handbook of nanotechnology. Springer, Berlin, S 239CrossRef
42.
Zurück zum Zitat Guo LJ (2004) Topical review: recent progress in nanoimprint and its applications. J Phys D Appl Phys 37:R123CrossRef Guo LJ (2004) Topical review: recent progress in nanoimprint and its applications. J Phys D Appl Phys 37:R123CrossRef
43.
Zurück zum Zitat Cross GLW (2006) Topical review: the production of nanostructures by mechanical forming. J Phys D Appl Phys 39:R262CrossRef Cross GLW (2006) Topical review: the production of nanostructures by mechanical forming. J Phys D Appl Phys 39:R262CrossRef
44.
Zurück zum Zitat Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B26:458CrossRef Schift H (2008) Nanoimprint lithography: an old story in modern times? A review. J Vac Sci Technol B26:458CrossRef
45.
Zurück zum Zitat Schulz H, Wissen M, Bogdanski N, Scheer H-C Mattes K, Friedrich C (2005) Choice of the molecular weight of an imprint polymer for hot embossing lithography. Microelectron Eng 78–79:625CrossRef Schulz H, Wissen M, Bogdanski N, Scheer H-C Mattes K, Friedrich C (2005) Choice of the molecular weight of an imprint polymer for hot embossing lithography. Microelectron Eng 78–79:625CrossRef
46.
Zurück zum Zitat Atasoy H, Vogler M, Haatainen T, Schleunitz A, Jarzabek D, Schift H, Reuther F, Gruetzner G, Rymuza Z (2011) Novel thermoplastic polymers with improved release properties for thermal NIL. Microelectron Eng 88:1902CrossRef Atasoy H, Vogler M, Haatainen T, Schleunitz A, Jarzabek D, Schift H, Reuther F, Gruetzner G, Rymuza Z (2011) Novel thermoplastic polymers with improved release properties for thermal NIL. Microelectron Eng 88:1902CrossRef
47.
Zurück zum Zitat Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT – Epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722CrossRef Schuster C, Reuther F, Kolander A, Gruetzner G (2009) mr-NIL 6000LT – Epoxy-based curing resist for combined thermal and UV nanoimprint lithography below 50 °C. Microelectron Eng 86:722CrossRef
48.
Zurück zum Zitat Wang S, Dhima K, Steinberg C, Papenheim M, Scheer H-C, Helfer A, Görrn P (2015) Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl Phys A Mater Sci Process 121:357CrossRef Wang S, Dhima K, Steinberg C, Papenheim M, Scheer H-C, Helfer A, Görrn P (2015) Morphology of organic semi-crystalline polymer after thermal nanoimprint. Appl Phys A Mater Sci Process 121:357CrossRef
49.
Zurück zum Zitat Dhima K (2014) Hybrid lithography. The combination of T-NIL and UV-L. Dissertation Universität Wuppertal, Der AndereVerlag, Uelvesbüll Dhima K (2014) Hybrid lithography. The combination of T-NIL and UV-L. Dissertation Universität Wuppertal, Der AndereVerlag, Uelvesbüll
50.
Zurück zum Zitat Dhima K, Steinberg C, Mayer A, Wang S, Papenheim M, Scheer H-C (2014) Residual layer lithography. Microelectron Eng 123:84CrossRef Dhima K, Steinberg C, Mayer A, Wang S, Papenheim M, Scheer H-C (2014) Residual layer lithography. Microelectron Eng 123:84CrossRef
51.
Zurück zum Zitat Horstmann JT, Hilleringmann U, Goser KF (1998) Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans ED-45:299CrossRef Horstmann JT, Hilleringmann U, Goser KF (1998) Matching analysis of deposition defined 50-nm MOSFETs. IEEE Trans ED-45:299CrossRef
52.
Zurück zum Zitat Noma H, Kawata H, Yasuda M, Hirai Y, Sakamoto J (2013) Selective edge lithography for fabricating imprint molds with mixed scale patterns. J Vac Sci Technol B31:06FB03CrossRef Noma H, Kawata H, Yasuda M, Hirai Y, Sakamoto J (2013) Selective edge lithography for fabricating imprint molds with mixed scale patterns. J Vac Sci Technol B31:06FB03CrossRef
53.
