Skip to main content

2011 | OriginalPaper | Buchkapitel

8. Natural Materials in Tissue Engineering Applications

verfasst von : Elyssa L. Monzack, Karien J. Rodriguez, Chloe M. McCoy, Xiaoxiao Gu, Kristyn S. Masters

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Materials derived from natural sources are used extensively in tissue engineering. Consisting of proteins, polysaccharides, or ceramics, these materials may be harvested from a wide range of sources and possess an equally wide range of physical and biological properties. This chapter focuses upon seven of these materials, namely collagen, fibrin, elastin, hyaluronic acid, alginate, chitosan, and silk. These materials are first discussed with respect to their intrinsic features that are relevant to tissue engineering, such as structure, source, degradation, mechanics, immunogenicity, and recognition by cells. This is followed by a review of techniques for derivatizing natural materials, forming scaffolds, and tailoring these scaffolds, accompanied by select examples of how these natural materials have been used in tissue engineering applications. While natural materials possess many characteristics that render them attractive for use in tissue engineering, they are also accompanied by some unique challenges; both of these features are highlighted in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.A. Vacanti, History of tissue engineering and a glimpse into its future, Tissue Eng 12 (2006), pp. 1137–1142. C.A. Vacanti, History of tissue engineering and a glimpse into its future, Tissue Eng 12 (2006), pp. 1137–1142.
2.
Zurück zum Zitat I.V. Yannas, J.F. Burke, P.L. Gordon, C. Huang, and R.H. Rubenstein, Design of an artificial skin. II. Control of chemical composition, J Biomed Mater Res 14 (1980), pp. 107–132. I.V. Yannas, J.F. Burke, P.L. Gordon, C. Huang, and R.H. Rubenstein, Design of an artificial skin. II. Control of chemical composition, J Biomed Mater Res 14 (1980), pp. 107–132.
3.
Zurück zum Zitat E. Bell, B. Ivarsson, and C. Merrill, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc Natl Acad Sci U S A 76 (1979), pp. 1274–1278. E. Bell, B. Ivarsson, and C. Merrill, Production of a tissue-like structure by contraction of collagen lattices by human fibroblasts of different proliferative potential in vitro, Proc Natl Acad Sci U S A 76 (1979), pp. 1274–1278.
4.
Zurück zum Zitat C.B. Weinberg, and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells, Science 231 (1986), pp. 397–400. C.B. Weinberg, and E. Bell, A blood vessel model constructed from collagen and cultured vascular cells, Science 231 (1986), pp. 397–400.
5.
Zurück zum Zitat M. Radosevich, H.I. Goubran, and T. Burnouf, Fibrin sealant: scientific rationale, production methods, properties, and current clinical use, Vox Sang 72 (1997), pp. 133–143. M. Radosevich, H.I. Goubran, and T. Burnouf, Fibrin sealant: scientific rationale, production methods, properties, and current clinical use, Vox Sang 72 (1997), pp. 133–143.
6.
Zurück zum Zitat W. Halsted, The employment of fine silk in preference to catgut and the advantage of transfixing tissues and vessels in controlling hemorrhage, Ann Surg 16 (1892), pp. 505. W. Halsted, The employment of fine silk in preference to catgut and the advantage of transfixing tissues and vessels in controlling hemorrhage, Ann Surg 16 (1892), pp. 505.
7.
Zurück zum Zitat C. Demers, C.R. Hamdy, K. Corsi, F. Chellat, M. Tabrizian, and L. Yahia, Natural coral exoskeleton as a bone graft substitute: a review, Biomed Mater Eng 12 (2002), pp. 15–35. C. Demers, C.R. Hamdy, K. Corsi, F. Chellat, M. Tabrizian, and L. Yahia, Natural coral exoskeleton as a bone graft substitute: a review, Biomed Mater Eng 12 (2002), pp. 15–35.
8.
Zurück zum Zitat K.P. Rao, Recent developments of collagen-based materials for medical applications and drug delivery systems, J Biomater Sci Polym Ed 7 (1995), pp. 623–645. K.P. Rao, Recent developments of collagen-based materials for medical applications and drug delivery systems, J Biomater Sci Polym Ed 7 (1995), pp. 623–645.
9.
Zurück zum Zitat H.J. Chung, and T.G. Park, Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering, Adv Drug Deliv Rev 59 (2007), pp. 249–262. H.J. Chung, and T.G. Park, Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering, Adv Drug Deliv Rev 59 (2007), pp. 249–262.
10.
Zurück zum Zitat A.D. Metcalfe, and M.W. Ferguson, Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration, J R Soc Interface 4 (2007), pp. 413–437. A.D. Metcalfe, and M.W. Ferguson, Tissue engineering of replacement skin: the crossroads of biomaterials, wound healing, embryonic development, stem cells and regeneration, J R Soc Interface 4 (2007), pp. 413–437.
11.
Zurück zum Zitat L.S. Nair, and C.T. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, Adv Biochem Eng Biotechnol 102 (2006), pp. 47–90. L.S. Nair, and C.T. Laurencin, Polymers as biomaterials for tissue engineering and controlled drug delivery, Adv Biochem Eng Biotechnol 102 (2006), pp. 47–90.
12.
Zurück zum Zitat R.A. Brown, and J.B. Phillips, Cell responses to biomimetic protein scaffolds used in tissue repair and engineering, Int Rev Cytol 262 (2007), pp. 75–150. R.A. Brown, and J.B. Phillips, Cell responses to biomimetic protein scaffolds used in tissue repair and engineering, Int Rev Cytol 262 (2007), pp. 75–150.
13.
Zurück zum Zitat M. Mian, F. Beghe, and E. Mian, Collagen as a pharmacological approach in wound healing, Int J Tissue React 14 Suppl (1992), pp. 1–9. M. Mian, F. Beghe, and E. Mian, Collagen as a pharmacological approach in wound healing, Int J Tissue React 14 Suppl (1992), pp. 1–9.
14.
Zurück zum Zitat K.H. Stenzel, T. Miyata, and A.L. Rubin, Collagen as a biomaterial, Annu Rev Biophys Bioeng 3 (1974), pp. 231–253. K.H. Stenzel, T. Miyata, and A.L. Rubin, Collagen as a biomaterial, Annu Rev Biophys Bioeng 3 (1974), pp. 231–253.
15.
Zurück zum Zitat L. Cen, W. Liu, L. Cui, W. Zhang, and Y. Cao, Collagen tissue engineering: development of novel biomaterials and applications, Pediatr Res 63 (2008), pp. 492–496. L. Cen, W. Liu, L. Cui, W. Zhang, and Y. Cao, Collagen tissue engineering: development of novel biomaterials and applications, Pediatr Res 63 (2008), pp. 492–496.
16.
Zurück zum Zitat I.V. Yannas. Natural Materials. In: B.D. Ratner, A.S. Hoffman, F.J. Shoen, J.E. Lemons, editors. Biomaterials Science. San Diego, CA: Elsevier Academic Press; (2004) I.V. Yannas. Natural Materials. In: B.D. Ratner, A.S. Hoffman, F.J. Shoen, J.E. Lemons, editors. Biomaterials Science. San Diego, CA: Elsevier Academic Press; (2004)
17.
Zurück zum Zitat K.S. Masters, and W.L. Murphy. Tissue Engineering. In: J.G. Webster, editor. Encyclopedia of Medical Devices and Instrumentation: John Wiley & Sons, Inc.; (2006), p. 379–395. K.S. Masters, and W.L. Murphy. Tissue Engineering. In: J.G. Webster, editor. Encyclopedia of Medical Devices and Instrumentation: John Wiley & Sons, Inc.; (2006), p. 379–395.
18.
Zurück zum Zitat J.A. Ramshaw, Y.Y. Peng, V. Glattauer, and J.A. Werkmeister, Collagens as biomaterials, J Mater Sci Mater Med 20 Suppl 1 (2009), pp. S3–S8. J.A. Ramshaw, Y.Y. Peng, V. Glattauer, and J.A. Werkmeister, Collagens as biomaterials, J Mater Sci Mater Med 20 Suppl 1 (2009), pp. S3–S8.
19.
Zurück zum Zitat B. Brodsky, and J.A. Ramshaw, The collagen triple-helix structure, Matrix Biol 15 (1997), pp. 545–554. B. Brodsky, and J.A. Ramshaw, The collagen triple-helix structure, Matrix Biol 15 (1997), pp. 545–554.
20.
Zurück zum Zitat H. Birkedal-Hansen, W.G. Moore, M.K. Bodden, L.J. Windsor, B. Birkedal-Hansen, A. DeCarlo, et al., Matrix metalloproteinases: a review, Crit Rev Oral Biol Med 4 (1993), pp. 197–250. H. Birkedal-Hansen, W.G. Moore, M.K. Bodden, L.J. Windsor, B. Birkedal-Hansen, A. DeCarlo, et al., Matrix metalloproteinases: a review, Crit Rev Oral Biol Med 4 (1993), pp. 197–250.
21.
Zurück zum Zitat S. Young, M. Wong, Y. Tabata, and A.G. Mikos, Gelatin as a delivery vehicle for the controlled release of bioactive molecules, J Control Release 109 (2005), pp. 256–274. S. Young, M. Wong, Y. Tabata, and A.G. Mikos, Gelatin as a delivery vehicle for the controlled release of bioactive molecules, J Control Release 109 (2005), pp. 256–274.
