Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 23/2018

05.10.2018

Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film

verfasst von: S. Gupta Chatterjee, S. Dey, D. Samanta, S. Santra, S. Chatterjee, P. K. Guha, Amit K. Chakraborty

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 23/2018

Einloggen

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In recent years, metal oxide nanoparticles and their composites with graphene have received significant research attention in toxic gas sensor applications. Herein, we demonstrate a novel approach to develop a sensor by combining SnO2 nanoparticles and Ni-decorated natural cellulosic graphene (Ni-NCG) derived from lotus petals to form SnO2/Ni-NCG nanohybrid. The morphology, microstructure and elemental composition of the nanohybrids were investigated by a number of techniques which confirmed presence of nanometer sized SnO2 particles having large surface area on sheets of few layered Ni-decorated NCG. Upto 15% response was observed when exposed to 40 ppm of NO with high reproducibility at temperature as low as 60 °C which is remarkable when compared to previously reported SnO2 based NO sensors operating at high temperatures (~ 200 °C or more). Further, the nanohybrid showed excellent selectivity to NO when tested against other gases. A mechanism have been proposed for the improved sensitivity at low temperature based on the improved surface area of SnO2 nanoparticles leading to larger adsorption of gas molecules combined with an improved conduction of charges provided by the Ni-decorated NCG network. The results show enormous potential for the SnO2/Ni-NCG nanohybrid film as near room temperature NO sensor.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)CrossRef R. Atkinson, Atmospheric chemistry of VOCs and NOx. Atmos. Environ. 34, 2063–2101 (2000)CrossRef
2.
Zurück zum Zitat D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1124 (2004)CrossRef D. Zhang, Z. Liu, C. Li, T. Tang, X. Liu, S. Han, B. Lei, C. Zhou, Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 4, 1919–1124 (2004)CrossRef
3.
Zurück zum Zitat L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009) L.S. Panchakarla, K.S. Subrahmanyam, S.K. Saha, A. Govindaraj, H.R. Krishnamurthy, U.V. Waghmare, C.N.R. Rao. Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)
4.
Zurück zum Zitat C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRef C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors: sensitivity and influencing factors. Sensors 10, 2088–2106 (2010)CrossRef
5.
Zurück zum Zitat N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15, R813–R839 (2003)CrossRef N. Barsan, U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity. J. Phys. Condens. Matter 15, R813–R839 (2003)CrossRef
6.
Zurück zum Zitat A. Gurlo, Nanosensors: towards morphological control of gas sensing activity SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRef A. Gurlo, Nanosensors: towards morphological control of gas sensing activity SnO2, In2O3, ZnO and WO3 case studies. Nanoscale 3, 154–165 (2011)CrossRef
7.
Zurück zum Zitat G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRef G. Korotcenkov, Metal oxides for solid-state gas sensors: what determines our choice? Mater. Sci. Eng. B 139, 1–23 (2007)CrossRef
8.
Zurück zum Zitat N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B Chem. 121, 18–35 (2007)CrossRef N. Barsan, D. Koziej, U. Weimar, Metal oxide-based gas sensor research: how to? Sens. Actuators B Chem. 121, 18–35 (2007)CrossRef
9.
Zurück zum Zitat A. Lassesson, M. Schulze, J. van Lith, S.A. Brown, Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 19, 015502 (2008)CrossRef A. Lassesson, M. Schulze, J. van Lith, S.A. Brown, Tin oxide nanocluster hydrogen and ammonia sensors. Nanotechnology 19, 015502 (2008)CrossRef
10.
Zurück zum Zitat X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20, 455503 (2009)CrossRef X.M. Yin, C.C. Li, M. Zhang, Q.Y. Hao, S. Liu, Q.H. Li, L.B. Chen, T.H. Wang, SnO2 monolayer porous hollow spheres as a gas sensor. Nanotechnology 20, 455503 (2009)CrossRef
11.
Zurück zum Zitat F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale. SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 22, 4821–4827 (2010)CrossRef F. Gyger, M. Hubner, C. Feldmann, N. Barsan, U. Weimar, Nanoscale. SnO2 hollow spheres and their application as a gas-sensing material. Chem. Mater. 22, 4821–4827 (2010)CrossRef
12.
Zurück zum Zitat G.K. Fan, Y. Wang, M. Hu, Z.Y. Luo, G. Li, Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas. Sci. Technol. 22, 045203 (2011)CrossRef G.K. Fan, Y. Wang, M. Hu, Z.Y. Luo, G. Li, Synthesis of flowerlike nano-SnO2 and a study of its gas sensing response. Meas. Sci. Technol. 22, 045203 (2011)CrossRef
13.
Zurück zum Zitat F. Li, Y. Chen, J. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175–7178 (2014)CrossRef F. Li, Y. Chen, J. Ma, Porous SnO2 nanoplates for highly sensitive NO detection. J. Mater. Chem. A 2, 7175–7178 (2014)CrossRef
14.
Zurück zum Zitat T. Lv, Y. Chen, J. Ma, L. Chen, Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 4, 22487–22490 (2014)CrossRef T. Lv, Y. Chen, J. Ma, L. Chen, Hydrothermally processed SnO2 nanocrystals for ultrasensitive NO sensors. RSC Adv. 4, 22487–22490 (2014)CrossRef
15.
Zurück zum Zitat S. Liu, Y. Zhang, B. Yu, Z. Wang, H. Zhao, N. Zhou, T. Zhang, Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sens. Actuators B Chem. 210, 700–705 (2015)CrossRef S. Liu, Y. Zhang, B. Yu, Z. Wang, H. Zhao, N. Zhou, T. Zhang, Solvent-free infiltration method to prepare mesoporous SnO2 templated by SiO2 nanoparticles for ethanol sensing. Sens. Actuators B Chem. 210, 700–705 (2015)CrossRef
16.
Zurück zum Zitat A. Sarkar, S. Bera, A.K. Chakraborty, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 182, 314–320 (2018)CrossRef A. Sarkar, S. Bera, A.K. Chakraborty, NiS/rGO nanohybrid: an excellent counter electrode for dye sensitized solar cell. Sol. Energy Mater. Sol. Cells 182, 314–320 (2018)CrossRef
17.
Zurück zum Zitat V. Meriga, V. Sreeramulu, S. Sundaresan, C. Cahill, V.R. Dhanak, A.K. Chakraborty, Optical, electrical and electrochemical properties of graphene based water soluble polyaniline composites. J. Appl. Polym. Sci. 132, 42766 (2015)CrossRef V. Meriga, V. Sreeramulu, S. Sundaresan, C. Cahill, V.R. Dhanak, A.K. Chakraborty, Optical, electrical and electrochemical properties of graphene based water soluble polyaniline composites. J. Appl. Polym. Sci. 132, 42766 (2015)CrossRef
18.
Zurück zum Zitat F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef F. Schedin, A.K. Geim, S.V. Morozov, E.W. Hill, P. Blake, M.I. Katsnelson et al., Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef
19.
Zurück zum Zitat R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 44, 1167–1176 (2010)CrossRef R. Ratinac, W. Yang, S.P. Ringer, F. Braet, Toward ubiquitous environmental gas sensors-capitalizing on the promise of graphene. Environ. Sci. Technol. 44, 1167–1176 (2010)CrossRef
20.
Zurück zum Zitat R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 153102 (2015)CrossRef R. Ghosh, S. Santra, S.K. Ray, P.K. Guha, Pt-functionalized reduced graphene oxide for excellent hydrogen sensing at room temperature. Appl. Phys. Lett. 107, 153102 (2015)CrossRef
