Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2017

10.01.2017

Native defects in sol–gel derived CdS buffer layers for photovoltaic applications

verfasst von: S. R. Meher, Deepak K. Kaushik, A. Subrahmanyam

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanocrystalline CdS thin films are prepared by sol–gel dip coating for potential application as buffer layers in chalcogenide solar cells. X-ray diffraction and Raman spectroscopy results reveal that the films crystallize in hexagonal wurtzite structure. Spherical nano-grains with good surface coverage is observed in the scanning electron micrographs. The band gap values at different post-annealing temperatures are estimated from the optical absorption data. The surface work function which determines the band alignment at the heterojunction interface is obtained through Kelvin probe measurement. The native defects in CdS which can act as the recombination centers in chalcogenide solar cells are analysed by low temperature photoluminescence spectroscopy. The films annealed at 573, 623 and 673 K exhibit near infra-red emissions corresponding to the mid-gap cadmium vacancies. These kind of deep level hole traps are minimal for the films annealed at 723 K. The presence of strong exciton emission also ensures good crystalline quality of these films. The effect of mid-gap CdS acceptor density on the CIGS/CdS device performance has been studied through numerical simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 48). Prog. Photovolt: Res. Appl. 24, 905–913 (2016)CrossRef M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Solar cell efficiency tables (version 48). Prog. Photovolt: Res. Appl. 24, 905–913 (2016)CrossRef
2.
Zurück zum Zitat K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt Res. Appl. 12, 69–92 (2004)CrossRef K.L. Chopra, P.D. Paulson, V. Dutta, Thin-film solar cells: an overview. Prog. Photovolt Res. Appl. 12, 69–92 (2004)CrossRef
3.
Zurück zum Zitat A. Klein, Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. J. Phys. Condens. Matter. 27, 134201-1-134201-24 (2015)CrossRef A. Klein, Energy band alignment in chalcogenide thin film solar cells from photoelectron spectroscopy. J. Phys. Condens. Matter. 27, 134201-1-134201-24 (2015)CrossRef
4.
Zurück zum Zitat D.W. Niles, H. Hochst, Band offsets and interfacial properties of cubic CdS grown by molecular beam epitaxy on CdTe (110). Phys. Rev. B 41, 12710–12719 (1990)CrossRef D.W. Niles, H. Hochst, Band offsets and interfacial properties of cubic CdS grown by molecular beam epitaxy on CdTe (110). Phys. Rev. B 41, 12710–12719 (1990)CrossRef
5.
Zurück zum Zitat B.S. Richards, K.R. McIntosh, Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray tracing simulations. Prog. Photovolt Res. Appl. 15, 27–34 (2007)CrossRef B.S. Richards, K.R. McIntosh, Overcoming the poor short wavelength spectral response of CdS/CdTe photovoltaic modules via luminescence down-shifting: ray tracing simulations. Prog. Photovolt Res. Appl. 15, 27–34 (2007)CrossRef
6.
Zurück zum Zitat C.H. Chung, B. Bob, T.B. Song, Y. Yang, Current–voltage characteristics of fully solution processed high performance CuIn(S, Se)2 solar cells: crossover and red kink. Sol. Energ. Mat. Sol. Cells 120, 642–646 (2014)CrossRef C.H. Chung, B. Bob, T.B. Song, Y. Yang, Current–voltage characteristics of fully solution processed high performance CuIn(S, Se)2 solar cells: crossover and red kink. Sol. Energ. Mat. Sol. Cells 120, 642–646 (2014)CrossRef
7.
Zurück zum Zitat J.B. Varley, V. Lordi, Intermixing at the absorber-buffer layer interface in thin film solar cells: the electronic effects of point defects in Cu(In, Ga) (Se,S)2 and Cu2ZnSn(Se,S) 4 devices. J. Appl. Phys 116, 063505-1-063505-9 (2014)CrossRef J.B. Varley, V. Lordi, Intermixing at the absorber-buffer layer interface in thin film solar cells: the electronic effects of point defects in Cu(In, Ga) (Se,S)2 and Cu2ZnSn(Se,S) 4 devices. J. Appl. Phys 116, 063505-1-063505-9 (2014)CrossRef
8.
Zurück zum Zitat J.E. Moore, S. Dongaonkar, R.V.K. Chavali, M.A. Alam, M.S. Lundstrom, Correlation of built-in potential and I-V crossover in thin film solar cells. IEEE J. Photovolt. 4, 1138–1148 (2014)CrossRef J.E. Moore, S. Dongaonkar, R.V.K. Chavali, M.A. Alam, M.S. Lundstrom, Correlation of built-in potential and I-V crossover in thin film solar cells. IEEE J. Photovolt. 4, 1138–1148 (2014)CrossRef
9.
