Skip to main content
Erschienen in: Journal of Computational Electronics 1/2020

25.11.2019

Near-room-temperature spin caloritronics in a magnetized and defective zigzag MoS2 nanoribbon

verfasst von: Farahnaz Zakerian, Morteza Fathipour, Rahim Faez, Ghafar Darvish

Erschienen in: Journal of Computational Electronics | Ausgabe 1/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using a tight-binding approach and first-principles calculations combined with the nonequilibrium Green’s function method, the thermal spin transport in a zigzag molybdenum disulfide (\(\hbox{MoS}_2\)) nanoribbon in the proximity of a ferromagnetic insulator that induces a local exchange magnetic field in the center of the nanoribbon is investigated. It is found that a pure spin current and perfect spin Seebeck effect with zero charge current can be generated by applying a thermal gradient and local exchange magnetic field without a bias voltage near room temperature. Furthermore, it is shown that this nanoscale device can act as a spin Seebeck diode for the control of thermal and spin information in spin caloritronics applications. Finally, the impact of structural defects including edge and Stone–Wales defects on the spin figure of merit is studied. It is then shown that the spin figure of merit can be higher for a magnetized and defective \(\hbox{MoS}_2\) nanoribbon. The results of this work facilitate deep understanding of the effects of structural defects on the thermoelectric properties of \(\hbox{MoS}_2\) nanoribbons and indicate their great potential for use in spin caloritronics devices for operation at room temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Johnson, M., Silsbee, R.H.: Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987) Johnson, M., Silsbee, R.H.: Thermodynamic analysis of interfacial transport and of the thermomagnetoelectric system. Phys. Rev. B 35, 4959–4972 (1987)
2.
Zurück zum Zitat Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature 455, 778–781 (2008) Uchida, K., Takahashi, S., Harii, K., Ieda, J., Koshibae, W., Ando, K., Maekawa, S., Saitoh, E.: Observation of the spin Seebeck effect. Nature 455, 778–781 (2008)
3.
Zurück zum Zitat Jaworski, C.M., Yang, J., MacK, S., Awschalom, D.D., Heremans, J.P., Myers, R.C.: Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010) Jaworski, C.M., Yang, J., MacK, S., Awschalom, D.D., Heremans, J.P., Myers, R.C.: Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010)
4.
Zurück zum Zitat Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G.E.W., Maekawa, S., Saitoh, E.: Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010) Uchida, K., Xiao, J., Adachi, H., Ohe, J., Takahashi, S., Ieda, J., Ota, T., Kajiwara, Y., Umezawa, H., Kawai, H., Bauer, G.E.W., Maekawa, S., Saitoh, E.: Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010)
5.
Zurück zum Zitat Zhou, B., Zhou, B., Zeng, Y., Zhou, G., Ouyang, T.: Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads. J. Appl. Phys. 117, 104305 (2015) Zhou, B., Zhou, B., Zeng, Y., Zhou, G., Ouyang, T.: Spin-dependent Seebeck effects in a graphene nanoribbon coupled to two square lattice ferromagnetic leads. J. Appl. Phys. 117, 104305 (2015)
6.
Zurück zum Zitat Li, J., Wang, B., Xu, F., Wei, Y., Wang, J.: Spin-dependent Seebeck effects in graphene-based molecular junctions. Phys. Rev. B 93, 195426–195436 (2016) Li, J., Wang, B., Xu, F., Wei, Y., Wang, J.: Spin-dependent Seebeck effects in graphene-based molecular junctions. Phys. Rev. B 93, 195426–195436 (2016)
7.
Zurück zum Zitat Wu, D.D., Liu, Q.B., Fu, H.H., Wu, R.: How to realize a spin-dependent Seebeck diode effect in metallic zigzag \(\gamma\)-graphyne nanoribbons. Nanoscale 9, 18334–18342 (2017) Wu, D.D., Liu, Q.B., Fu, H.H., Wu, R.: How to realize a spin-dependent Seebeck diode effect in metallic zigzag \(\gamma\)-graphyne nanoribbons. Nanoscale 9, 18334–18342 (2017)
8.
Zurück zum Zitat Ezawa, M.: Spin filter, spin amplifier and spin diode in graphene nanodisk. Eur. Phys. J. B 67, 543–549 (2009) Ezawa, M.: Spin filter, spin amplifier and spin diode in graphene nanodisk. Eur. Phys. J. B 67, 543–549 (2009)
9.