22.
Zurück zum Zitat D.J. White, S. Puranen, M.S. Johnson, and J. Heino, The collagen receptor subfamily of the integrins, Int J Biochem Cell Biol 36 (2004), pp. 1405–1410. D.J. White, S. Puranen, M.S. Johnson, and J. Heino, The collagen receptor subfamily of the integrins, Int J Biochem Cell Biol 36 (2004), pp. 1405–1410.
23.
Zurück zum Zitat A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, and D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation, Biomaterials 31 (2010), pp. 2827–2835. A.V. Taubenberger, M.A. Woodruff, H. Bai, D.J. Muller, and D.W. Hutmacher, The effect of unlocking RGD-motifs in collagen I on pre-osteoblast adhesion and differentiation, Biomaterials 31 (2010), pp. 2827–2835.
24.
Zurück zum Zitat D. Gullberg, K.R. Gehlsen, D.C. Turner, K. Ahlen, L.S. Zijenah, M.J. Barnes, et al., Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrins in cell–collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I, Embo J 11 (1992), pp. 3865–3873. D. Gullberg, K.R. Gehlsen, D.C. Turner, K. Ahlen, L.S. Zijenah, M.J. Barnes, et al., Analysis of alpha 1 beta 1, alpha 2 beta 1 and alpha 3 beta 1 integrins in cell–collagen interactions: identification of conformation dependent alpha 1 beta 1 binding sites in collagen type I, Embo J 11 (1992), pp. 3865–3873.
25.
Zurück zum Zitat J.R. Mauney, V. Volloch, and D.L. Kaplan, Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion, Biomaterials 26 (2005), pp. 6167–6175. J.R. Mauney, V. Volloch, and D.L. Kaplan, Matrix-mediated retention of adipogenic differentiation potential by human adult bone marrow-derived mesenchymal stem cells during ex vivo expansion, Biomaterials 26 (2005), pp. 6167–6175.
26.
Zurück zum Zitat A.K. Lynn, I.V. Yannas, and W. Bonfield, Antigenicity and immunogenicity of collagen, J Biomed Mater Res B Appl Biomater 71 (2004), pp. 343–354. A.K. Lynn, I.V. Yannas, and W. Bonfield, Antigenicity and immunogenicity of collagen, J Biomed Mater Res B Appl Biomater 71 (2004), pp. 343–354.
27.
Zurück zum Zitat M.W. Mosesson, Fibrinogen and fibrin structure and functions, J Thromb Haemost 3 (2005), pp. 1894–1904. M.W. Mosesson, Fibrinogen and fibrin structure and functions, J Thromb Haemost 3 (2005), pp. 1894–1904.
28.
Zurück zum Zitat K. Suzuki, B. Dahlback, and J. Stenflo, Thrombin-catalyzed activation of human coagulation factor V, J Biol Chem 257 (1982), pp. 6556–6564. K. Suzuki, B. Dahlback, and J. Stenflo, Thrombin-catalyzed activation of human coagulation factor V, J Biol Chem 257 (1982), pp. 6556–6564.
29.
Zurück zum Zitat P.A. Janmey, J.P. Winer, and J.W. Weisel, Fibrin gels and their clinical and bioengineering applications, J R Soc Interface 6 (2009), pp. 1–10. P.A. Janmey, J.P. Winer, and J.W. Weisel, Fibrin gels and their clinical and bioengineering applications, J R Soc Interface 6 (2009), pp. 1–10.
30.
Zurück zum Zitat C. Buchta, H.C. Hedrich, M. Macher, P. Hocker, and H. Redl, Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel, Biomaterials 26 (2005), pp. 6233–6241. C. Buchta, H.C. Hedrich, M. Macher, P. Hocker, and H. Redl, Biochemical characterization of autologous fibrin sealants produced by CryoSeal and Vivostat in comparison to the homologous fibrin sealant product Tissucol/Tisseel, Biomaterials 26 (2005), pp. 6233–6241.
31.
Zurück zum Zitat J.J. Calvete, Structures of integrin domains and concerted conformational changes in the bidirectional signaling mechanism of alphaIIbbeta3, Exp Biol Med (Maywood) 229 (2004), pp. 732–744. J.J. Calvete, Structures of integrin domains and concerted conformational changes in the bidirectional signaling mechanism of alphaIIbbeta3, Exp Biol Med (Maywood) 229 (2004), pp. 732–744.
32.
Zurück zum Zitat R. Gorodetsky, The use of fibrin based matrices and fibrin microbeads (FMB) for cell based tissue regeneration, Expert Opin Biol Ther 8 (2008), pp. 1831–1846. R. Gorodetsky, The use of fibrin based matrices and fibrin microbeads (FMB) for cell based tissue regeneration, Expert Opin Biol Ther 8 (2008), pp. 1831–1846.
33.
Zurück zum Zitat K. Suehiro, J. Mizuguchi, K. Nishiyama, S. Iwanaga, D.H. Farrell, and S. Ohtaki, Fibrinogen binds to integrin alpha(5)beta(1) via the carboxyl-terminal RGD site of the Aalpha-chain, J Biochem 128 (2000), pp. 705–710. K. Suehiro, J. Mizuguchi, K. Nishiyama, S. Iwanaga, D.H. Farrell, and S. Ohtaki, Fibrinogen binds to integrin alpha(5)beta(1) via the carboxyl-terminal RGD site of the Aalpha-chain, J Biochem 128 (2000), pp. 705–710.
34.
Zurück zum Zitat R.E. Nisato, J.C. Tille, A. Jonczyk, S.L. Goodman, and M.S. Pepper, alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro, Angiogenesis 6 (2003), pp. 105–119. R.E. Nisato, J.C. Tille, A. Jonczyk, S.L. Goodman, and M.S. Pepper, alphav beta 3 and alphav beta 5 integrin antagonists inhibit angiogenesis in vitro, Angiogenesis 6 (2003), pp. 105–119.
35.
Zurück zum Zitat A. Sahni, T. Odrljin, and C.W. Francis, Binding of basic fibroblast growth factor to fibrinogen and fibrin, J Biol Chem 273 (1998), pp. 7554–7559. A. Sahni, T. Odrljin, and C.W. Francis, Binding of basic fibroblast growth factor to fibrinogen and fibrin, J Biol Chem 273 (1998), pp. 7554–7559.
36.
Zurück zum Zitat A. Sahni, and C.W. Francis, Stimulation of endothelial cell proliferation by FGF-2 in the presence of fibrinogen requires alphavbeta3, Blood 104 (2004), pp. 3635–3641. A. Sahni, and C.W. Francis, Stimulation of endothelial cell proliferation by FGF-2 in the presence of fibrinogen requires alphavbeta3, Blood 104 (2004), pp. 3635–3641.
37.
Zurück zum Zitat A. Sahni, and C.W. Francis, Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation, Blood 96 (2000), pp. 3772–3778. A. Sahni, and C.W. Francis, Vascular endothelial growth factor binds to fibrinogen and fibrin and stimulates endothelial cell proliferation, Blood 96 (2000), pp. 3772–3778.
38.
Zurück zum Zitat B. Vrhovski, and A.S. Weiss, Biochemistry of tropoelastin, Eur J Biochem 258 (1998), pp. 1–18. B. Vrhovski, and A.S. Weiss, Biochemistry of tropoelastin, Eur J Biochem 258 (1998), pp. 1–18.
39.
Zurück zum Zitat J. Rosenbloom, W.R. Abrams, and R. Mecham, Extracellular matrix 4: the elastic fiber, Faseb J 7 (1993), pp. 1208–1218. J. Rosenbloom, W.R. Abrams, and R. Mecham, Extracellular matrix 4: the elastic fiber, Faseb J 7 (1993), pp. 1208–1218.
40.
Zurück zum Zitat J.E. Wagenseil, and R.P. Mecham, New insights into elastic fiber assembly, Birth Defects Res C Embryo Today 81 (2007), pp. 229–240. J.E. Wagenseil, and R.P. Mecham, New insights into elastic fiber assembly, Birth Defects Res C Embryo Today 81 (2007), pp. 229–240.
41.
Zurück zum Zitat S.M. Mithieux, and A.S. Weiss, Elastin, Adv Protein Chem 70 (2005), pp. 437–461. S.M. Mithieux, and A.S. Weiss, Elastin, Adv Protein Chem 70 (2005), pp. 437–461.
42.
Zurück zum Zitat E. Petersen, F. Wagberg, and K.A. Angquist, Serum concentrations of elastin-derived peptides in patients with specific manifestations of atherosclerotic disease, Eur J Vasc Endovasc Surg 24 (2002), pp. 440–444. E. Petersen, F. Wagberg, and K.A. Angquist, Serum concentrations of elastin-derived peptides in patients with specific manifestations of atherosclerotic disease, Eur J Vasc Endovasc Surg 24 (2002), pp. 440–444.
43.
Zurück zum Zitat F.W. Keeley, C.M. Bellingham, and K.A. Woodhouse, Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin, Philos Trans R Soc Lond B Biol Sci 357 (2002), pp. 185–189. F.W. Keeley, C.M. Bellingham, and K.A. Woodhouse, Elastin as a self-organizing biomaterial: use of recombinantly expressed human elastin polypeptides as a model for investigations of structure and self-assembly of elastin, Philos Trans R Soc Lond B Biol Sci 357 (2002), pp. 185–189.
44.
Zurück zum Zitat W.F. Daamen, J.H. Veerkamp, J.C. van Hest, and T.H. van Kuppevelt, Elastin as a biomaterial for tissue engineering, Biomaterials 28 (2007), pp. 4378–4398. W.F. Daamen, J.H. Veerkamp, J.C. van Hest, and T.H. van Kuppevelt, Elastin as a biomaterial for tissue engineering, Biomaterials 28 (2007), pp. 4378–4398.
45.
Zurück zum Zitat A. Hinek, D.S. Wrenn, R.P. Mecham, and S.H. Barondes, The elastin receptor: a galactoside-binding protein, Science 239 (1988), pp. 1539–1541. A. Hinek, D.S. Wrenn, R.P. Mecham, and S.H. Barondes, The elastin receptor: a galactoside-binding protein, Science 239 (1988), pp. 1539–1541.
46.
Zurück zum Zitat U.R. Rodgers, and A.S. Weiss, Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin, Biochimie 86 (2004), pp. 173–178. U.R. Rodgers, and A.S. Weiss, Integrin alpha v beta 3 binds a unique non-RGD site near the C-terminus of human tropoelastin, Biochimie 86 (2004), pp. 173–178.
47.
Zurück zum Zitat S.M. Partridge, H.F. Davis, and G.S. Adair, The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin, Biochem J 61 (1955), pp. 11–21. S.M. Partridge, H.F. Davis, and G.S. Adair, The chemistry of connective tissues. 2. Soluble proteins derived from partial hydrolysis of elastin, Biochem J 61 (1955), pp. 11–21.
48.
Zurück zum Zitat S.M. Mithieux, J.E. Rasko, and A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers, Biomaterials 25 (2004), pp. 4921–4927. S.M. Mithieux, J.E. Rasko, and A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers, Biomaterials 25 (2004), pp. 4921–4927.
49.
Zurück zum Zitat L. Nivison-Smith, J. Rnjak, and A.S. Weiss, Synthetic human elastin microfibers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications, Acta Biomater 6 (2010), pp. 354–359. L. Nivison-Smith, J. Rnjak, and A.S. Weiss, Synthetic human elastin microfibers: Stable cross-linked tropoelastin and cell interactive constructs for tissue engineering applications, Acta Biomater 6 (2010), pp. 354–359.
50.
Zurück zum Zitat J. Rnjak, Z. Li, P.K. Maitz, S.G. Wise, and A.S. Weiss, Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin, Biomaterials 30 (2009), pp. 6469–6477. J. Rnjak, Z. Li, P.K. Maitz, S.G. Wise, and A.S. Weiss, Primary human dermal fibroblast interactions with open weave three-dimensional scaffolds prepared from synthetic human elastin, Biomaterials 30 (2009), pp. 6469–6477.
51.
Zurück zum Zitat M. Gomes, H. Azevedo, P. Malafaya, S. Silva, J. Oliveira, G. Silva, et al. Natural polymers in tissue engineering applications. In: C. van Blitterswijk, editor. Tissue Engineering. London, UK: Elsevier Inc.; (2008) M. Gomes, H. Azevedo, P. Malafaya, S. Silva, J. Oliveira, G. Silva, et al. Natural polymers in tissue engineering applications. In: C. van Blitterswijk, editor. Tissue Engineering. London, UK: Elsevier Inc.; (2008)
52.
Zurück zum Zitat P. Prehm, Hyaluronate is synthesized at plasma membranes, Biochem J 220 (1984), pp. 597–600. P. Prehm, Hyaluronate is synthesized at plasma membranes, Biochem J 220 (1984), pp. 597–600.
53.
Zurück zum Zitat P.H. Weigel, V.C. Hascall, and M. Tammi, Hyaluronan synthases, J Biol Chem 272 (1997), pp. 13997–14000. P.H. Weigel, V.C. Hascall, and M. Tammi, Hyaluronan synthases, J Biol Chem 272 (1997), pp. 13997–14000.
54.
Zurück zum Zitat T.C. Laurent, U.B. Laurent, and J.R. Fraser, The structure and function of hyaluronan: an overview, Immunol Cell Biol 74 (1996), pp. A1–A7. T.C. Laurent, U.B. Laurent, and J.R. Fraser, The structure and function of hyaluronan: an overview, Immunol Cell Biol 74 (1996), pp. A1–A7.
55.
Zurück zum Zitat J. Baier Leach, and C.E. Schmidt. Hyaluronan. In: G.E. Wnek, G.L. Bowlin, editors. Encyclopedia of Biomaterials and Biomedical Engineering. New York, NY: Marcel Dekker, Inc.; (2004), p. 779–789. J. Baier Leach, and C.E. Schmidt. Hyaluronan. In: G.E. Wnek, G.L. Bowlin, editors. Encyclopedia of Biomaterials and Biomedical Engineering. New York, NY: Marcel Dekker, Inc.; (2004), p. 779–789.
56.
Zurück zum Zitat C.B. Knudson, and W. Knudson, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J 7 (1993), pp. 1233–1241. C.B. Knudson, and W. Knudson, Hyaluronan-binding proteins in development, tissue homeostasis, and disease, FASEB J 7 (1993), pp. 1233–1241.
57.
Zurück zum Zitat E.A. Turley, P.W. Noble, and L.Y. Bourguignon, Signaling properties of hyaluronan receptors, J Biol Chem 277 (2002), pp. 4589–4592. E.A. Turley, P.W. Noble, and L.Y. Bourguignon, Signaling properties of hyaluronan receptors, J Biol Chem 277 (2002), pp. 4589–4592.
58.
Zurück zum Zitat D.C. West, and S. Kumar, The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity, Exp Cell Res 183 (1989), pp. 179–196. D.C. West, and S. Kumar, The effect of hyaluronate and its oligosaccharides on endothelial cell proliferation and monolayer integrity, Exp Cell Res 183 (1989), pp. 179–196.
59.
Zurück zum Zitat K.S. Masters, D.N. Shah, L.A. Leinwand, and K.S. Anseth, Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells, Biomaterials 26 (2005), pp. 2517–2525. K.S. Masters, D.N. Shah, L.A. Leinwand, and K.S. Anseth, Crosslinked hyaluronan scaffolds as a biologically active carrier for valvular interstitial cells, Biomaterials 26 (2005), pp. 2517–2525.
60.
Zurück zum Zitat T.C. Laurent, and J.R. Fraser, Hyaluronan, FASEB J 6 (1992), pp. 2397–2404. T.C. Laurent, and J.R. Fraser, Hyaluronan, FASEB J 6 (1992), pp. 2397–2404.
61.
Zurück zum Zitat J.R. Fraser, T.C. Laurent, and U.B. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J Intern Med 242 (1997), pp. 27–33. J.R. Fraser, T.C. Laurent, and U.B. Laurent, Hyaluronan: its nature, distribution, functions and turnover, J Intern Med 242 (1997), pp. 27–33.
62.
Zurück zum Zitat D.C. West, and S. Kumar, Hyaluronan and angiogenesis, Ciba Found Symp 143 (1989), pp. 187–201; discussion 201–207, 281–285. D.C. West, and S. Kumar, Hyaluronan and angiogenesis, Ciba Found Symp 143 (1989), pp. 187–201; discussion 201–207, 281–285.
63.
Zurück zum Zitat D.D. Allison, and K.J. Grande-Allen, Review. Hyaluronan: a powerful tissue engineering tool, Tissue Eng 12 (2006), pp. 2131–2140. D.D. Allison, and K.J. Grande-Allen, Review. Hyaluronan: a powerful tissue engineering tool, Tissue Eng 12 (2006), pp. 2131–2140.
64.
Zurück zum Zitat W.Y. Chen, and G. Abatangelo, Functions of hyaluronan in wound repair, Wound Repair Regen 7 (1999), pp. 79–89. W.Y. Chen, and G. Abatangelo, Functions of hyaluronan in wound repair, Wound Repair Regen 7 (1999), pp. 79–89.
65.
Zurück zum Zitat J.A. Kluge, O. Rabotyagova, G.G. Leisk, and D.L. Kaplan, Spider silks and their applications, Trends Biotechnol 26 (2008), pp. 244–251. J.A. Kluge, O. Rabotyagova, G.G. Leisk, and D.L. Kaplan, Spider silks and their applications, Trends Biotechnol 26 (2008), pp. 244–251.
66.
Zurück zum Zitat T.D. Sutherland, S. Weisman, H.E. Trueman, A. Sriskantha, J.W. Trueman, and V.S. Haritos, Conservation of essential design features in coiled coil silks, Mol Biol Evol 24 (2007), pp. 2424–2432. T.D. Sutherland, S. Weisman, H.E. Trueman, A. Sriskantha, J.W. Trueman, and V.S. Haritos, Conservation of essential design features in coiled coil silks, Mol Biol Evol 24 (2007), pp. 2424–2432.
67.
Zurück zum Zitat E. Carrington, Along the silk road, spiders make way for mussels, Trends Biotechnol 26 (2008), pp. 55–57. E. Carrington, Along the silk road, spiders make way for mussels, Trends Biotechnol 26 (2008), pp. 55–57.
68.
Zurück zum Zitat L. Romer, and T. Scheibel, The elaborate structure of spider silk: structure and function of a natural high performance fiber, Prion 2 (2008), pp. 154–161. L. Romer, and T. Scheibel, The elaborate structure of spider silk: structure and function of a natural high performance fiber, Prion 2 (2008), pp. 154–161.
69.
Zurück zum Zitat G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, et al., Silk-based biomaterials, Biomaterials 24 (2003), pp. 401–416. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, et al., Silk-based biomaterials, Biomaterials 24 (2003), pp. 401–416.
70.
Zurück zum Zitat Y. Cao, and B. Wang, Biodegradation of silk biomaterials, Int J Mol Sci 10 (2009), pp. 1514–1524. Y. Cao, and B. Wang, Biodegradation of silk biomaterials, Int J Mol Sci 10 (2009), pp. 1514–1524.
71.
Zurück zum Zitat Y. Wang, H.J. Kim, G. Vunjak-Novakovic, and D.L. Kaplan, Stem cell-based tissue engineering with silk biomaterials, Biomaterials 27 (2006), pp. 6064–6082. Y. Wang, H.J. Kim, G. Vunjak-Novakovic, and D.L. Kaplan, Stem cell-based tissue engineering with silk biomaterials, Biomaterials 27 (2006), pp. 6064–6082.
72.
Zurück zum Zitat R.V. Lewis, Spider silk: ancient ideas for new biomaterials, Chem Rev 106 (2006), pp. 3762–3774. R.V. Lewis, Spider silk: ancient ideas for new biomaterials, Chem Rev 106 (2006), pp. 3762–3774.
73.
Zurück zum Zitat K.I. Draget, and C. Taylor, Chemical, physical and biological properties of alginates and their biomedical implications, Food Hydrocoll 25 (2011), pp. 251–256. K.I. Draget, and C. Taylor, Chemical, physical and biological properties of alginates and their biomedical implications, Food Hydrocoll 25 (2011), pp. 251–256.
74.
Zurück zum Zitat O. Smidsrød, and K.I. Draget, Chemistry and physical properties of alginates, Carbohydr Eur 14 (1996), pp. 6–13. O. Smidsrød, and K.I. Draget, Chemistry and physical properties of alginates, Carbohydr Eur 14 (1996), pp. 6–13.
75.
Zurück zum Zitat P.H. Calumpong, P.A. Maypa, and M. Magbanua, Population and alginate yield and quality of four Sargassum species in Negros Island, central Philippines, Hydrobiologia 398 (1999), pp. 211–215. P.H. Calumpong, P.A. Maypa, and M. Magbanua, Population and alginate yield and quality of four Sargassum species in Negros Island, central Philippines, Hydrobiologia 398 (1999), pp. 211–215.
76.
Zurück zum Zitat A.D. Augst, H.J. Kong, and D.J. Mooney, Alginate hydrogels as biomaterials, Macromol Biosci 6 (2006), pp. 623–633. A.D. Augst, H.J. Kong, and D.J. Mooney, Alginate hydrogels as biomaterials, Macromol Biosci 6 (2006), pp. 623–633.
77.
Zurück zum Zitat O. Smidsrod, and G. Skjak-Braek, Alginate as immobilization matrix for cells, Trends Biotechnol 8 (1990), pp. 71–78. O. Smidsrod, and G. Skjak-Braek, Alginate as immobilization matrix for cells, Trends Biotechnol 8 (1990), pp. 71–78.
78.
Zurück zum Zitat A. Martinsen, G. Skjak-Braek, and O. Smidsrod, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol Bioeng 33 (1989), pp. 79–89. A. Martinsen, G. Skjak-Braek, and O. Smidsrod, Alginate as immobilization material: I. Correlation between chemical and physical properties of alginate gel beads, Biotechnol Bioeng 33 (1989), pp. 79–89.
79.
Zurück zum Zitat T.Y. Wong, L.A. Preston, and N.L. Schiller, ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications, Annu Rev Microbiol 54 (2000), pp. 289–340. T.Y. Wong, L.A. Preston, and N.L. Schiller, ALGINATE LYASE: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications, Annu Rev Microbiol 54 (2000), pp. 289–340.
80.
Zurück zum Zitat K.H. Bouhadir, K.Y. Lee, E. Alsberg, K.L. Damm, K.W. Anderson, and D.J. Mooney, Degradation of partially oxidized alginate and its potential application for tissue engineering, Biotechnol Prog 17 (2001), pp. 945–950. K.H. Bouhadir, K.Y. Lee, E. Alsberg, K.L. Damm, K.W. Anderson, and D.J. Mooney, Degradation of partially oxidized alginate and its potential application for tissue engineering, Biotechnol Prog 17 (2001), pp. 945–950.
81.
Zurück zum Zitat I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim, et al., Chitosan and its derivatives for tissue engineering applications, Biotechnol Adv 26 (2008), pp. 1–21. I.Y. Kim, S.J. Seo, H.S. Moon, M.K. Yoo, I.Y. Park, B.C. Kim, et al., Chitosan and its derivatives for tissue engineering applications, Biotechnol Adv 26 (2008), pp. 1–21.
82.
Zurück zum Zitat D.W. Hutmacher, J.C. Goh, and S.H. Teoh, An introduction to biodegradable materials for tissue engineering applications, Ann Acad Med Singapore 30 (2001), pp. 183–191. D.W. Hutmacher, J.C. Goh, and S.H. Teoh, An introduction to biodegradable materials for tissue engineering applications, Ann Acad Med Singapore 30 (2001), pp. 183–191.
83.
Zurück zum Zitat T. Jiang, S.G. Kumbar, L.S. Nair, and C.T. Laurencin, Biologically active chitosan systems for tissue engineering and regenerative medicine, Curr Top Med Chem 8 (2008), pp. 354–364. T. Jiang, S.G. Kumbar, L.S. Nair, and C.T. Laurencin, Biologically active chitosan systems for tissue engineering and regenerative medicine, Curr Top Med Chem 8 (2008), pp. 354–364.
84.
Zurück zum Zitat Y.C. Ho, F.L. Mi, H.W. Sung, and P.L. Kuo, Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor, Int J Pharm 376 (2009), pp. 69–75. Y.C. Ho, F.L. Mi, H.W. Sung, and P.L. Kuo, Heparin-functionalized chitosan-alginate scaffolds for controlled release of growth factor, Int J Pharm 376 (2009), pp. 69–75.
85.
Zurück zum Zitat G.G. d’Ayala, M. Malinconico, and P. Laurienzo, Marine derived polysaccharides for biomedical applications: chemical modification approaches, Molecules 13 (2008), pp. 2069–2106. G.G. d’Ayala, M. Malinconico, and P. Laurienzo, Marine derived polysaccharides for biomedical applications: chemical modification approaches, Molecules 13 (2008), pp. 2069–2106.
86.
Zurück zum Zitat M. Ganan, A.V. Carrascosa, and A.J. Martinez-Rodriguez, Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action, J Food Prot 72 (2009), pp. 1735–1738. M. Ganan, A.V. Carrascosa, and A.J. Martinez-Rodriguez, Antimicrobial activity of chitosan against Campylobacter spp. and other microorganisms and its mechanism of action, J Food Prot 72 (2009), pp. 1735–1738.
87.
Zurück zum Zitat A.K. Singla, and M. Chawla, Chitosan: some pharmaceutical and biological aspects – an update, J Pharm Pharmacol 53 (2001), pp. 1047–1067. A.K. Singla, and M. Chawla, Chitosan: some pharmaceutical and biological aspects – an update, J Pharm Pharmacol 53 (2001), pp. 1047–1067.
88.
Zurück zum Zitat D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, et al., Recombinant collagen and gelatin for drug delivery, Adv Drug Deliv Rev 55 (2003), pp. 1547–1567. D. Olsen, C. Yang, M. Bodo, R. Chang, S. Leigh, J. Baez, et al., Recombinant collagen and gelatin for drug delivery, Adv Drug Deliv Rev 55 (2003), pp. 1547–1567.
89.
Zurück zum Zitat C. Yang, P.J. Hillas, J.A. Baez, M. Nokelainen, J. Balan, J. Tang, et al., The application of recombinant human collagen in tissue engineering, BioDrugs 18 (2004), pp. 103–119. C. Yang, P.J. Hillas, J.A. Baez, M. Nokelainen, J. Balan, J. Tang, et al., The application of recombinant human collagen in tissue engineering, BioDrugs 18 (2004), pp. 103–119.
90.
Zurück zum Zitat A. Khademhosseini, and R. Langer, Microengineered hydrogels for tissue engineering, Biomaterials 28 (2007), pp. 5087–5092. A. Khademhosseini, and R. Langer, Microengineered hydrogels for tissue engineering, Biomaterials 28 (2007), pp. 5087–5092.
91.
Zurück zum Zitat H. Schoof, J. Apel, I. Heschel, and G. Rau, Control of pore structure and size in freeze-dried collagen sponges, J Biomed Mater Res 58 (2001), pp. 352–357. H. Schoof, J. Apel, I. Heschel, and G. Rau, Control of pore structure and size in freeze-dried collagen sponges, J Biomed Mater Res 58 (2001), pp. 352–357.