Zurück zum Zitat R.H. Bube, Photoconductivity of solids. (John Wiley & Sons, London, 1960) R.H. Bube, Photoconductivity of solids. (John Wiley & Sons, London, 1960)
10.
Zurück zum Zitat K. Mochizuki, M. Satoh, K. Igaki, Orange luminescence in CdS. Jpn. J. Appl. Phys. 22, 1414–1417 (1983)CrossRef K. Mochizuki, M. Satoh, K. Igaki, Orange luminescence in CdS. Jpn. J. Appl. Phys. 22, 1414–1417 (1983)CrossRef
11.
Zurück zum Zitat J.A. Hernandez, G.C. Puente, A.M. Acevedo, O.V. Galan, F.C. Gandarilla, J.V. Larramendi, A.E. Esquivel, H.H. Contreras, M.H. Garduno, A.A. Carbajal, M.C. Castaneda, G.A. Mejia, Photoluminescence and structural properties of cadmium sulphide thin films grown by different techniques. Semicond. Sci. Technol. 18, 111–114 (2003)CrossRef J.A. Hernandez, G.C. Puente, A.M. Acevedo, O.V. Galan, F.C. Gandarilla, J.V. Larramendi, A.E. Esquivel, H.H. Contreras, M.H. Garduno, A.A. Carbajal, M.C. Castaneda, G.A. Mejia, Photoluminescence and structural properties of cadmium sulphide thin films grown by different techniques. Semicond. Sci. Technol. 18, 111–114 (2003)CrossRef
12.
Zurück zum Zitat J.B. Varley, V. Lordi, Electrical properties of point defects in CdS and ZnS. Appl. Phys. Lett. 103, 102103-1-102103-4 (2013) J.B. Varley, V. Lordi, Electrical properties of point defects in CdS and ZnS. Appl. Phys. Lett. 103, 102103-1-102103-4 (2013)
13.
Zurück zum Zitat P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, Room temperature ferromagnetism and white light emissive CdS:Cr nanoparticles synthesized by chemical co-precipitated method. J. Alloys Compd. 656, 510–517 (2016)CrossRef P. Elavarthi, A.A. Kumar, G. Murali, D.A. Reddy, K.R. Gunasekhar, Room temperature ferromagnetism and white light emissive CdS:Cr nanoparticles synthesized by chemical co-precipitated method. J. Alloys Compd. 656, 510–517 (2016)CrossRef
14.
Zurück zum Zitat A.E. Abken, D.P. Halliday, K. Durose, Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition. J. Appl. Phys 105, 064515-1-064515-9 (2009)CrossRef A.E. Abken, D.P. Halliday, K. Durose, Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition. J. Appl. Phys 105, 064515-1-064515-9 (2009)CrossRef
15.
Zurück zum Zitat O. Vigil, I. Reich, M.G. Rocha, O.Z. Angel, Characterization of defect levels in chemically deposited CdS films in the cubic-hexagonal phase transition. J. Vac. Sci. Technol. A 15, 2282–2286 (1997)CrossRef O. Vigil, I. Reich, M.G. Rocha, O.Z. Angel, Characterization of defect levels in chemically deposited CdS films in the cubic-hexagonal phase transition. J. Vac. Sci. Technol. A 15, 2282–2286 (1997)CrossRef
16.
Zurück zum Zitat S.T. Yam, R. Patino, A.I. Oliva, Chemical bath deposition of CdS films on different substrate orientations. Curr. Appl. Phys. 11, 914–920 (2011)CrossRef S.T. Yam, R. Patino, A.I. Oliva, Chemical bath deposition of CdS films on different substrate orientations. Curr. Appl. Phys. 11, 914–920 (2011)CrossRef
17.
Zurück zum Zitat K.S. Balakrishnan, A.C. Rastogi, Structure and growth kinetics of electrodeposited CdS thin films for solar cell applications. Sol. Energ. Mat. Sol. Cells 20, 417–434 (1990)CrossRef K.S. Balakrishnan, A.C. Rastogi, Structure and growth kinetics of electrodeposited CdS thin films for solar cell applications. Sol. Energ. Mat. Sol. Cells 20, 417–434 (1990)CrossRef
18.
Zurück zum Zitat A.A. Yadav, M.A. Barote, E.U. Masumdar, Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis. Solid State Sci. 12, 1173–1177 (2010)CrossRef A.A. Yadav, M.A. Barote, E.U. Masumdar, Studies on nanocrystalline cadmium sulphide (CdS) thin films deposited by spray pyrolysis. Solid State Sci. 12, 1173–1177 (2010)CrossRef
19.
Zurück zum Zitat A. A. Ziabari, F.E. Ghodsi, Growth characterization and studying of sol–gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment. Sol. Energ. Mat. Sol. Cells 105, 249–262 (2012)CrossRef A. A. Ziabari, F.E. Ghodsi, Growth characterization and studying of sol–gel derived CdS nanocrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment. Sol. Energ. Mat. Sol. Cells 105, 249–262 (2012)CrossRef
20.
Zurück zum Zitat M. Tomakin, M. Altunbas, E. Bacaksiz, S. Celik, Current transport mechanism in CdS thin films prepared by vacuum evaporation method at substrate temperatures below room temperature. Thin Solid Films 520, 2532–2536 (2012)CrossRef M. Tomakin, M. Altunbas, E. Bacaksiz, S. Celik, Current transport mechanism in CdS thin films prepared by vacuum evaporation method at substrate temperatures below room temperature. Thin Solid Films 520, 2532–2536 (2012)CrossRef
21.
Zurück zum Zitat C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, Studies of grain size effects in rf sputtered CdS thin films. J. Appl. Phys. 79, 9105–9109 (1996)CrossRef C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, Studies of grain size effects in rf sputtered CdS thin films. J. Appl. Phys. 79, 9105–9109 (1996)CrossRef
22.
Zurück zum Zitat S. Keitoku, H. Ezumi, H. Osono, M. Ohta, Preparation of p-type CdS thin film by laser ablation. Jpn. J. Appl. Phys. 34, L138–L140 (1995)CrossRef S. Keitoku, H. Ezumi, H. Osono, M. Ohta, Preparation of p-type CdS thin film by laser ablation. Jpn. J. Appl. Phys. 34, L138–L140 (1995)CrossRef
23.
Zurück zum Zitat M. Neuschitzer, Y. Sanchez, S.L. Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V.I. Roca, A.P. Rodriguez, E. Saucedo, Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink. Prog. Photovolt: Res. Appl. 23, 1660–1667 (2015)CrossRef M. Neuschitzer, Y. Sanchez, S.L. Marino, H. Xie, A. Fairbrother, M. Placidi, S. Haass, V.I. Roca, A.P. Rodriguez, E. Saucedo, Optimization of CdS buffer layer for high-performance Cu2ZnSnSe4 solar cells and the effects of light soaking: elimination of crossover and red kink. Prog. Photovolt: Res. Appl. 23, 1660–1667 (2015)CrossRef
24.
Zurück zum Zitat A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for material synthesis. Mater. Horiz. 3, 91–112 (2016)CrossRef A.E. Danks, S.R. Hall, Z. Schnepp, The evolution of ‘sol–gel’ chemistry as a technique for material synthesis. Mater. Horiz. 3, 91–112 (2016)CrossRef
25.
Zurück zum Zitat A. Subrahmanyam, C. Suresh Kumar, Kelvin probe for surface engineering. (CRC Press, Florida, 2009) A. Subrahmanyam, C. Suresh Kumar, Kelvin probe for surface engineering. (CRC Press, Florida, 2009)
26.
Zurück zum Zitat M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)CrossRef M. Burgelman, P. Nollet, S. Degrave, Modelling polycrystalline semiconductor solar cells. Thin Solid Films 361–362, 527–532 (2000)CrossRef
27.
Zurück zum Zitat M. Burgelman, K. Decock, S. Khelifi, A. Abbas, Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296–301 (2013)CrossRef M. Burgelman, K. Decock, S. Khelifi, A. Abbas, Advanced electrical simulation of thin film solar cells. Thin Solid Films 535, 296–301 (2013)CrossRef
28.
Zurück zum Zitat P.K. Nair, O.G. Daza, A.A.C. Readigos, J. Campos, M.T.S. Nair, Formation of conductive CdO layer on CdS thin films during air heating. Semicond. Sci. Technol. 16, 651–656 (2001)CrossRef P.K. Nair, O.G. Daza, A.A.C. Readigos, J. Campos, M.T.S. Nair, Formation of conductive CdO layer on CdS thin films during air heating. Semicond. Sci. Technol. 16, 651–656 (2001)CrossRef
29.
Zurück zum Zitat J. Chu, Z. Jin, S. Cai, J. Yang, Z. Hong, An in-situ chemical reaction deposition of nanosized wurtzite CdS thin films. Thin Solid Films 520, 1826–1831 (2012)CrossRef J. Chu, Z. Jin, S. Cai, J. Yang, Z. Hong, An in-situ chemical reaction deposition of nanosized wurtzite CdS thin films. Thin Solid Films 520, 1826–1831 (2012)CrossRef
30.
Zurück zum Zitat Y.N. Xu, W.Y. Ching, Electronic, optical and structural properties of some wurtzite crystals. Phys. Rev. B 48, 4335–4351 (1993)CrossRef Y.N. Xu, W.Y. Ching, Electronic, optical and structural properties of some wurtzite crystals. Phys. Rev. B 48, 4335–4351 (1993)CrossRef
31.
Zurück zum Zitat M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D.V. Timotijevic, G. Stanisic, Y.S. Yahia, Optical properties of CdS thin films. Opt. Mater. 35, 1112–1117 (2013)CrossRef M. Gilic, J. Trajic, N. Romcevic, M. Romcevic, D.V. Timotijevic, G. Stanisic, Y.S. Yahia, Optical properties of CdS thin films. Opt. Mater. 35, 1112–1117 (2013)CrossRef
32.
Zurück zum Zitat N. Maticiuc, M. Kukk, N. Spalatu, T. Potlog, M. Krunks, V. Valdna, J. Hiie, Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres, Energy Procedia 44, 77–84 (2014)CrossRef N. Maticiuc, M. Kukk, N. Spalatu, T. Potlog, M. Krunks, V. Valdna, J. Hiie, Comparative study of CdS films annealed in neutral, oxidizing and reducing atmospheres, Energy Procedia 44, 77–84 (2014)CrossRef
33.
Zurück zum Zitat F. Lisco, A. Abbas, B. Maniscalco, P.M. Kaminski, M. Losurdo, K. Bass, G. Claudio, J.M. Walls, Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment. J. Renew. Sustainable. Energy 6, 011202-1-011202-9 (2014) F. Lisco, A. Abbas, B. Maniscalco, P.M. Kaminski, M. Losurdo, K. Bass, G. Claudio, J.M. Walls, Pinhole free thin film CdS deposited by chemical bath using a substrate reactive plasma treatment. J. Renew. Sustainable. Energy 6, 011202-1-011202-9 (2014)
34.
Zurück zum Zitat F. Boakye, D. Nusenu, The energy band gap of cadmium sulphide. Solid State Commun. 102, 323–326 (1997)CrossRef F. Boakye, D. Nusenu, The energy band gap of cadmium sulphide. Solid State Commun. 102, 323–326 (1997)CrossRef
35.
Zurück zum Zitat R.D.L. Kristensen, S.N. Sahu, H. Haneman, Flash evaporation of CuInSe2 films. Sol. Energy Mater. 17, 329–345 (1988)CrossRef R.D.L. Kristensen, S.N. Sahu, H. Haneman, Flash evaporation of CuInSe2 films. Sol. Energy Mater. 17, 329–345 (1988)CrossRef
36.
Zurück zum Zitat J.I. Pankove, Optical Processes in Semiconductors, (Dover, New York, 1971) J.I. Pankove, Optical Processes in Semiconductors, (Dover, New York, 1971)
37.
Zurück zum Zitat B. Ullrich, D.M. Bagnall, H. Sakai, Y. Segawa, Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser-deposition. J. Lumin. 87–89, 1162–1164 (2000)CrossRef B. Ullrich, D.M. Bagnall, H. Sakai, Y. Segawa, Photoluminescence and lasing of thin CdS films on glass formed by pulsed-laser-deposition. J. Lumin. 87–89, 1162–1164 (2000)CrossRef
38.
Zurück zum Zitat P. Kumar, N. Saxena, R. Chandra, K. Gao, S. Zhou, A. Agarwal, F. Singh, V. Gupta, D. Kanjilal, SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications. J. Lumin. 147, 184–189 (2014)CrossRef P. Kumar, N. Saxena, R. Chandra, K. Gao, S. Zhou, A. Agarwal, F. Singh, V. Gupta, D. Kanjilal, SHI induced enhancement in green emission from nanocrystalline CdS thin films for photonic applications. J. Lumin. 147, 184–189 (2014)CrossRef
39.
Zurück zum Zitat P.Y. Yu, Enhancement of donor electronic Raman scattering in CdS. Phys. Rev. B 20, 5286–5291 (1979)CrossRef P.Y. Yu, Enhancement of donor electronic Raman scattering in CdS. Phys. Rev. B 20, 5286–5291 (1979)CrossRef
40.