Zurück zum Zitat Benenti, G., Casati, G., Saito, K., Whitney, R.S.: Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017)MathSciNetMATH Benenti, G., Casati, G., Saito, K., Whitney, R.S.: Fundamental aspects of steady-state conversion of heat to work at the nanoscale. Phys. Rep. 694, 1–124 (2017)MathSciNetMATH
10.
Zurück zum Zitat Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U.S. A. 93, 7436–7439 (1996) Mahan, G.D., Sofo, J.O.: The best thermoelectric. Proc. Natl. Acad. Sci. U.S. A. 93, 7436–7439 (1996)
11.
Zurück zum Zitat Flipse, J., Bakker, F.L., Slachter, A., Dejene, F.K., Van Wees, B.J.: Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012) Flipse, J., Bakker, F.L., Slachter, A., Dejene, F.K., Van Wees, B.J.: Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012)
12.
Zurück zum Zitat Dejene, F.K., Flipse, J., Bauer, G.E.W., Van Wees, B.J.: Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nat. Phys. 9, 636–639 (2013) Dejene, F.K., Flipse, J., Bauer, G.E.W., Van Wees, B.J.: Spin heat accumulation and spin-dependent temperatures in nanopillar spin valves. Nat. Phys. 9, 636–639 (2013)
13.
Zurück zum Zitat Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., Thomas, A., Peretzki, P., Seibt, M., Moodera, J.S., Czerner, M., Bachmann, M., Heiliger, C.: Seebeck effect in magnetic tunnel junctions. Nat. Mater. 10, 742–746 (2011) Walter, M., Walowski, J., Zbarsky, V., Münzenberg, M., Schäfers, M., Ebke, D., Reiss, G., Thomas, A., Peretzki, P., Seibt, M., Moodera, J.S., Czerner, M., Bachmann, M., Heiliger, C.: Seebeck effect in magnetic tunnel junctions. Nat. Mater. 10, 742–746 (2011)
14.
Zurück zum Zitat Wilczyński, M.: Thermopower, figure of merit and spin-transfer torque induced by the temperature gradient in planar tunnel junctions. J. Phys.: Condens. Matter 23, 456001 (2011) Wilczyński, M.: Thermopower, figure of merit and spin-transfer torque induced by the temperature gradient in planar tunnel junctions. J. Phys.: Condens. Matter 23, 456001 (2011)
15.
Zurück zum Zitat Frota, H.O., Ghosh, A.: Spin caloritronics in graphene. Solid State Commun. 191, 30–34 (2014) Frota, H.O., Ghosh, A.: Spin caloritronics in graphene. Solid State Commun. 191, 30–34 (2014)
16.
Zurück zum Zitat Zhai, X., Gao, W., Cai, X., Fan, D., Yang, Z., Meng, L.: Spin-valley caloritronics in silicene near room temperature. Phys. Rev. B 94, 245405 (2016) Zhai, X., Gao, W., Cai, X., Fan, D., Yang, Z., Meng, L.: Spin-valley caloritronics in silicene near room temperature. Phys. Rev. B 94, 245405 (2016)
17.
Zurück zum Zitat Liu, Y.S., Zhang, X., Yang, X.F., Hong, X.K., Feng, J.F., Si, M.S., Wang, X.F.: Spin caloritronics of blue phosphorene nanoribbons. Phys. Chem. Chem. Phys. 17, 10462–10467 (2015) Liu, Y.S., Zhang, X., Yang, X.F., Hong, X.K., Feng, J.F., Si, M.S., Wang, X.F.: Spin caloritronics of blue phosphorene nanoribbons. Phys. Chem. Chem. Phys. 17, 10462–10467 (2015)
18.
Zurück zum Zitat Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin \(\text{ MoS }_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010) Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically thin \(\text{ MoS }_2\): a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)
19.
Zurück zum Zitat Han, S.W., Kwon, H., Kim, S.K., Ryu, S., Yun, W.S., Kim, D.H., Hwang, J.H., Kang, J.-S., Baik, J., Shin, H.J., Hong, S.C.: Band-gap transition induced by interlayer van der Waals interaction in \(\text{ MoS }_2\). Phys. Rev. B 84, 045409 (2011) Han, S.W., Kwon, H., Kim, S.K., Ryu, S., Yun, W.S., Kim, D.H., Hwang, J.H., Kang, J.-S., Baik, J., Shin, H.J., Hong, S.C.: Band-gap transition induced by interlayer van der Waals interaction in \(\text{ MoS }_2\). Phys. Rev. B 84, 045409 (2011)
20.