92.
Zurück zum Zitat K. Weadock, R.M. Olson, and F.H. Silver, Evaluation of collagen crosslinking techniques, Biomater Med Devices Artif Organs 11 (1983), pp. 293–318. K. Weadock, R.M. Olson, and F.H. Silver, Evaluation of collagen crosslinking techniques, Biomater Med Devices Artif Organs 11 (1983), pp. 293–318.
93.
Zurück zum Zitat L. Gonzalez, and T. Wess, Use of attenuated total reflection-Fourier transform infrared spectroscopy to measure collagen degradation in historical parchments, Appl Spectrosc 62 (2008), pp. 1108–1114. L. Gonzalez, and T. Wess, Use of attenuated total reflection-Fourier transform infrared spectroscopy to measure collagen degradation in historical parchments, Appl Spectrosc 62 (2008), pp. 1108–1114.
94.
Zurück zum Zitat U. Hersel, C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials 24 (2003), pp. 4385–4415. U. Hersel, C. Dahmen, and H. Kessler, RGD modified polymers: biomaterials for stimulated cell adhesion and beyond, Biomaterials 24 (2003), pp. 4385–4415.
95.
Zurück zum Zitat E.V. Dare, M. Griffith, P. Poitras, J.A. Kaupp, S.D. Waldman, D.J. Carlsson, et al., Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration, Cells Tissues Organs 190 (2009), pp. 313–325. E.V. Dare, M. Griffith, P. Poitras, J.A. Kaupp, S.D. Waldman, D.J. Carlsson, et al., Genipin cross-linked fibrin hydrogels for in vitro human articular cartilage tissue-engineered regeneration, Cells Tissues Organs 190 (2009), pp. 313–325.
96.
Zurück zum Zitat C.M. Elvin, S.J. Danon, A.G. Brownlee, J.F. White, M. Hickey, N.E. Liyou, et al., Evaluation of photo-crosslinked fibrinogen as a rapid and strong tissue adhesive, J Biomed Mater Res A 93 (2010), pp. 687–695 C.M. Elvin, S.J. Danon, A.G. Brownlee, J.F. White, M. Hickey, N.E. Liyou, et al., Evaluation of photo-crosslinked fibrinogen as a rapid and strong tissue adhesive, J Biomed Mater Res A 93 (2010), pp. 687–695
97.
Zurück zum Zitat E.D. Grassl, T.R. Oegema, and R.T. Tranquillo, Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent, J Biomed Mater Res 60 (2002), pp. 607–612. E.D. Grassl, T.R. Oegema, and R.T. Tranquillo, Fibrin as an alternative biopolymer to type-I collagen for the fabrication of a media equivalent, J Biomed Mater Res 60 (2002), pp. 607–612.
98.
Zurück zum Zitat E. Cholewinski, M. Dietrich, T.C. Flanagan, T. Schmitz-Rode, and S. Jockenhoevel, Tranexamic acid – an alternative to aprotinin in fibrin-based cardiovascular tissue engineering, Tissue Eng Part A 15 (2009), pp. 3645–3653. E. Cholewinski, M. Dietrich, T.C. Flanagan, T. Schmitz-Rode, and S. Jockenhoevel, Tranexamic acid – an alternative to aprotinin in fibrin-based cardiovascular tissue engineering, Tissue Eng Part A 15 (2009), pp. 3645–3653.
99.
Zurück zum Zitat C.B. Herbert, C. Nagaswami, G.D. Bittner, J.A. Hubbell, and J.W. Weisel, Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels, J Biomed Mater Res 40 (1998), pp. 551–559. C.B. Herbert, C. Nagaswami, G.D. Bittner, J.A. Hubbell, and J.W. Weisel, Effects of fibrin micromorphology on neurite growth from dorsal root ganglia cultured in three-dimensional fibrin gels, J Biomed Mater Res 40 (1998), pp. 551–559.
100.
Zurück zum Zitat L. Yao, D.D. Swartz, S.F. Gugino, J.A. Russell, and S.T. Andreadis, Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity, Tissue Eng 11 (2005), pp. 991–1003. L. Yao, D.D. Swartz, S.F. Gugino, J.A. Russell, and S.T. Andreadis, Fibrin-based tissue-engineered blood vessels: differential effects of biomaterial and culture parameters on mechanical strength and vascular reactivity, Tissue Eng 11 (2005), pp. 991–1003.
101.
Zurück zum Zitat S.L. Rowe, S. Lee, and J.P. Stegemann, Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels, Acta Biomater 3 (2007), pp. 59–67. S.L. Rowe, S. Lee, and J.P. Stegemann, Influence of thrombin concentration on the mechanical and morphological properties of cell-seeded fibrin hydrogels, Acta Biomater 3 (2007), pp. 59–67.
102.
Zurück zum Zitat S.L. Rowe, and J.P. Stegemann, Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios, Biomacromolecules 7 (2006), pp. 2942–2948. S.L. Rowe, and J.P. Stegemann, Interpenetrating collagen-fibrin composite matrices with varying protein contents and ratios, Biomacromolecules 7 (2006), pp. 2942–2948.
103.
Zurück zum Zitat T.A. Ahmed, E.V. Dare, and M. Hincke, Fibrin: a versatile scaffold for tissue engineering applications, Tissue Eng Part B Rev 14 (2008), pp. 199–215. T.A. Ahmed, E.V. Dare, and M. Hincke, Fibrin: a versatile scaffold for tissue engineering applications, Tissue Eng Part B Rev 14 (2008), pp. 199–215.
104.
Zurück zum Zitat B.C. Isenberg, C. Williams, and R.T. Tranquillo, Small-diameter artificial arteries engineered in vitro, Circ Res 98 (2006), pp. 25–35. B.C. Isenberg, C. Williams, and R.T. Tranquillo, Small-diameter artificial arteries engineered in vitro, Circ Res 98 (2006), pp. 25–35.
105.
Zurück zum Zitat F.M. Shaikh, A. Callanan, E.G. Kavanagh, P.E. Burke, P.A. Grace, and T.M. McGloughlin, Fibrin: a natural biodegradable scaffold in vascular tissue engineering, Cells Tissues Organs 188 (2008), pp. 333–346. F.M. Shaikh, A. Callanan, E.G. Kavanagh, P.E. Burke, P.A. Grace, and T.M. McGloughlin, Fibrin: a natural biodegradable scaffold in vascular tissue engineering, Cells Tissues Organs 188 (2008), pp. 333–346.
106.
Zurück zum Zitat L.J. Currie, J.R. Sharpe, and R. Martin, The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review, Plast Reconstr Surg 108 (2001), pp. 1713–1726. L.J. Currie, J.R. Sharpe, and R. Martin, The use of fibrin glue in skin grafts and tissue-engineered skin replacements: a review, Plast Reconstr Surg 108 (2001), pp. 1713–1726.
107.
Zurück zum Zitat A.C. MacIntosh, V.R. Kearns, A. Crawford, and P.V. Hatton, Skeletal tissue engineering using silk biomaterials, J Tissue Eng Regen Med 2 (2008), pp. 71–80. A.C. MacIntosh, V.R. Kearns, A. Crawford, and P.V. Hatton, Skeletal tissue engineering using silk biomaterials, J Tissue Eng Regen Med 2 (2008), pp. 71–80.
108.
Zurück zum Zitat S. Sofia, M.B. McCarthy, G. Gronowicz, and D.L. Kaplan, Functionalized silk-based biomaterials for bone formation, J Biomed Mater Res 54 (2001), pp. 139–148. S. Sofia, M.B. McCarthy, G. Gronowicz, and D.L. Kaplan, Functionalized silk-based biomaterials for bone formation, J Biomed Mater Res 54 (2001), pp. 139–148.
109.
Zurück zum Zitat E. Bini, C.W. Foo, J. Huang, V. Karageorgiou, B. Kitchel, and D.L. Kaplan, RGD-functionalized bioengineered spider dragline silk biomaterial, Biomacromolecules 7 (2006), pp. 3139–3145. E. Bini, C.W. Foo, J. Huang, V. Karageorgiou, B. Kitchel, and D.L. Kaplan, RGD-functionalized bioengineered spider dragline silk biomaterial, Biomacromolecules 7 (2006), pp. 3139–3145.
110.
Zurück zum Zitat C. Kirker-Head, V. Karageorgiou, S. Hofmann, R. Fajardo, O. Betz, H.P. Merkle, et al., BMP-silk composite matrices heal critically sized femoral defects, Bone 41 (2007), pp. 247–255. C. Kirker-Head, V. Karageorgiou, S. Hofmann, R. Fajardo, O. Betz, H.P. Merkle, et al., BMP-silk composite matrices heal critically sized femoral defects, Bone 41 (2007), pp. 247–255.
111.
Zurück zum Zitat A. Sugihara, K. Sugiura, H. Morita, T. Ninagawa, K. Tubouchi, R. Tobe, et al., Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds, Proc Soc Exp Biol Med 225 (2000), pp. 58–64. A. Sugihara, K. Sugiura, H. Morita, T. Ninagawa, K. Tubouchi, R. Tobe, et al., Promotive effects of a silk film on epidermal recovery from full-thickness skin wounds, Proc Soc Exp Biol Med 225 (2000), pp. 58–64.