Zurück zum Zitat P.K. Narayanam, P. Soni, P. Mohanta, R.S. Srinivasa, S.S. Talwar, S.S. Major, Effect of heat treatment on the photoluminescence of CdS nanocrystallites in cadmium rich organic Lngmuir Blodgett matrix. Mater. Chem. Phys. 139, 196–209 (2013)CrossRef P.K. Narayanam, P. Soni, P. Mohanta, R.S. Srinivasa, S.S. Talwar, S.S. Major, Effect of heat treatment on the photoluminescence of CdS nanocrystallites in cadmium rich organic Lngmuir Blodgett matrix. Mater. Chem. Phys. 139, 196–209 (2013)CrossRef
41.
Zurück zum Zitat N. Susa, H. Watanabe, M. Wada, Effects of annealing in Cd and S vapor on photoelectric properties of CdS single crystals. Jpn. J. Appl. Phys. 15, 2365–2370 (1976)CrossRef N. Susa, H. Watanabe, M. Wada, Effects of annealing in Cd and S vapor on photoelectric properties of CdS single crystals. Jpn. J. Appl. Phys. 15, 2365–2370 (1976)CrossRef
42.
Zurück zum Zitat S. Achour, G.H. Talat, Effect of thermal annealing on the cathodoluminescence of evaporated CdS films. Thin Solid Films 144, 1–6 (1986)CrossRef S. Achour, G.H. Talat, Effect of thermal annealing on the cathodoluminescence of evaporated CdS films. Thin Solid Films 144, 1–6 (1986)CrossRef
43.
Zurück zum Zitat F. Gemain, I.C. Robin, S. Renet, S. Bernardi, Photoluminescence studies of CdS layers for solar cells. Phys. Stat. Solidi. C 9, 1740–1743 (2012)CrossRef F. Gemain, I.C. Robin, S. Renet, S. Bernardi, Photoluminescence studies of CdS layers for solar cells. Phys. Stat. Solidi. C 9, 1740–1743 (2012)CrossRef
44.
Zurück zum Zitat B. Gil, Physics of wurtzite nitrides and oxides: passport to devices (Springer, 2014) B. Gil, Physics of wurtzite nitrides and oxides: passport to devices (Springer, 2014)
45.
Zurück zum Zitat S. Kijima, T. Nakada, High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells, Appl. Phys. Express 1, 075002-1-075002-3 (2008)CrossRef S. Kijima, T. Nakada, High-temperature degradation mechanism of Cu(In,Ga)Se2-based thin film solar cells, Appl. Phys. Express 1, 075002-1-075002-3 (2008)CrossRef
46.
Zurück zum Zitat P. Atkins, Physical Chemistry, 5th Edition Oxford University Press, Oxford (1994) P. Atkins, Physical Chemistry, 5th Edition Oxford University Press, Oxford (1994)
47.
Zurück zum Zitat F. Goto, K. Shirai, M. Ichimura, Defect reduction in electrochemically deposited CdS thin films by annealing in O2. Sol. Energ. Mat. Sol. Cells 50, 147–153 (1998)CrossRef F. Goto, K. Shirai, M. Ichimura, Defect reduction in electrochemically deposited CdS thin films by annealing in O2. Sol. Energ. Mat. Sol. Cells 50, 147–153 (1998)CrossRef
48.
Zurück zum Zitat Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)CrossRef Y.P. Varshni, Temperature dependence of the energy gap in semiconductors. Physica 34, 149–154 (1967)CrossRef
49.
Zurück zum Zitat S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)CrossRef S.R. Meher, L. Balakrishnan, Z.C. Alex, Analysis of Cu2ZnSnS4/CdS based photovoltaic cell: a numerical simulation approach. Superlattices Microstruct. 100, 703–722 (2016)CrossRef
50.
Zurück zum Zitat J.J. Scragg, P.J. Dale, D. Colombara, L.M. Peter, Thermodynamic aspects of the synthesis of thin-film materials for solar cells. Chem. Phys. Chem. 13, 3035–3046 (2012) J.J. Scragg, P.J. Dale, D. Colombara, L.M. Peter, Thermodynamic aspects of the synthesis of thin-film materials for solar cells. Chem. Phys. Chem. 13, 3035–3046 (2012)
51.
Zurück zum Zitat J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011)CrossRef J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chemical insights into the instability of Cu2ZnSnS4 films during annealing. Chem. Mater. 23, 4625–4633 (2011)CrossRef
Metadaten
Titel
Native defects in sol–gel derived CdS buffer layers for photovoltaic applications
verfasst von
S. R. Meher
Deepak K. Kaushik
A. Subrahmanyam
Publikationsdatum
10.01.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2017
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-6279-2

Weitere Artikel der Ausgabe 8/2017

Journal of Materials Science: Materials in Electronics 8/2017 Zur Ausgabe

Neuer Inhalt