Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

01.09.2020

Network Planning for Deep Fading Area at 1.8 GHz LTE Network

verfasst von: Piyush Yadav, Kushaagra Maheshwari, Abhijeet Kumar Lal, Rajeev Agrawal

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the current scenario path loss, coverage and capacity by operating network under fading condition is research challenge. In this paper, signal strength of long term evolution network operating at 1.8 GHz is recorded for analysis. During the measurement, the range of received signal strength varies in between − 72 and − 104 dBm for basement data transmission. The variation of received signal at 12 distinct points in the basement was marked sincerely. Based on this received signal the link budget is formulated and presented. The capacity of a network on given link budget is calculated and verified. The data recorded for such environment using spectrum analyzer and simulating with Matlab is presented. The behaviour of signal referred to a value of path loss exponent i.e. 4.55. The path loss exponent provides the real coverage under urban area in fading condition. Using different models of prediction, real path loss under fading is calculated and based upon this path loss value a model is proposed for next generation networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alqudah, Y. A. (2012). Path loss modeling based on field measurements using deployed 3.5 GHz WiMAX network. Wireless Personal Communication, 69, 793–803.CrossRef Alqudah, Y. A. (2012). Path loss modeling based on field measurements using deployed 3.5 GHz WiMAX network. Wireless Personal Communication, 69, 793–803.CrossRef
2.
Zurück zum Zitat Kazi, B. U., & Wainer, G. A. (2019). Next generation wireless cellular networks: Ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25, 2041–2064.CrossRef Kazi, B. U., & Wainer, G. A. (2019). Next generation wireless cellular networks: Ultra-dense multi-tier and multi-cell cooperation perspective. Wireless Networks, 25, 2041–2064.CrossRef
4.
Zurück zum Zitat Ahmed, B. T., Campos, J. L. M., & Mayordomo, J. M. L. (2012). Propagation path loss and materials insertion loss in indoor environment at WiMax band of 3.3–3.6 GHz. Wireless Personal Communication, 66, 251–260.CrossRef Ahmed, B. T., Campos, J. L. M., & Mayordomo, J. M. L. (2012). Propagation path loss and materials insertion loss in indoor environment at WiMax band of 3.3–3.6 GHz. Wireless Personal Communication, 66, 251–260.CrossRef
5.
Zurück zum Zitat Elechi, P., & Otasowie, P. O. (2016). Comparison of empirical path loss propagation models with building penetration path loss models. International Journal on Communications Antenna and Propagation, 6(2), 116–123. Elechi, P., & Otasowie, P. O. (2016). Comparison of empirical path loss propagation models with building penetration path loss models. International Journal on Communications Antenna and Propagation, 6(2), 116–123.
6.
Zurück zum Zitat Athanasiadou, G., Tsoulos, G., Zarbouti, D., & Valavanis, I. (2019). Optimizing radio network planning evolution towards microcellular systems. Wireless Personal Communications, 106, 521–534.CrossRef Athanasiadou, G., Tsoulos, G., Zarbouti, D., & Valavanis, I. (2019). Optimizing radio network planning evolution towards microcellular systems. Wireless Personal Communications, 106, 521–534.CrossRef
7.
Zurück zum Zitat Sharma, S., & Singh, B. (2013). WiMAX network for capacity and coverage assessment. Wireless Personal Communications, 75(2), 1573–1586.CrossRef Sharma, S., & Singh, B. (2013). WiMAX network for capacity and coverage assessment. Wireless Personal Communications, 75(2), 1573–1586.CrossRef
8.
Zurück zum Zitat Sharma, S., & Singh, B. (2013). Experimental study of a fixed WiMAX network at 2.62 GHz. Wireless Personal Communications, 72(4), 2127–2141.CrossRef Sharma, S., & Singh, B. (2013). Experimental study of a fixed WiMAX network at 2.62 GHz. Wireless Personal Communications, 72(4), 2127–2141.CrossRef
9.
Zurück zum Zitat Ibrahim, A., Alsharekh, M., Almanee, M., Al-Turki, A., & Islam, M. (2019). Link budget design for RF line-of-sight via theoretical propagation prediction. International Journal of Communications, Network and System Science, 12(1), 11–17.CrossRef Ibrahim, A., Alsharekh, M., Almanee, M., Al-Turki, A., & Islam, M. (2019). Link budget design for RF line-of-sight via theoretical propagation prediction. International Journal of Communications, Network and System Science, 12(1), 11–17.CrossRef
10.
Zurück zum Zitat Kashif, M., Khan, N., & Altalbe, A. (2020). Hybrid optical-radio transmission system link quality: link budget analysis. IEEE Access, 8, 65983–65992.CrossRef Kashif, M., Khan, N., & Altalbe, A. (2020). Hybrid optical-radio transmission system link quality: link budget analysis. IEEE Access, 8, 65983–65992.CrossRef
12.
Zurück zum Zitat Tlebaldiyeva, L., Maham, B., & Tsiftsis, T. A. (2020). Capacity analysis of device-to-device mmWave networks under transceiver distortion noise and imperfect CSI. IEEE Transactions on Vehicular Technology, 69(5), 5707–5712.CrossRef Tlebaldiyeva, L., Maham, B., & Tsiftsis, T. A. (2020). Capacity analysis of device-to-device mmWave networks under transceiver distortion noise and imperfect CSI. IEEE Transactions on Vehicular Technology, 69(5), 5707–5712.CrossRef
13.