112.
Zurück zum Zitat H. Fan, H. Liu, S.L. Toh, and J.C. Goh, Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model, Biomaterials 30 (2009), pp. 4967–4977. H. Fan, H. Liu, S.L. Toh, and J.C. Goh, Anterior cruciate ligament regeneration using mesenchymal stem cells and silk scaffold in large animal model, Biomaterials 30 (2009), pp. 4967–4977.
113.
Zurück zum Zitat H. Liu, H. Fan, S.L. Toh, and J.C. Goh, A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds, Biomaterials 29 (2008), pp. 1443–1453. H. Liu, H. Fan, S.L. Toh, and J.C. Goh, A comparison of rabbit mesenchymal stem cells and anterior cruciate ligament fibroblasts responses on combined silk scaffolds, Biomaterials 29 (2008), pp. 1443–1453.
114.
Zurück zum Zitat F.A. Petrigliano, D.R. McAllister, and B.M. Wu, Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies, Arthroscopy 22 (2006), pp. 441–451. F.A. Petrigliano, D.R. McAllister, and B.M. Wu, Tissue engineering for anterior cruciate ligament reconstruction: a review of current strategies, Arthroscopy 22 (2006), pp. 441–451.
115.
Zurück zum Zitat Y. Wang, D.J. Blasioli, H.J. Kim, H.S. Kim, and D.L. Kaplan, Cartilage tissue engineering with silk scaffolds and human articular chondrocytes, Biomaterials 27 (2006), pp. 4434–4442. Y. Wang, D.J. Blasioli, H.J. Kim, H.S. Kim, and D.L. Kaplan, Cartilage tissue engineering with silk scaffolds and human articular chondrocytes, Biomaterials 27 (2006), pp. 4434–4442.
116.
Zurück zum Zitat M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, M. Tschon, et al., The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel, Biomaterials 26 (2005), pp. 3527–3536. M. Fini, A. Motta, P. Torricelli, G. Giavaresi, N. Nicoli Aldini, M. Tschon, et al., The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel, Biomaterials 26 (2005), pp. 3527–3536.
117.
Zurück zum Zitat Y. Tamada, New process to form a silk fibroin porous 3-D structure, Biomacromolecules 6 (2005), pp. 3100–3106. Y. Tamada, New process to form a silk fibroin porous 3-D structure, Biomacromolecules 6 (2005), pp. 3100–3106.
118.
Zurück zum Zitat B.S. Brooke, A. Bayes-Genis, and D.Y. Li, New insights into elastin and vascular disease, Trends Cardiovasc Med 13 (2003), pp. 176–181. B.S. Brooke, A. Bayes-Genis, and D.Y. Li, New insights into elastin and vascular disease, Trends Cardiovasc Med 13 (2003), pp. 176–181.
119.
Zurück zum Zitat W. Shi, S. Bellusci, and D. Warburton, Lung development and adult lung diseases, Chest 132 (2007), pp. 651–656. W. Shi, S. Bellusci, and D. Warburton, Lung development and adult lung diseases, Chest 132 (2007), pp. 651–656.
120.
Zurück zum Zitat J.B. Leach, J.B. Wolinsky, P.J. Stone, and J.Y. Wong, Crosslinked alpha-elastin biomaterials: towards a processable elastin mimetic scaffold, Acta Biomater 1 (2005), pp. 155–164. J.B. Leach, J.B. Wolinsky, P.J. Stone, and J.Y. Wong, Crosslinked alpha-elastin biomaterials: towards a processable elastin mimetic scaffold, Acta Biomater 1 (2005), pp. 155–164.
121.
Zurück zum Zitat W.F. Daamen, S.T. Nillesen, T. Hafmans, J.H. Veerkamp, M.J. van Luyn, and T.H. van Kuppevelt, Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification, Biomaterials 26 (2005), pp. 81–92. W.F. Daamen, S.T. Nillesen, T. Hafmans, J.H. Veerkamp, M.J. van Luyn, and T.H. van Kuppevelt, Tissue response of defined collagen-elastin scaffolds in young and adult rats with special attention to calcification, Biomaterials 26 (2005), pp. 81–92.
122.
Zurück zum Zitat K. Trabbic-Carlson, L.A. Setton, and A. Chilkoti, Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides, Biomacromolecules 4 (2003), pp. 572–580. K. Trabbic-Carlson, L.A. Setton, and A. Chilkoti, Swelling and mechanical behaviors of chemically cross-linked hydrogels of elastin-like polypeptides, Biomacromolecules 4 (2003), pp. 572–580.
123.
Zurück zum Zitat F.J. Arias, V. Reboto, S. Martin, I. Lopez, and J.C. Rodriguez-Cabello, Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications, Biotechnol Lett 28 (2006), pp. 687–695. F.J. Arias, V. Reboto, S. Martin, I. Lopez, and J.C. Rodriguez-Cabello, Tailored recombinant elastin-like polymers for advanced biomedical and nano(bio)technological applications, Biotechnol Lett 28 (2006), pp. 687–695.
124.
Zurück zum Zitat Y. Wu, J.A. MacKay, J.R. McDaniel, A. Chilkoti, and R.L. Clark, Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying, Biomacromolecules 10 (2009), pp. 19–24. Y. Wu, J.A. MacKay, J.R. McDaniel, A. Chilkoti, and R.L. Clark, Fabrication of elastin-like polypeptide nanoparticles for drug delivery by electrospraying, Biomacromolecules 10 (2009), pp. 19–24.
125.
Zurück zum Zitat H. Betre, L.A. Setton, D.E. Meyer, and A. Chilkoti, Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair, Biomacromolecules 3 (2002), pp. 910–916. H. Betre, L.A. Setton, D.E. Meyer, and A. Chilkoti, Characterization of a genetically engineered elastin-like polypeptide for cartilaginous tissue repair, Biomacromolecules 3 (2002), pp. 910–916.
126.
Zurück zum Zitat H. Betre, S.R. Ong, F. Guilak, A. Chilkoti, B. Fermor, and L.A. Setton, Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide, Biomaterials 27 (2006), pp. 91–99. H. Betre, S.R. Ong, F. Guilak, A. Chilkoti, B. Fermor, and L.A. Setton, Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide, Biomaterials 27 (2006), pp. 91–99.
127.
Zurück zum Zitat S. Ito, S. Ishimaru, and S.E. Wilson, Effect of coacervated alpha-elastin on proliferation of vascular smooth muscle and endothelial cells, Angiology 49 (1998), pp. 289–297. S. Ito, S. Ishimaru, and S.E. Wilson, Effect of coacervated alpha-elastin on proliferation of vascular smooth muscle and endothelial cells, Angiology 49 (1998), pp. 289–297.
128.
Zurück zum Zitat N. Annabi, S.M. Mithieux, A.S. Weiss, and F. Dehghani, The fabrication of elastin-based hydrogels using high pressure CO(2), Biomaterials 30 (2009), pp. 1–7. N. Annabi, S.M. Mithieux, A.S. Weiss, and F. Dehghani, The fabrication of elastin-based hydrogels using high pressure CO(2), Biomaterials 30 (2009), pp. 1–7.
129.
Zurück zum Zitat M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, and P.I. Lelkes, Electrospun protein fibers as matrices for tissue engineering, Biomaterials 26 (2005), pp. 5999–6008. M. Li, M.J. Mondrinos, M.R. Gandhi, F.K. Ko, A.S. Weiss, and P.I. Lelkes, Electrospun protein fibers as matrices for tissue engineering, Biomaterials 26 (2005), pp. 5999–6008.
130.
Zurück zum Zitat S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, and G.L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Adv Drug Deliv Rev 61 (2009), pp. 1007–1019. S.A. Sell, M.J. McClure, K. Garg, P.S. Wolfe, and G.L. Bowlin, Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering, Adv Drug Deliv Rev 61 (2009), pp. 1007–1019.
131.
Zurück zum Zitat L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs, A.A. Poot, P.J. Dijkstra, I. Vermes, et al., Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials 27 (2006), pp. 724–734. L. Buttafoco, N.G. Kolkman, P. Engbers-Buijtenhuijs, A.A. Poot, P.J. Dijkstra, I. Vermes, et al., Electrospinning of collagen and elastin for tissue engineering applications, Biomaterials 27 (2006), pp. 724–734.
132.
Zurück zum Zitat E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, and G.L. Bowlin, Electrospinning collagen and elastin: preliminary vascular tissue engineering, Front Biosci 9 (2004), pp. 1422–1432. E.D. Boland, J.A. Matthews, K.J. Pawlowski, D.G. Simpson, G.E. Wnek, and G.L. Bowlin, Electrospinning collagen and elastin: preliminary vascular tissue engineering, Front Biosci 9 (2004), pp. 1422–1432.
133.
Zurück zum Zitat G.D. Prestwich, and J.W. Kuo, Chemically-modified HA for therapy and regenerative medicine, Curr Pharm Biotechnol 9 (2008), pp. 242–245. G.D. Prestwich, and J.W. Kuo, Chemically-modified HA for therapy and regenerative medicine, Curr Pharm Biotechnol 9 (2008), pp. 242–245.
134.