Zurück zum Zitat Ganatra, R., Zhang, Q.: Few-layer \(\text{ MoS }_2\): a promising layered semiconductor. ACS Nano 8, 4074–4099 (2014) Ganatra, R., Zhang, Q.: Few-layer \(\text{ MoS }_2\): a promising layered semiconductor. ACS Nano 8, 4074–4099 (2014)
21.
Zurück zum Zitat Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization in monolayer \(\text{ MoS }_2\) by optical helicity. Nat. Nanotechnol. 7, 494–8 (2012) Mak, K.F., He, K., Shan, J., Heinz, T.F.: Control of valley polarization in monolayer \(\text{ MoS }_2\) by optical helicity. Nat. Nanotechnol. 7, 494–8 (2012)
22.
Zurück zum Zitat Mak, K.F., McGill, K.L., Park, J., McEuen, P.L.: The valley Hall effect in \(\text{ MoS }_2\) transistors. Science 344, 1489–1492 (2014) Mak, K.F., McGill, K.L., Park, J., McEuen, P.L.: The valley Hall effect in \(\text{ MoS }_2\) transistors. Science 344, 1489–1492 (2014)
23.
Zurück zum Zitat Huang, W., Da, H., Liang, G.: Thermoelectric performance of MX2 (M Mo, W; X S, Se) monolayers. J. Appl. Phys. 113, 104304 (2013) Huang, W., Da, H., Liang, G.: Thermoelectric performance of MX2 (M Mo, W; X S, Se) monolayers. J. Appl. Phys. 113, 104304 (2013)
24.
Zurück zum Zitat Guo, H., Yang, T., Tao, P., Wang, Y., Zhang, Z.: High pressure effect on structure, electronic structure, and thermoelectric properties of \(\text{ MoS }_2\). J. Appl. Phys. 113, 013709 (2013) Guo, H., Yang, T., Tao, P., Wang, Y., Zhang, Z.: High pressure effect on structure, electronic structure, and thermoelectric properties of \(\text{ MoS }_2\). J. Appl. Phys. 113, 013709 (2013)
25.
Zurück zum Zitat Wickramaratne, D., Zahid, F., Lake, R.K.: Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140, 124710 (2014) Wickramaratne, D., Zahid, F., Lake, R.K.: Electronic and thermoelectric properties of few-layer transition metal dichalcogenides. J. Chem. Phys. 140, 124710 (2014)
26.
Zurück zum Zitat Fan, D.D., Liu, H.J., Cheng, L., Jiang, P.H., Shi, J., Tang, X.F.: \(\rm MoS_2\) nanoribbons as promising thermoelectric materials. Appl. Phys. Lett. 105, 133113 (2014) Fan, D.D., Liu, H.J., Cheng, L., Jiang, P.H., Shi, J., Tang, X.F.: \(\rm MoS_2\) nanoribbons as promising thermoelectric materials. Appl. Phys. Lett. 105, 133113 (2014)
27.
Zurück zum Zitat Patil, S.B., Sankeshwar, N.S., Mulimani, B.G.: Role of charged impurities in thermoelectric transport in molybdenum disulfide monolayers. J. Phys.: Condens. Matter 29, 485303 (2017) Patil, S.B., Sankeshwar, N.S., Mulimani, B.G.: Role of charged impurities in thermoelectric transport in molybdenum disulfide monolayers. J. Phys.: Condens. Matter 29, 485303 (2017)
28.
Zurück zum Zitat Zhu, L., Zou, F., Gao, G., Yao, K.: Spin-dependent thermoelectric effects in \(Fe-C~6\) doped monolayer \(\rm MoS_2\). Sci. Rep. 7, 497 (2017) Zhu, L., Zou, F., Gao, G., Yao, K.: Spin-dependent thermoelectric effects in \(Fe-C~6\) doped monolayer \(\rm MoS_2\). Sci. Rep. 7, 497 (2017)
29.