Zurück zum Zitat Yadav, P., & Agrawal, R. (2019). Network selection for maximum coverage using regression analysis in deep fading environment. Wireless Personal Communication, 106(3), 1057–1074.CrossRef Yadav, P., & Agrawal, R. (2019). Network selection for maximum coverage using regression analysis in deep fading environment. Wireless Personal Communication, 106(3), 1057–1074.CrossRef
14.
Zurück zum Zitat Sreedevi, A. G., Rao, T. R., & Susila, M. (2019). Measurements at 2.4, 3.4, 5.2, 28 and 60 GHz for device-to-device wireless communications. Wireless Personal Communications, 108(3), 1733–1743.CrossRef Sreedevi, A. G., Rao, T. R., & Susila, M. (2019). Measurements at 2.4, 3.4, 5.2, 28 and 60 GHz for device-to-device wireless communications. Wireless Personal Communications, 108(3), 1733–1743.CrossRef
15.
Zurück zum Zitat Atanasov, P., & Kiss’ovski, Z. (2017). Optimization of path loss models based on signal level measurements in 4G LTE network in Sofia. Bulgarian Journal of Physics, 44(2), 145–154. Atanasov, P., & Kiss’ovski, Z. (2017). Optimization of path loss models based on signal level measurements in 4G LTE network in Sofia. Bulgarian Journal of Physics, 44(2), 145–154.
16.
Zurück zum Zitat Sharma, P. K., Sharma, D., Sau, P. C., & Gupta, A. (2016). Comparative analysis of propagation models in LTE networks with spline interpolation. In International conference on communication control and intelligent systems (CCIS 2016), Mathura, India. Sharma, P. K., Sharma, D., Sau, P. C., & Gupta, A. (2016). Comparative analysis of propagation models in LTE networks with spline interpolation. In International conference on communication control and intelligent systems (CCIS 2016), Mathura, India.
17.
Zurück zum Zitat Cabuk, U. C., & Dalkilic, G. (2018). A path loss analysis on LTE radio in Eastern Market Districts. In International conference on artificial intelligence and data processing (IDAP 2018), Malatya, Turkey. Cabuk, U. C., & Dalkilic, G. (2018). A path loss analysis on LTE radio in Eastern Market Districts. In International conference on artificial intelligence and data processing (IDAP 2018), Malatya, Turkey.
18.
Zurück zum Zitat Ahuja, K., Singh, B., & Khanna, R. (2014). Network selection algorithm based on link quality parameters for heterogeneous wireless network. Optik, 125(14), 3657–3662.CrossRef Ahuja, K., Singh, B., & Khanna, R. (2014). Network selection algorithm based on link quality parameters for heterogeneous wireless network. Optik, 125(14), 3657–3662.CrossRef
19.
Zurück zum Zitat Ramkumar, J., & Gunasekaran, R. (2013). A new path loss model for LTE network to address propagation delay. International Journal of Computer and Communication Engineering, 2(4), 413–416.CrossRef Ramkumar, J., & Gunasekaran, R. (2013). A new path loss model for LTE network to address propagation delay. International Journal of Computer and Communication Engineering, 2(4), 413–416.CrossRef
20.
Zurück zum Zitat Hu, H., Zhang, J., Zheng, X., Yang, Y., & Wu, P. (2010). Self-configuration and self optimization for LTE networks. IEEE Communications Magazine, 48(2), 94–100.CrossRef Hu, H., Zhang, J., Zheng, X., Yang, Y., & Wu, P. (2010). Self-configuration and self optimization for LTE networks. IEEE Communications Magazine, 48(2), 94–100.CrossRef
21.
Zurück zum Zitat Obeidat, H. A., Asif, R., Ali, N. T., Dama, Y. A., Obeidat, O. A., Jones, S. M. R., et al. (2018). An indoor path loss prediction model using wall correction factors for wireless local area network and 5G indoor networks. Radio Science, 53, 544–564.CrossRef Obeidat, H. A., Asif, R., Ali, N. T., Dama, Y. A., Obeidat, O. A., Jones, S. M. R., et al. (2018). An indoor path loss prediction model using wall correction factors for wireless local area network and 5G indoor networks. Radio Science, 53, 544–564.CrossRef
22.
Zurück zum Zitat Swain, C. M. K., & Das, S. (2017). Estimation of path loss model for a 2.65 GHz mobile WiMAX network deployed in a sub-urban environment with regression techniques. Wireless Personal Communications, 99, 283–297.CrossRef Swain, C. M. K., & Das, S. (2017). Estimation of path loss model for a 2.65 GHz mobile WiMAX network deployed in a sub-urban environment with regression techniques. Wireless Personal Communications, 99, 283–297.CrossRef
23.
Zurück zum Zitat Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for Indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.CrossRef Seidel, S. Y., & Rappaport, T. S. (1992). 914 MHz path loss prediction models for Indoor wireless communications in multifloored buildings. IEEE Transactions on Antennas and Propagation, 40(2), 207–217.CrossRef
26.
Zurück zum Zitat Rappaport, T. S. (2007). Wireless communications (2nd ed.). New Delhi: PHI. Rappaport, T. S. (2007). Wireless communications (2nd ed.). New Delhi: PHI.
27.
Zurück zum Zitat MATLAB and Statistics Toolbox Release (2017b). The MathWorks, Inc., Natick, Massachusetts, United States. MATLAB and Statistics Toolbox Release (2017b). The MathWorks, Inc., Natick, Massachusetts, United States.
28.
Zurück zum Zitat Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRef
Metadaten
Titel
Network Planning for Deep Fading Area at 1.8 GHz LTE Network
verfasst von
Piyush Yadav
Kushaagra Maheshwari
Abhijeet Kumar Lal
Rajeev Agrawal
Publikationsdatum
01.09.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07788-z

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt