Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

11.10.2016 | Foundations | Ausgabe 23/2017

Soft Computing 23/2017

Neighborhood rough set reduction with fish swarm algorithm

Zeitschrift:
Soft Computing > Ausgabe 23/2017
Autoren:
Yumin Chen, Zhiqiang Zeng, Junwen Lu
Wichtige Hinweise
Communicated by A. Di Nola.

Abstract

Feature reduction refers to the problem of deleting those input features that are less predictive of a given outcome; a problem encountered in many areas such as pattern recognition, machine learning and data mining. In particular, it has been successfully applied in tasks that involve datasets containing huge numbers of features. Rough set theory has been used as such a data set preprocessor with much success, but current methods are inadequate at solving the problem of numerical feature reduction. As the classical rough set model can just be used to evaluate categorical features, we introduce a neighborhood rough set model to deal with numerical datasets by defining a neighborhood relation. However, this method is still not enough to find the optimal subsets regularly. In this paper, we propose a new feature reduction mechanism based on fish swarm algorithm (FSA) in an attempt to polish up this. The method is then applied to the problem of finding optimal feature subsets in the neighborhood rough set reduction process. We define three foraging behaviors of fish to find the optimal subsets and a fitness function to evaluate the best solutions. We construct the neighborhood feature reduction algorithm based on FSA and design some experiments comparing with a heuristic neighborhood feature reduction method. Experimental results show that the FSA-based neighborhood reduction method is suitable to deal with numerical data and more possibility to find an optimal reduct.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe​​​​​​​




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 23/2017

Soft Computing 23/2017 Zur Ausgabe

Premium Partner

    Bildnachweise