Zurück zum Zitat Schift H, Spreu C, Saidani M, Bednarzik M, Gobrecht J (2009) Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography. J Vac Sci Technol B27:2846CrossRef Schift H, Spreu C, Saidani M, Bednarzik M, Gobrecht J (2009) Transparent hybrid polymer stamp copies with sub-50-nm resolution for thermal and UV-nanoimprint lithography. J Vac Sci Technol B27:2846CrossRef
54.
Zurück zum Zitat Papenheim M, Steinberg S, Dhima K, Wang S, Scheer H-C (2015) Flexible composite stamp for thermal nanoimprint lithography based on OrmoStamp. J Vac Sci Technol B33:06F601CrossRef Papenheim M, Steinberg S, Dhima K, Wang S, Scheer H-C (2015) Flexible composite stamp for thermal nanoimprint lithography based on OrmoStamp. J Vac Sci Technol B33:06F601CrossRef
55.
Zurück zum Zitat Gourgon C, Perret C, Micouin G, Lazzarino F, Tortai JH, Joubert O, Grolier J-PE (2003) Influence of pattern density in nanoimprint lithography. J Vac Sci Technol B21:98CrossRef Gourgon C, Perret C, Micouin G, Lazzarino F, Tortai JH, Joubert O, Grolier J-PE (2003) Influence of pattern density in nanoimprint lithography. J Vac Sci Technol B21:98CrossRef
56.
Zurück zum Zitat Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B16:3917CrossRef Scheer H-C, Schulz H, Hoffmann T, Sotomayor Torres C-M (1998) Problems of the nanoimprinting technique for nanometer scale pattern definition. J Vac Sci Technol B16:3917CrossRef
57.
Zurück zum Zitat Tormen M, Sovernigo E, Pozzato A, Pianigiani M, Tormen M (2015) Sub-100 μs nanoimprint lithography at wafer scale. Microelectron Eng 141:21CrossRef Tormen M, Sovernigo E, Pozzato A, Pianigiani M, Tormen M (2015) Sub-100 μs nanoimprint lithography at wafer scale. Microelectron Eng 141:21CrossRef
58.
Zurück zum Zitat Nagato N, Hattori S, Hamaguchi T, Nakao M (2010) Rapid thermal imprinting of high-aspect-ratio nanostructures with dynamic heating of mold surface. J Vac Sci Technol B28:C6M122CrossRef Nagato N, Hattori S, Hamaguchi T, Nakao M (2010) Rapid thermal imprinting of high-aspect-ratio nanostructures with dynamic heating of mold surface. J Vac Sci Technol B28:C6M122CrossRef
59.
Zurück zum Zitat Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B32:06FG03CrossRef Unno N, Mäkelä T, Taniguchi J (2014) Thermal roll-to-roll imprinted nanogratings on plastic film. J Vac Sci Technol B32:06FG03CrossRef
60.
Zurück zum Zitat Seo SM, Kim TI, Lee HH (2006) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567CrossRef Seo SM, Kim TI, Lee HH (2006) Simple fabrication of nanostructure by continuous rigiflex imprinting. Microelectron Eng 84:567CrossRef
61.
Zurück zum Zitat Scheer H-C, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron Eng 56:311CrossRef Scheer H-C, Schulz H (2001) A contribution to the flow behaviour of thin polymer films during hot embossing lithography. Microelectron Eng 56:311CrossRef
62.
Zurück zum Zitat Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres C-M, Mehnert R, Bigl F (1999) Fabrication of 3D micro- and nanostructures by replica molding and imprinting. Proc EUSPEN 1:534 Zimmer K, Otte L, Braun A, Rudschuck S, Friedrich H, Schulz H, Scheer H-C, Hoffmann T, Sotomayor Torres C-M, Mehnert R, Bigl F (1999) Fabrication of 3D micro- and nanostructures by replica molding and imprinting. Proc EUSPEN 1:534
63.
Zurück zum Zitat Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol B18:3557CrossRef Heidari B, Maximov I, Montelius L (2000) Nanoimprint at the 6 inch wafer scale. J Vac Sci Technol B18:3557CrossRef
64.