21.
Zurück zum Zitat P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)CrossRef P. Ranjan, P. Tiwary, A.K. Chakraborty, R. Mahapatra, A.D. Thakur, Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci. Mater. Electron. 29, 15946–15956 (2018)CrossRef
22.
Zurück zum Zitat S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)CrossRef S.G. Chatterjee, S. Chatterjee, A.K. Ray, A.K. Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015)CrossRef
23.
Zurück zum Zitat M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)CrossRef M.L. Yola, N. Atar, Z. Üstündağ, A.O. Solak, A novel voltammetric sensor based on p-aminothiophenol functionalized graphene oxide/gold nanoparticles for determining quercetin in the presence of ascorbic acid. J. Electroanal. Chem. 698, 9–16 (2013)CrossRef
24.
Zurück zum Zitat M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)CrossRef M.L. Yola, T. Eren, N. Atar, A novel and sensitive electrochemical DNA biosensor based on Fe@Au nanoparticles decorated graphene oxide. Electrochim. Acta 125, 38–47 (2014)CrossRef
25.
Zurück zum Zitat M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)CrossRef M.L. Yola, T. Eren, N. Atar, A sensitive molecular imprinted electrochemical sensor based on gold nanoparticles decorated graphene oxide: application to selective determination of tyrosine in milk. Sens. Actuators B Chem. 210, 149–157 (2015)CrossRef
26.
Zurück zum Zitat M.L. Yola, N. Atar, T. Eren, H.K. Maleh, S. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 5, 65953–65962 (2015)CrossRef M.L. Yola, N. Atar, T. Eren, H.K. Maleh, S. Wang, Sensitive and selective determination of aqueous triclosan based on gold nanoparticles on polyoxometalate/reduced graphene oxide nanohybrid. RSC Adv. 5, 65953–65962 (2015)CrossRef
27.
Zurück zum Zitat M.L. Yola, N. Atar, Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 163, B718–B725 (2016)CrossRef M.L. Yola, N. Atar, Functionalized graphene quantum dots with bi-metallic nanoparticles composite: sensor application for simultaneous determination of ascorbic acid, dopamine, uric acid and tryptophan. J. Electrochem. Soc. 163, B718–B725 (2016)CrossRef
28.
Zurück zum Zitat M.L. Yola, T. Eren, N. Atar, H. Saral, I. Ermiş, Direct-methanol Fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic, nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28, 570–579 (2016)CrossRef M.L. Yola, T. Eren, N. Atar, H. Saral, I. Ermiş, Direct-methanol Fuel cell based on functionalized graphene oxide with mono-metallic and bi-metallic, nanoparticles: electrochemical performances of nanomaterials for methanol oxidation. Electroanalysis 28, 570–579 (2016)CrossRef
29.
Zurück zum Zitat O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, F.S. Tokal, M.L. Yola, N. Atar, Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int. J. Electrochem. Sci. 10, 7743–7753 (2015) O. Akyıldırım, H. Medetalibeyoğlu, S. Manap, M. Beytur, F.S. Tokal, M.L. Yola, N. Atar, Electrochemical sensor based on graphene oxide/iron nanoparticles for the analysis of quercetin. Int. J. Electrochem. Sci. 10, 7743–7753 (2015)
30.
Zurück zum Zitat S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored Calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 28, 611–619 (2016)CrossRef S. Elçin, M.L. Yola, T. Eren, B. Girgin, N. Atar, Highly selective and sensitive voltammetric sensor based on ruthenium nanoparticle anchored Calix[4]amidocrown-5 functionalized reduced graphene oxide: simultaneous determination of quercetin, morin and rutin in grape wine. Electroanalysis, 28, 611–619 (2016)CrossRef
31.