Zurück zum Zitat K.L. Beasley, M.A. Weiss, and R.A. Weiss, Hyaluronic acid fillers: a comprehensive review, Facial Plast Surg 25 (2009), pp. 86–94. K.L. Beasley, M.A. Weiss, and R.A. Weiss, Hyaluronic acid fillers: a comprehensive review, Facial Plast Surg 25 (2009), pp. 86–94.
135.
Zurück zum Zitat N. Bellamy, J. Campbell, V. Robinson, T. Gee, R. Bourne, and G. Wells, Viscosupplementation for the treatment of osteoarthritis of the knee, Cochrane Database Syst Rev (2006), pp. CD005321. N. Bellamy, J. Campbell, V. Robinson, T. Gee, R. Bourne, and G. Wells, Viscosupplementation for the treatment of osteoarthritis of the knee, Cochrane Database Syst Rev (2006), pp. CD005321.
136.
Zurück zum Zitat V. Colletta, D. Dioguardi, A. Di Lonardo, G. Maggio, and F. Torasso, A trial to assess the efficacy and tolerability of Hyalofill-F in non-healing venous leg ulcers, J Wound Care 12 (2003), pp. 357–360. V. Colletta, D. Dioguardi, A. Di Lonardo, G. Maggio, and F. Torasso, A trial to assess the efficacy and tolerability of Hyalofill-F in non-healing venous leg ulcers, J Wound Care 12 (2003), pp. 357–360.
137.
Zurück zum Zitat G.D. Prestwich, D.M. Marecak, J.F. Marecek, K.P. Vercruysse, and M.R. Ziebell, Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives, J Control Release 53 (1998), pp. 93–103. G.D. Prestwich, D.M. Marecak, J.F. Marecek, K.P. Vercruysse, and M.R. Ziebell, Controlled chemical modification of hyaluronic acid: synthesis, applications, and biodegradation of hydrazide derivatives, J Control Release 53 (1998), pp. 93–103.
138.
Zurück zum Zitat D. Campoccia, P. Doherty, M. Radice, P. Brun, G. Abatangelo, and D.F. Williams, Semisynthetic resorbable materials from hyaluronan esterification, Biomaterials 19 (1998), pp. 2101–2127. D. Campoccia, P. Doherty, M. Radice, P. Brun, G. Abatangelo, and D.F. Williams, Semisynthetic resorbable materials from hyaluronan esterification, Biomaterials 19 (1998), pp. 2101–2127.
139.
Zurück zum Zitat J.W. Kuo, D.A. Swann, and G.D. Prestwich, Chemical modification of hyaluronic acid by carbodiimides, Bioconjug Chem 2 (1991), pp. 232–241. J.W. Kuo, D.A. Swann, and G.D. Prestwich, Chemical modification of hyaluronic acid by carbodiimides, Bioconjug Chem 2 (1991), pp. 232–241.
140.
Zurück zum Zitat A. Magnani, A. Albanese, S. Lamponi, and R. Barbucci, Blood-interaction performance of differently sulphated hyaluronic acids, Thromb Res 81 (1996), pp. 383–395. A. Magnani, A. Albanese, S. Lamponi, and R. Barbucci, Blood-interaction performance of differently sulphated hyaluronic acids, Thromb Res 81 (1996), pp. 383–395.
141.
Zurück zum Zitat X. Jia, J. Burdick, J. Kobler, R. Clifton, J. Rosowski, S. Zeitels, et al., Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration, Macromolecules 37 (2004), pp. 3239–3248. X. Jia, J. Burdick, J. Kobler, R. Clifton, J. Rosowski, S. Zeitels, et al., Synthesis and characterization of in situ cross-linkable hyaluronic acid-based hydrogels with potential application for vocal fold regeneration, Macromolecules 37 (2004), pp. 3239–3248.
142.
Zurück zum Zitat K. Tomihata, and Y. Ikada, Crosslinking of hyaluronic acid with glutaraldehyde, J Polym Sci A Polym Chem 35 (1997), pp. 3553–3559. K. Tomihata, and Y. Ikada, Crosslinking of hyaluronic acid with glutaraldehyde, J Polym Sci A Polym Chem 35 (1997), pp. 3553–3559.
143.
Zurück zum Zitat T. Miyazaki, C. Yomota, and S. Okada, Development and release characterization of hyaluronan-doxycycline gels based on metal coordination, J Control Release 76 (2001), pp. 337–347. T. Miyazaki, C. Yomota, and S. Okada, Development and release characterization of hyaluronan-doxycycline gels based on metal coordination, J Control Release 76 (2001), pp. 337–347.
144.
Zurück zum Zitat K. Tomihata, and Y. Ikada, Crosslinking of hyaluronic acid with water-soluble carbodiimide, J Biomed Mater Res 37 (1997), pp. 243–251. K. Tomihata, and Y. Ikada, Crosslinking of hyaluronic acid with water-soluble carbodiimide, J Biomed Mater Res 37 (1997), pp. 243–251.
145.
Zurück zum Zitat K.A. Smeds, A. Pfister-Serres, D. Miki, K. Dastgheib, M. Inoue, D.L. Hatchell, et al., Photocrosslinkable polysaccharides for in situ hydrogel formation, J Biomed Mater Res 54 (2001), pp. 115–121. K.A. Smeds, A. Pfister-Serres, D. Miki, K. Dastgheib, M. Inoue, D.L. Hatchell, et al., Photocrosslinkable polysaccharides for in situ hydrogel formation, J Biomed Mater Res 54 (2001), pp. 115–121.
146.
Zurück zum Zitat J. Baier Leach, K.A. Bivens, C.W. Patrick, Jr., and C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds, Biotechnol Bioeng 82 (2003), pp. 578–589. J. Baier Leach, K.A. Bivens, C.W. Patrick, Jr., and C.E. Schmidt, Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds, Biotechnol Bioeng 82 (2003), pp. 578–589.
147.
Zurück zum Zitat S. Sahoo, C. Chung, S. Khetan, and J.A. Burdick, Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures, Biomacromolecules 9 (2008), pp. 1088–1092. S. Sahoo, C. Chung, S. Khetan, and J.A. Burdick, Hydrolytically degradable hyaluronic acid hydrogels with controlled temporal structures, Biomacromolecules 9 (2008), pp. 1088–1092.
148.
Zurück zum Zitat K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, and G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing, Biomaterials 23 (2002), pp. 3661–3671. K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, and G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing, Biomaterials 23 (2002), pp. 3661–3671.
149.
Zurück zum Zitat B. Grigolo, G. Lisignoli, G. Desando, C. Cavallo, E. Marconi, M. Tschon, et al., Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit, Tissue Eng Part C Methods 15 (2009), pp. 647–658. B. Grigolo, G. Lisignoli, G. Desando, C. Cavallo, E. Marconi, M. Tschon, et al., Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit, Tissue Eng Part C Methods 15 (2009), pp. 647–658.
150.
Zurück zum Zitat L.A. Solchaga, J.E. Dennis, V.M. Goldberg, and A.I. Caplan, Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage, J Orthop Res 17 (1999), pp. 205–213. L.A. Solchaga, J.E. Dennis, V.M. Goldberg, and A.I. Caplan, Hyaluronic acid-based polymers as cell carriers for tissue-engineered repair of bone and cartilage, J Orthop Res 17 (1999), pp. 205–213.
151.
Zurück zum Zitat K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, and W.H. Park, Electrospinning of polysaccharides for regenerative medicine, Adv Drug Deliv Rev 61 (2009), pp. 1020–1032. K.Y. Lee, L. Jeong, Y.O. Kang, S.J. Lee, and W.H. Park, Electrospinning of polysaccharides for regenerative medicine, Adv Drug Deliv Rev 61 (2009), pp. 1020–1032.
152.
Zurück zum Zitat J. Li, A. He, J. Zheng, and C.C. Han, Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions, Biomacromolecules 7 (2006), pp. 2243–2247. J. Li, A. He, J. Zheng, and C.C. Han, Gelatin and gelatin-hyaluronic acid nanofibrous membranes produced by electrospinning of their aqueous solutions, Biomacromolecules 7 (2006), pp. 2243–2247.
154.
Zurück zum Zitat G. Orive, S.K. Tam, J.L. Pedraz, and J.P. Halle, Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy, Biomaterials 27 (2006), pp. 3691–3700. G. Orive, S.K. Tam, J.L. Pedraz, and J.P. Halle, Biocompatibility of alginate-poly-L-lysine microcapsules for cell therapy, Biomaterials 27 (2006), pp. 3691–3700.
155.
Zurück zum Zitat L. Shapiro, and S. Cohen, Novel alginate sponges for cell culture and transplantation, Biomaterials 18 (1997), pp. 583–590. L. Shapiro, and S. Cohen, Novel alginate sponges for cell culture and transplantation, Biomaterials 18 (1997), pp. 583–590.
156.
Zurück zum Zitat K. Draget, K. Ostgaard, and O. Smidsrod, Homogeneous alginate gels – a technical approach, Carbohydr Polym 14 (1990), pp. 159–178. K. Draget, K. Ostgaard, and O. Smidsrod, Homogeneous alginate gels – a technical approach, Carbohydr Polym 14 (1990), pp. 159–178.
157.