Zurück zum Zitat Chaix N, Gourgon C, Perret C, Landis S, Leveder T (2007) Nanoimprint lithography processes on 200 mm Si wafer for optical application: residual thickness etching anisotropy. J Vac Sci Technol B25:2346CrossRef Chaix N, Gourgon C, Perret C, Landis S, Leveder T (2007) Nanoimprint lithography processes on 200 mm Si wafer for optical application: residual thickness etching anisotropy. J Vac Sci Technol B25:2346CrossRef
65.
Zurück zum Zitat Landis S, Reboud V, Enot T, Vizios C (2013) Three dimensional on 300 mm wafer scale nanoimprint lithography process. Microelectron Eng 110:198CrossRef Landis S, Reboud V, Enot T, Vizios C (2013) Three dimensional on 300 mm wafer scale nanoimprint lithography process. Microelectron Eng 110:198CrossRef
66.
Zurück zum Zitat Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B14:4124CrossRef Haisma J, Verheijen M, van der Heuvel K (1996) Mold-assisted nanolithography: a process for reliable pattern replication. J Vac Sci Technol B14:4124CrossRef
67.
Zurück zum Zitat Farshchian B, Amirsageghi A, Hurst SM, Wu J, Lee J, Park S (2011) Soft UV-nanoimprint lithography on non-planar surfaces. Microelectron Eng 88:3787CrossRef Farshchian B, Amirsageghi A, Hurst SM, Wu J, Lee J, Park S (2011) Soft UV-nanoimprint lithography on non-planar surfaces. Microelectron Eng 88:3787CrossRef
68.
Zurück zum Zitat Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J (2005) Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 16:171CrossRef Schift H, Saxer S, Park S, Padeste C, Pieles U, Gobrecht J (2005) Controlled co-evaporation of silanes for nanoimprint stamps. Nanotechnology 16:171CrossRef
69.
Zurück zum Zitat Steinberg C, Dhima K, Blensgens D, Mayer A, Wang S, Papenheim M, Scheer H-C, Zajadacz J, Zimmer K (2014) A scalable anti-sticking layer process via controlled evaporation. Microelectron Eng 123:4CrossRef Steinberg C, Dhima K, Blensgens D, Mayer A, Wang S, Papenheim M, Scheer H-C, Zajadacz J, Zimmer K (2014) A scalable anti-sticking layer process via controlled evaporation. Microelectron Eng 123:4CrossRef
70.
Zurück zum Zitat Francone A, Iojoiu C, Poulain C, Lombard C, Pepin-Donat B, Boussey J, Zelsmann M (2010) Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J Vac Sci Technol B28:C6M72CrossRef Francone A, Iojoiu C, Poulain C, Lombard C, Pepin-Donat B, Boussey J, Zelsmann M (2010) Impact of the resist properties on the antisticking layer degradation in UV nanoimprint lithography. J Vac Sci Technol B28:C6M72CrossRef
71.
Zurück zum Zitat Yamashita D, Taniguchi J, Suzuki H (2012) Liftetime evaluation of release agent for ultraviolet nanoimprint lithography. Microelectron Eng 97:109CrossRef Yamashita D, Taniguchi J, Suzuki H (2012) Liftetime evaluation of release agent for ultraviolet nanoimprint lithography. Microelectron Eng 97:109CrossRef
72.
Zurück zum Zitat Schmitt H, Duempelmann P, Fader R, Rommel M, Bauer AJ, Frey L, Brehm M, Kraft A (2012) Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. Microelectron Eng 98:275CrossRef Schmitt H, Duempelmann P, Fader R, Rommel M, Bauer AJ, Frey L, Brehm M, Kraft A (2012) Life time evaluation of PDMS stamps for UV-enhanced substrate conformal imprint lithography. Microelectron Eng 98:275CrossRef
73.
Zurück zum Zitat Zelsmann M, Alleaume C, Truffier-Boutry D, Francone A, Beaurain A, Pelissier B, Boussey J (2010) Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatment in UV nanoimprint lithography. Microelectron Eng 87:1029CrossRef Zelsmann M, Alleaume C, Truffier-Boutry D, Francone A, Beaurain A, Pelissier B, Boussey J (2010) Degradation and surfactant-aided regeneration of fluorinated anti-sticking mold treatment in UV nanoimprint lithography. Microelectron Eng 87:1029CrossRef
74.
Zurück zum Zitat Hiroshima H, Komuro M (2007) UV-nanoimprint with the assistance of gas condensation at atmospheric environmental pressure. J Vac Sci Technol B25:2333CrossRef Hiroshima H, Komuro M (2007) UV-nanoimprint with the assistance of gas condensation at atmospheric environmental pressure. J Vac Sci Technol B25:2333CrossRef
75.
Zurück zum Zitat Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:279 Colburn M, Johnson S, Stewart M, Damle S, Bailey T, Choi B, Wedlake M, Michaelson T, Sreenivasan SV, Ekerdt J, Wilson CG (1999) Step and flash imprint lithography: a new approach to high-resolution patterning. Proc SPIE 3676:279
76.
Zurück zum Zitat Glinsner T, Veres T, Kreindl G, Roy E, Morton K, Wiesner T, Thanner C, Treiblmayr D, Miller R, Lindner P (2010) Fully automated hot embossing process utilizing high resolution working stamps. Microelectron Eng 87:1037CrossRef Glinsner T, Veres T, Kreindl G, Roy E, Morton K, Wiesner T, Thanner C, Treiblmayr D, Miller R, Lindner P (2010) Fully automated hot embossing process utilizing high resolution working stamps. Microelectron Eng 87:1037CrossRef
77.
Zurück zum Zitat Verschuuren MA (2010) Substrate conformal imprint lithography for nanophotonics. Promotion Universität Utrecht Verschuuren MA (2010) Substrate conformal imprint lithography for nanophotonics. Promotion Universität Utrecht
78.
Zurück zum Zitat Fader R, Rommel M, Bauer A, Rumler M, Frey L, van de Laar R, Ji R, Schömbs U (2013) Accuracy of wafer level alignment with substrate conformal imprint lithography. J Vac Sci Technol B31:06FB02CrossRef Fader R, Rommel M, Bauer A, Rumler M, Frey L, van de Laar R, Ji R, Schömbs U (2013) Accuracy of wafer level alignment with substrate conformal imprint lithography. J Vac Sci Technol B31:06FB02CrossRef
79.
Zurück zum Zitat Kim HJ, Almanza-Workman M, Garcia RA, Kwon O, Jeffrey F, Braymen S, Hauschildt J, Junge K, Larson D, Stieler D, Chaiken A, Cobene B, Elder RE, Jackson WB, Mehrban J, Jeans A, Luo H, Mai P, Perlov C, Taussig C (2009) Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display 17:963CrossRef Kim HJ, Almanza-Workman M, Garcia RA, Kwon O, Jeffrey F, Braymen S, Hauschildt J, Junge K, Larson D, Stieler D, Chaiken A, Cobene B, Elder RE, Jackson WB, Mehrban J, Jeans A, Luo H, Mai P, Perlov C, Taussig C (2009) Roll-to-roll manufacturing of electronics on flexible substrates using self-aligned imprint lithography (SAIL). J Soc Inf Display 17:963CrossRef
80.
Zurück zum Zitat Ji R, Hornung M, Verschuuren MA, van de Laar R, van Eekelen J, Plachetka U, Moeller M, Moormann C (2010) UV-enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron Eng 87(S):963CrossRef Ji R, Hornung M, Verschuuren MA, van de Laar R, van Eekelen J, Plachetka U, Moeller M, Moormann C (2010) UV-enhanced substrate conformal imprint lithography (UV-SCIL) technique for photonic crystals patterning in LED manufacturing. Microelectron Eng 87(S):963CrossRef
81.
Zurück zum Zitat Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386CrossRef Suh KY, Kim YS, Lee HH (2001) Capillary force lithography. Adv Mater 13:1386CrossRef
82.
Zurück zum Zitat Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699CrossRef Suh KY, Park MC, Kim P (2009) Capillary force lithography: a versatile tool for structured biomaterials interface towards cell and tissue engineering. Adv Funct Mater 19:2699CrossRef
83.