Zurück zum Zitat Ö Aktaş, Y.F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)CrossRef Ö Aktaş, Y.F. Kardaş, O. Akyıldırım, T. Eren, N. Atar, M.L. Yola, Sensitive voltammetric sensor based on polyoxometalate/reduced graphene oxide nanomaterial: application to the simultaneous determination of l-tyrosine and l-tryptophan. Sens. Actuators B Chem. 233, 47–54 (2016)CrossRef
32.
Zurück zum Zitat V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim. Acta 112, 541–548 (2013)CrossRef V.K. Gupta, M.L. Yola, N. Atar, Z. Ustundağ, A.O. Solak, A novel sensitive Cu(II) and Cd(II) nanosensor platform: graphene oxide terminated p-aminophenyl modified glassy carbon surface. Electrochim. Acta 112, 541–548 (2013)CrossRef
33.
Zurück zum Zitat Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21, 17360–17365 (2011)CrossRef Z.Y. Zhang, R.J. Zou, G.S. Song, L. Yu, Z.G. Chen, J.Q. Hu, Highly aligned SnO2 nanorods on graphene sheets for gas sensors. J. Mater. Chem. 21, 17360–17365 (2011)CrossRef
34.
Zurück zum Zitat S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)CrossRef S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen, J. Chen, Tuning gas-sensing properties of reduced graphene oxide using tin oxide nanocrystals. J. Mater. Chem. 22, 11009–11013 (2012)CrossRef
35.
Zurück zum Zitat G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B Chem. 179, 61–68 (2013)CrossRef G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensing behavior of SnO2/reduced graphene oxide nanocomposites toward NO2. Sens. Actuators B Chem. 179, 61–68 (2013)CrossRef
36.
Zurück zum Zitat S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovskab, J. Chen, Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)CrossRef S. Cui, Z. Wen, E.C. Mattson, S. Mao, J. Chang, M. Weinert, C.J. Hirschmugl, M. Gajdardziska-Josifovskab, J. Chen, Indium-doped SnO2 nanoparticle–graphene nanohybrids: simple one-pot synthesis and their selective detection of NO2. J. Mater. Chem. A 1, 4462–4467 (2013)CrossRef
37.
Zurück zum Zitat H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRef H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, SnO2 nanoparticles-reduced graphene oxide nanocomposites for NO2 sensing at low operating temperature. Sens. Actuators B 190, 472–478 (2014)CrossRef
38.
Zurück zum Zitat Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 242, 269–279 (2017)CrossRef Z. Wang, C. Zhao, T. Han, Y. Zhang, S. Liu, T. Fei, G. Lu, T. Zhang, High-performance reduced graphene oxide-based room-temperature NO2 sensors: a combined surface modification of SnO2 nanoparticles and nitrogen doping approach. Sens. Actuators B Chem. 242, 269–279 (2017)CrossRef
39.
Zurück zum Zitat H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi, J.H. Bang, P. Wu, S.S. Kim, Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interface 9, 31667–31682 (2017)CrossRef H.W. Kim, H.G. Na, Y.J. Kwon, S.Y. Kang, M.S. Choi, J.H. Bang, P. Wu, S.S. Kim, Microwave-assisted synthesis of graphene–SnO2 nanocomposites and their applications in gas sensors. ACS Appl. Mater. Interface 9, 31667–31682 (2017)CrossRef
40.
Zurück zum Zitat C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 244, 466–474 (2017)CrossRef C.A. Zito, T.M. Perfecto, D.P. Volanti, Impact of reduced graphene oxide on the ethanol sensing performance of hollow SnO2 nanoparticles under humid atmosphere. Sens. Actuators B Chem. 244, 466–474 (2017)CrossRef
41.
Zurück zum Zitat Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interface 6, 2174–2184 (2014)CrossRef Y. Liu, Y. Jiao, Z. Zhang, F. Qu, A. Umar, X. Wu, Hierarchical SnO2 nanostructures made of intermingled ultrathin nanosheets for environmental remediation, smart gas sensor, and supercapacitor applications. ACS Appl. Mater. Interface 6, 2174–2184 (2014)CrossRef
42.
Zurück zum Zitat A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. Cryst. Eng. Commun. 13, 2487 (2011)CrossRef A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthöfer, E. Rentschler, W. Tremel, The interplay of crystallization kinetics and morphology during the formation of SnO2 nanorods: snapshots of the crystallization from fast microwave reactions. Cryst. Eng. Commun. 13, 2487 (2011)CrossRef
43.
Zurück zum Zitat A.K. Ray, R.K. Sahu, V. Rajinikanth, H. Bapari, M. Ghosh, P. Paul, Preparation and characterization of graphene and Ni-decorated graphene using flowerpetals as the precursor material. Carbon 50, 4123–4129 (2012)CrossRef A.K. Ray, R.K. Sahu, V. Rajinikanth, H. Bapari, M. Ghosh, P. Paul, Preparation and characterization of graphene and Ni-decorated graphene using flowerpetals as the precursor material. Carbon 50, 4123–4129 (2012)CrossRef
44.
Zurück zum Zitat Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, X. Zhang, All-fiber Raman biosensor by combining reflection and transmission mode. IEEE Photon. Technol. Lett. 30, 387–390 (2018)CrossRef Z. Jin, Q. Chu, W. Xu, H. Cai, W. Ji, G. Wang, B. Lin, X. Zhang, All-fiber Raman biosensor by combining reflection and transmission mode. IEEE Photon. Technol. Lett. 30, 387–390 (2018)CrossRef
45.
Zurück zum Zitat S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 202, 272–278 (2014)CrossRef S. Liu, B. Yu, H. Zhang, T. Fei, T. Zhang, Enhancing NO2 gas sensing performances at room temperature based on reduced graphene oxide-ZnO nanoparticles hybrids. Sens. Actuators B Chem. 202, 272–278 (2014)CrossRef
46.
Zurück zum Zitat X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRef X.W. Lou, Y. Wang, C. Yuan, J.Y. Lee, L.A. Archer, Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 18, 2325–2329 (2006)CrossRef
47.
Zurück zum Zitat R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 5, 5281 (2012)CrossRef R. Wang, C. Xu, X. Bi, Y. Ding, Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts. Energy Environ. Sci. 5, 5281 (2012)CrossRef
48.
Zurück zum Zitat C.T. Lee, H.Y. Lee, Y.S. Chiu, Performance Improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3. IEEE Sens. J. 16, 7581–7585 (2016) C.T. Lee, H.Y. Lee, Y.S. Chiu, Performance Improvement of nitrogen oxide gas sensors using Au catalytic metal on SnO2/WO3. IEEE Sens. J. 16, 7581–7585 (2016)
49.
Zurück zum Zitat H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sens. Actuators B Chem. 220, 398–405 (2015)CrossRef H.-Y. Li, Z.-X. Cai, J.-C. Ding, X. Guo, Gigantically enhanced NO sensing properties of WO3/SnO2 double layer sensors with Pd decoration. Sens. Actuators B Chem. 220, 398–405 (2015)CrossRef
50.
Zurück zum Zitat L. Wang, Y. Chen, J. Ma, L. Chen, Z. Xu, T. Wang, Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500-1–3500-6 (2013) L. Wang, Y. Chen, J. Ma, L. Chen, Z. Xu, T. Wang, Hierarchical SnO2 nanospheres: bio-inspired mineralization, vulcanization, oxidation techniques, and the application for NO sensors. Sci. Rep. 3, 3500-1–3500-6 (2013)
Metadaten
Titel
Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film
verfasst von
S. Gupta Chatterjee
S. Dey
D. Samanta
S. Santra
S. Chatterjee
P. K. Guha
Amit K. Chakraborty
Publikationsdatum
05.10.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 23/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0149-z

Weitere Artikel der Ausgabe 23/2018

Journal of Materials Science: Materials in Electronics 23/2018 Zur Ausgabe

Neuer Inhalt