Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

30.12.2017 | Original Article | Ausgabe 8/2019

Neural Computing and Applications 8/2019

Neo-fuzzy neuron learning using backfitting algorithm

Zeitschrift:
Neural Computing and Applications > Ausgabe 8/2019
Autoren:
Jérôme Mendes, Francisco Souza, Rui Araújo, Saeid Rastegar

Abstract

This paper proposes an automatic and simple approach to design a neo-fuzzy neuron for identification purposes. The proposed approach uses the backfitting algorithm to learn multiple univariate additive models, where each additive model is a zero-order T-S fuzzy system which is a function of one input variable, and there is one additive model for each input variable. The multiple zero-order T-S fuzzy models constitute a neo-fuzzy neuron. The structure of the model used in this paper allows to have results with good interpretability and accuracy. To validate and demonstrate the performance and effectiveness of the proposed approach, it is applied on 10 benchmark data sets and compared with the extreme learning machine (ELM), support vector regression (SVR) algorithms, and two algorithms for design neo-fuzzy neuron systems, an adaptive learning algorithm for a neo-fuzzy neuron systems (ALNFN), and a fuzzy Kolmogorov’s network (FKN). A statistical paired t test analysis is also presented to compare the proposed approach with ELM, SVR, ALNFN, and FKN with the aim to see whether the results of the proposed approach are statistically different from ELM, SVR, ALNFN, and FKN. The results indicate that the proposed approach outperforms ELM and FKN in all data sets and outperforms SVR and ALNFN in almost all data sets that they were statistically different in almost all data sets and that in most data sets the number of fuzzy rules selected by cross-validation was small obtaining a model with a small complexity and good interpretability capability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 8/2019

Neural Computing and Applications 8/2019 Zur Ausgabe

Premium Partner

    Bildnachweise