Zurück zum Zitat C.K. Kuo, and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties, Biomaterials 22 (2001), pp. 511–521. C.K. Kuo, and P.X. Ma, Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering: part 1. Structure, gelation rate and mechanical properties, Biomaterials 22 (2001), pp. 511–521.
158.
Zurück zum Zitat O. Jeon, K.H. Bouhadir, J.M. Mansour, and E. Alsberg, Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties, Biomaterials 30 (2009), pp. 2724–2734. O. Jeon, K.H. Bouhadir, J.M. Mansour, and E. Alsberg, Photocrosslinked alginate hydrogels with tunable biodegradation rates and mechanical properties, Biomaterials 30 (2009), pp. 2724–2734.
159.
Zurück zum Zitat K. Lee, K. Bouhadir, and D. Mooney, Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels, Macromolecules 33 (2000), pp. 97–101. K. Lee, K. Bouhadir, and D. Mooney, Degradation behavior of covalently cross-linked poly(aldehyde guluronate) hydrogels, Macromolecules 33 (2000), pp. 97–101.
160.
Zurück zum Zitat J.L. Drury, R.G. Dennis, and D.J. Mooney, The tensile properties of alginate hydrogels, Biomaterials 25 (2004), pp. 3187–3199. J.L. Drury, R.G. Dennis, and D.J. Mooney, The tensile properties of alginate hydrogels, Biomaterials 25 (2004), pp. 3187–3199.
161.
Zurück zum Zitat E.R. West, L.D. Shea, and T.K. Woodruff, Engineering the follicle microenvironment, Semin Reprod Med 25 (2007), pp. 287–299. E.R. West, L.D. Shea, and T.K. Woodruff, Engineering the follicle microenvironment, Semin Reprod Med 25 (2007), pp. 287–299.
162.
Zurück zum Zitat J.A. Rowley, G. Madlambayan, and D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 20 (1999), pp. 45–53. J.A. Rowley, G. Madlambayan, and D.J. Mooney, Alginate hydrogels as synthetic extracellular matrix materials, Biomaterials 20 (1999), pp. 45–53.
163.
Zurück zum Zitat E. Alsberg, K.W. Anderson, A. Albeiruti, J.A. Rowley, and D.J. Mooney, Engineering growing tissues, Proc Natl Acad Sci U S A 99 (2002), pp. 12025–12030. E. Alsberg, K.W. Anderson, A. Albeiruti, J.A. Rowley, and D.J. Mooney, Engineering growing tissues, Proc Natl Acad Sci U S A 99 (2002), pp. 12025–12030.
164.
Zurück zum Zitat N. Cheng, E. Wauthier, and L.M. Reid, Mature human hepatocytes from ex vivo differentiation of alginate-encapsulated hepatoblasts, Tissue Eng Part A 14 (2008), pp. 1–7. N. Cheng, E. Wauthier, and L.M. Reid, Mature human hepatocytes from ex vivo differentiation of alginate-encapsulated hepatoblasts, Tissue Eng Part A 14 (2008), pp. 1–7.
165.
Zurück zum Zitat M. Dvir-Ginzberg, I. Gamlieli-Bonshtein, R. Agbaria, and S. Cohen, Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function, Tissue Eng 9 (2003), pp. 757–766. M. Dvir-Ginzberg, I. Gamlieli-Bonshtein, R. Agbaria, and S. Cohen, Liver tissue engineering within alginate scaffolds: effects of cell-seeding density on hepatocyte viability, morphology, and function, Tissue Eng 9 (2003), pp. 757–766.
166.
Zurück zum Zitat C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, Therapeutic potential of chitosan and its derivatives in regenerative medicine, J Surg Res 133 (2006), pp. 185–192. C. Shi, Y. Zhu, X. Ran, M. Wang, Y. Su, and T. Cheng, Therapeutic potential of chitosan and its derivatives in regenerative medicine, J Surg Res 133 (2006), pp. 185–192.
167.
Zurück zum Zitat I.K. Park, J. Yang, H.J. Jeong, H.S. Bom, I. Harada, T. Akaike, et al., Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment, Biomaterials 24 (2003), pp. 2331–2337. I.K. Park, J. Yang, H.J. Jeong, H.S. Bom, I. Harada, T. Akaike, et al., Galactosylated chitosan as a synthetic extracellular matrix for hepatocytes attachment, Biomaterials 24 (2003), pp. 2331–2337.
168.
Zurück zum Zitat T.H. Kim, J.W. Nah, M.H. Cho, T.G. Park, and C.S. Cho, Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles, J Nanosci Nanotechnol 6 (2006), pp. 2796–2803. T.H. Kim, J.W. Nah, M.H. Cho, T.G. Park, and C.S. Cho, Receptor-mediated gene delivery into antigen presenting cells using mannosylated chitosan/DNA nanoparticles, J Nanosci Nanotechnol 6 (2006), pp. 2796–2803.
169.
Zurück zum Zitat M. Suzuki, S. Itoh, I. Yamaguchi, K. Takakuda, H. Kobayashi, K. Shinomiya, et al., Tendon chitosan tubes covalently coupled with synthesized laminin peptides facilitate nerve regeneration in vivo, J Neurosci Res 72 (2003), pp. 646–659. M. Suzuki, S. Itoh, I. Yamaguchi, K. Takakuda, H. Kobayashi, K. Shinomiya, et al., Tendon chitosan tubes covalently coupled with synthesized laminin peptides facilitate nerve regeneration in vivo, J Neurosci Res 72 (2003), pp. 646–659.
170.
Zurück zum Zitat M.H. Ho, D.M. Wang, H.J. Hsieh, H.C. Liu, T.Y. Hsien, J.Y. Lai, et al., Preparation and characterization of RGD-immobilized chitosan scaffolds, Biomaterials 26 (2005), pp. 3197–3206. M.H. Ho, D.M. Wang, H.J. Hsieh, H.C. Liu, T.Y. Hsien, J.Y. Lai, et al., Preparation and characterization of RGD-immobilized chitosan scaffolds, Biomaterials 26 (2005), pp. 3197–3206.
171.
Zurück zum Zitat Z.M. Wu, X.G. Zhang, C. Zheng, C.X. Li, S.M. Zhang, R.N. Dong, et al., Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release, Eur J Pharm Sci 37 (2009), pp. 198–206. Z.M. Wu, X.G. Zhang, C. Zheng, C.X. Li, S.M. Zhang, R.N. Dong, et al., Disulfide-crosslinked chitosan hydrogel for cell viability and controlled protein release, Eur J Pharm Sci 37 (2009), pp. 198–206.
172.
Zurück zum Zitat D.L. Nettles, S.H. Elder, and J.A. Gilbert, Potential use of chitosan as a cell scaffold material for cartilage tissue engineering, Tissue Eng 8 (2002), pp. 1009–1016. D.L. Nettles, S.H. Elder, and J.A. Gilbert, Potential use of chitosan as a cell scaffold material for cartilage tissue engineering, Tissue Eng 8 (2002), pp. 1009–1016.
173.
Zurück zum Zitat S. Hirano, Chitin biotechnology applications, Biotechnol Annu Rev 2 (1996), pp. 237–258. S. Hirano, Chitin biotechnology applications, Biotechnol Annu Rev 2 (1996), pp. 237–258.
174.
Zurück zum Zitat H.C. Ott, T.S. Matthiesen, S.K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, et al., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart, Nat Med 14 (2008), pp. 213–221. H.C. Ott, T.S. Matthiesen, S.K. Goh, L.D. Black, S.M. Kren, T.I. Netoff, et al., Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart, Nat Med 14 (2008), pp. 213–221.
175.
Zurück zum Zitat K.L. Chen, D. Eberli, J.J. Yoo, and A. Atala, Regenerative Medicine Special Feature: Bioengineered corporal tissue for structural and functional restoration of the penis, Proc Natl Acad Sci U S A 107 (2010), pp. 3346–3350 K.L. Chen, D. Eberli, J.J. Yoo, and A. Atala, Regenerative Medicine Special Feature: Bioengineered corporal tissue for structural and functional restoration of the penis, Proc Natl Acad Sci U S A 107 (2010), pp. 3346–3350
176.
Zurück zum Zitat J.M. Singelyn, J.A. DeQuach, S.B. Seif-Naraghi, R.B. Littlefield, P.J. Schup-Magoffin, and K.L. Christman, Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering, Biomaterials 30 (2009), pp. 5409–5416. J.M. Singelyn, J.A. DeQuach, S.B. Seif-Naraghi, R.B. Littlefield, P.J. Schup-Magoffin, and K.L. Christman, Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering, Biomaterials 30 (2009), pp. 5409–5416.
177.
Zurück zum Zitat K. Narayanan, K.J. Leck, S. Gao, and A.C. Wan, Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering, Biomaterials 30 (2009), pp. 4309–4317. K. Narayanan, K.J. Leck, S. Gao, and A.C. Wan, Three-dimensional reconstituted extracellular matrix scaffolds for tissue engineering, Biomaterials 30 (2009), pp. 4309–4317.
Metadaten
Titel
Natural Materials in Tissue Engineering Applications
verfasst von
Elyssa L. Monzack
Karien J. Rodriguez
Chloe M. McCoy
Xiaoxiao Gu
Kristyn S. Masters
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_8

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.