Zurück zum Zitat Steinberg C, Gubert M, Papenheim M, Wang S, Scheer H-C, Zajadacz J, Zimmer K (2015) Challenges with soft stamps for guiding of diblock copolymers. Appl Phys A Mater Sci Process 121:489CrossRef Steinberg C, Gubert M, Papenheim M, Wang S, Scheer H-C, Zajadacz J, Zimmer K (2015) Challenges with soft stamps for guiding of diblock copolymers. Appl Phys A Mater Sci Process 121:489CrossRef
84.
Zurück zum Zitat Suh KY, Lee HH (2002) Self-organized polymeric microstructures. Adv Mater 14:346CrossRef Suh KY, Lee HH (2002) Self-organized polymeric microstructures. Adv Mater 14:346CrossRef
85.
Zurück zum Zitat Persano L, Molle S, Girardo S, Neves AAR, Camposeo A, Stabile R, Cingolani R, Pisigniano D (2008) Soft nanopatterning on light-emitting inorganic-organic composites. Adv Funct Mater 18:2692CrossRef Persano L, Molle S, Girardo S, Neves AAR, Camposeo A, Stabile R, Cingolani R, Pisigniano D (2008) Soft nanopatterning on light-emitting inorganic-organic composites. Adv Funct Mater 18:2692CrossRef
86.
Zurück zum Zitat Suh D, Lee HH (2004) Sub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography. J Vac Sci Technol B22(S):1123CrossRef Suh D, Lee HH (2004) Sub-100 nm organic light-emitting diodes patterned with room temperature imprint lithography. J Vac Sci Technol B22(S):1123CrossRef
87.
Zurück zum Zitat Ye X, Ding Y, Duan Y, Liu H, Lu B (2010) Room-temperature capillary-imprint lithography for making micro−/nanostructures in large areas. J Vac Sci Technol B28:138CrossRef Ye X, Ding Y, Duan Y, Liu H, Lu B (2010) Room-temperature capillary-imprint lithography for making micro−/nanostructures in large areas. J Vac Sci Technol B28:138CrossRef
88.
Zurück zum Zitat Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498CrossRef Kumar A, Biebuck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498CrossRef
89.
Zurück zum Zitat Xia Y, Zhao X-M, Whitesides GM (1996) Pattern transfer: self assembled monolayers as ultrathin resists. Microelectron Eng 32:255CrossRef Xia Y, Zhao X-M, Whitesides GM (1996) Pattern transfer: self assembled monolayers as ultrathin resists. Microelectron Eng 32:255CrossRef
90.
Zurück zum Zitat Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of Silicon dioxide and its application in microfabrication. J Am Chem Soc 117:9576CrossRef Xia Y, Mrksich M, Kim E, Whitesides GM (1996) Microcontact printing of octadecylsiloxane on the surface of Silicon dioxide and its application in microfabrication. J Am Chem Soc 117:9576CrossRef
91.
Zurück zum Zitat Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer sized features. Adv Mater 8:1015CrossRef Xia Y, Qin D, Whitesides GM (1996) Microcontact printing with a cylindrical rolling stamp: a practical step toward automatic manufacturing of patterns with submicrometer sized features. Adv Mater 8:1015CrossRef
92.
Zurück zum Zitat Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042CrossRef Schmid H, Michel B (2000) Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules 33:3042CrossRef
93.
Zurück zum Zitat Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229CrossRef Heyderman LJ, Schift H, David C, Gobrecht J, Schweizer T (2000) Flow behaviour of thin polymer films used for hot embossing lithography. Microelectron Eng 54:229CrossRef
94.
Zurück zum Zitat Scheer H-C, Papenheim M, Dhima K, Wang S, Steinberg C (2014) Aspects of cavity filling with nanimprint. Microsyst Technol 21:1595CrossRef Scheer H-C, Papenheim M, Dhima K, Wang S, Steinberg C (2014) Aspects of cavity filling with nanimprint. Microsyst Technol 21:1595CrossRef
95.
Zurück zum Zitat Scheer H-C, Mayer A, Dhima K, Wang S, Steinberg C (2013) Challenges with high aspect ratio nanoimprint. Microsyst Technol 20:1891CrossRef Scheer H-C, Mayer A, Dhima K, Wang S, Steinberg C (2013) Challenges with high aspect ratio nanoimprint. Microsyst Technol 20:1891CrossRef
96.
Zurück zum Zitat Yasuda M, Araki K, Taga A, Horiba A, Kawata H, Hirai Y (2011) Computational study of polymer filling process in nanoimprint lithography. Microelectron Eng 88:2188CrossRef Yasuda M, Araki K, Taga A, Horiba A, Kawata H, Hirai Y (2011) Computational study of polymer filling process in nanoimprint lithography. Microelectron Eng 88:2188CrossRef
97.
Zurück zum Zitat Hua F, Gaur A, Sun Y, Word M, Jin N, Adesida I, Shim M, Shim A, Rogers JA (2006) Processing dependent behavior of soft imprint lithography on the 1-10 nm scale. IEEE Trans Nanotechnol 5:301CrossRef Hua F, Gaur A, Sun Y, Word M, Jin N, Adesida I, Shim M, Shim A, Rogers JA (2006) Processing dependent behavior of soft imprint lithography on the 1-10 nm scale. IEEE Trans Nanotechnol 5:301CrossRef
98.
Zurück zum Zitat Mayer A, Dhima K, Wang S, Steinberg C, Papenheim M, Scheer H-C (2015) The underestimated impact of instabilities in nanoimprint. Appl Phys A Mater Sci Process 121:405CrossRef Mayer A, Dhima K, Wang S, Steinberg C, Papenheim M, Scheer H-C (2015) The underestimated impact of instabilities in nanoimprint. Appl Phys A Mater Sci Process 121:405CrossRef
99.
Zurück zum Zitat Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe E-L, Ling TGI (2000) Nanoimprint and UV-lithography: mix&match process for fabrication of interdigitatednanobiosensors. Microelectron Eng 53:521CrossRef Montelius L, Heidari B, Graczyk M, Maximov I, Sarwe E-L, Ling TGI (2000) Nanoimprint and UV-lithography: mix&match process for fabrication of interdigitatednanobiosensors. Microelectron Eng 53:521CrossRef
100.
Zurück zum Zitat Dhima K, Steinberg C, Wang S, Papenheim M, Scheer H-C (2015) Nanoimprint combination techiques. Microelectron Eng 141:92CrossRef Dhima K, Steinberg C, Wang S, Papenheim M, Scheer H-C (2015) Nanoimprint combination techiques. Microelectron Eng 141:92CrossRef
101.
Zurück zum Zitat Schmid GM, Miller M, Brooks C, Khusnatdinov N, LaBrake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang X (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B27:573CrossRef Schmid GM, Miller M, Brooks C, Khusnatdinov N, LaBrake D, Resnick DJ, Sreenivasan SV, Gauzner G, Lee K, Kuo D, Weller D, Yang X (2009) Step and flash imprint lithography for manufacturing patterned media. J Vac Sci Technol B27:573CrossRef
102.
Zurück zum Zitat Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524CrossRef Eigler DM, Schweizer EK (1990) Positioning single atoms with a scanning tunneling microscope. Nature 344:524CrossRef
103.
Zurück zum Zitat Tan W, Kopelman R (2000) Nanoscopic optical sensors and probes. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York, S 621CrossRef Tan W, Kopelman R (2000) Nanoscopic optical sensors and probes. In: Nalwa HS (Hrsg) Handbook of nanostructured materials and nanotechnology, Bd 4. Academic, New York, S 621CrossRef
104.
Zurück zum Zitat Betzig E, Trautmann JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189CrossRef Betzig E, Trautmann JK (1992) Near-field optics: microscopy, spectroscopy, and surface modification beyond the diffraction limit. Science 257:189CrossRef
105.
Zurück zum Zitat Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40CrossRef Trautman JK, Macklin JJ, Brus LE, Betzig E (1994) Near-field spectroscopy of single molecules at room temperature. Nature 369:40CrossRef
Metadaten
Titel
Nanostrukturierung
verfasst von
Wolfgang R. Fahrner
Ulrich Hilleringmann
Hella-Christin Scheer
Andreas Dirk Wieck
Copyright-Jahr
2017
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/978-3-662-48908-6_7