Zurück zum Zitat Lv, Y.Z., Zhao, P., Liu, D.S.: Spin caloritronic transport of \((2\times 1)\) reconstructed zigzag \(\rm MoS_2\) nanoribbons. Chin. Phys. Lett. 34, 107301 (2017) Lv, Y.Z., Zhao, P., Liu, D.S.: Spin caloritronic transport of \((2\times 1)\) reconstructed zigzag \(\rm MoS_2\) nanoribbons. Chin. Phys. Lett. 34, 107301 (2017)
30.
Zurück zum Zitat Rostami, H., Asgari, R.: Valley Zeeman effect and spin-valley polarized conductance in monolayer \(\rm MoS_2\) in a perpendicular magnetic field. Phys. Rev. B Condens. Matter Mater. Phys. 91, 075433 (2015) Rostami, H., Asgari, R.: Valley Zeeman effect and spin-valley polarized conductance in monolayer \(\rm MoS_2\) in a perpendicular magnetic field. Phys. Rev. B Condens. Matter Mater. Phys. 91, 075433 (2015)
31.
Zurück zum Zitat Khoeini, F., Shakouri, K., Peeters, F.M.: Peculiar half-metallic state in zigzag nanoribbons of \(\text{ MoS }_2\): spin filtering. Phys. Rev. B 94, 125412 (2016) Khoeini, F., Shakouri, K., Peeters, F.M.: Peculiar half-metallic state in zigzag nanoribbons of \(\text{ MoS }_2\): spin filtering. Phys. Rev. B 94, 125412 (2016)
32.
Zurück zum Zitat Roldán, R., López-Sancho, M.P., Guinea, F., Cappelluti, E., Silva-Guillén, J.A., Ordejón, P.: Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Mater. 1, 034003 (2014) Roldán, R., López-Sancho, M.P., Guinea, F., Cappelluti, E., Silva-Guillén, J.A., Ordejón, P.: Momentum dependence of spin-orbit interaction effects in single-layer and multi-layer transition metal dichalcogenides. 2D Mater. 1, 034003 (2014)
33.
Zurück zum Zitat Cheng, S.G.: Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon. J. Phys.: Condens. Matter 24, 385302 (2012) Cheng, S.G.: Spin thermopower and thermoconductance in a ferromagnetic graphene nanoribbon. J. Phys.: Condens. Matter 24, 385302 (2012)
34.
Zurück zum Zitat Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F Met. Phys. 14, 1205–1215 (1984) Sancho, M.P.L., Sancho, J.M.L., Rubio, J.: Quick iterative scheme for the calculation of transfer matrices: application to Mo (100). J. Phys. F Met. Phys. 14, 1205–1215 (1984)
35.
Zurück zum Zitat Zberecki, K., Wierzbicki, M., Barnaå, J., Swirkowicz, R.: Thermoelectric effects in silicene nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys. 88, 115404 (2013) Zberecki, K., Wierzbicki, M., Barnaå, J., Swirkowicz, R.: Thermoelectric effects in silicene nanoribbons. Phys. Rev. B Condens. Matter Mater. Phys. 88, 115404 (2013)
36.
Zurück zum Zitat Świrkowicz, R., Wierzbicki, M., Barnaś, J.: Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments. Phys. Rev. B Condens. Matter Mater. Phys. 80, 195409 (2009) Świrkowicz, R., Wierzbicki, M., Barnaś, J.: Thermoelectric effects in transport through quantum dots attached to ferromagnetic leads with noncollinear magnetic moments. Phys. Rev. B Condens. Matter Mater. Phys. 80, 195409 (2009)
37.
Zurück zum Zitat Trocha, P., Barna, J.: Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena. Phys. Rev. B Condens. Matter Mater. Phys. 85, 085408 (2012) Trocha, P., Barna, J.: Large enhancement of thermoelectric effects in a double quantum dot system due to interference and Coulomb correlation phenomena. Phys. Rev. B Condens. Matter Mater. Phys. 85, 085408 (2012)
38.
Zurück zum Zitat Zhang, Z., Xie, Y., Peng, Q., Chen, Y.: A theoretical prediction of super high-performance thermoelectric materials based on \(\rm MoS_2/WS_2\) hybrid nanoribbons. Sci. Rep. 6, 13706 (2016) Zhang, Z., Xie, Y., Peng, Q., Chen, Y.: A theoretical prediction of super high-performance thermoelectric materials based on \(\rm MoS_2/WS_2\) hybrid nanoribbons. Sci. Rep. 6, 13706 (2016)
39.
Zurück zum Zitat Menichetti, G., Grosso, G., Parravicini, G.P.: Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields. J. Phys. Commun. 2, 055026 (2018) Menichetti, G., Grosso, G., Parravicini, G.P.: Analytic treatment of the thermoelectric properties for two coupled quantum dots threaded by magnetic fields. J. Phys. Commun. 2, 055026 (2018)
40.
Zurück zum Zitat Zhang, Z., Xie, Y., Peng, Q., Chen, Y.: A theoretical prediction of super high-performance thermoelectric materials based on \(\rm MoS_2/WS_2\) hybrid nanoribbons. Sci. Rep. 6, 21639 (2016) Zhang, Z., Xie, Y., Peng, Q., Chen, Y.: A theoretical prediction of super high-performance thermoelectric materials based on \(\rm MoS_2/WS_2\) hybrid nanoribbons. Sci. Rep. 6, 21639 (2016)
41.
Zurück zum Zitat Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002) Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The SIESTA method for ab initio order-N materials simulation. J. Phys.: Condens. Matter 14, 2745–2779 (2002)
42.
Zurück zum Zitat Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B Condens. Matter Mater. Phys. 65, 165401 (2002) Brandbyge, M., Mozos, J.L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B Condens. Matter Mater. Phys. 65, 165401 (2002)
43.
Zurück zum Zitat Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980) Ceperley, D.M., Alder, B.J.: Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45, 566–569 (1980)
44.
Zurück zum Zitat Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981) Perdew, J.P., Zunger, A.: Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23, 5048–5079 (1981)
45.
Zurück zum Zitat Swartz, A.G., Odenthal, P.M., Hao, Y., Ruoff, R.S., Kawakami, R.K.: Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6, 10063–10069 (2012) Swartz, A.G., Odenthal, P.M., Hao, Y., Ruoff, R.S., Kawakami, R.K.: Integration of the ferromagnetic insulator EuO onto graphene. ACS Nano 6, 10063–10069 (2012)
46.
Zurück zum Zitat Chu, R.L., Bin Liu, G., Yao, W., Xu, X., Xiao, D., Zhang, C.: Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B Condens. Matter Mater. Phys. 89, 155317 (2014) Chu, R.L., Bin Liu, G., Yao, W., Xu, X., Xiao, D., Zhang, C.: Spin-orbit-coupled quantum wires and Majorana fermions on zigzag edges of monolayer transition-metal dichalcogenides. Phys. Rev. B Condens. Matter Mater. Phys. 89, 155317 (2014)
47.
Zurück zum Zitat Ghorbani-Asl, M., Enyashin, A.N., Kuc, A., Seifert, G., Heine, T.: Defect-induced conductivity anisotropy in \(\text{ MoS }_2\) monolayers. Phys. Rev. B Condens. Matter Mater. Phys. 88, 245440 (2013) Ghorbani-Asl, M., Enyashin, A.N., Kuc, A., Seifert, G., Heine, T.: Defect-induced conductivity anisotropy in \(\text{ MoS }_2\) monolayers. Phys. Rev. B Condens. Matter Mater. Phys. 88, 245440 (2013)
48.
Zurück zum Zitat Ma, J., Alfè, D., Michaelides, A., Wang, E.: Stone–Wales defects in graphene and other planar \(sp^{2}\)-bonded materials. Phys. Rev. B Condens. Matter Mater. Phys. 80, 033407 (2009) Ma, J., Alfè, D., Michaelides, A., Wang, E.: Stone–Wales defects in graphene and other planar \(sp^{2}\)-bonded materials. Phys. Rev. B Condens. Matter Mater. Phys. 80, 033407 (2009)
Metadaten
Titel
Near-room-temperature spin caloritronics in a magnetized and defective zigzag MoS2 nanoribbon
verfasst von
Farahnaz Zakerian
Morteza Fathipour
Rahim Faez
Ghafar Darvish
Publikationsdatum
25.11.2019
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 1/2020
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-019-01406-3

Weitere Artikel der Ausgabe 1/2020

Journal of Computational Electronics 1/2020 Zur Ausgabe

Neuer Inhalt