Skip to main content
Erschienen in: Wireless Networks 8/2020

22.07.2020

Network traffic prediction based on INGARCH model

verfasst von: Meejoung Kim

Erschienen in: Wireless Networks | Ausgabe 8/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we introduce the integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) as a network traffic prediction model. As the INGARCH is known as a non-linear analytical model that could capture the characteristics of network traffic such as Poisson packet arrival and long-range dependence property, INGARCH seems to be an adequate model for network traffic prediction. Based on the investigation for the traffic arrival process in various network topologies including IoT and VANET, we could confirm that assuming the Poisson process as packet arrival works for some networks and environments of networks. The prediction model is generated by estimating parameters of the INGARCH process and predicting the Poisson parameters of future-steps ahead process using the conditional maximum likelihood estimation method and prediction procedure, respectively. Its performance is compared with those of three different models; autoregressive integrated moving average, GARCH, and long short-term memory recurrent neural network. Anonymized passive traffic traces provided by the Center for Applied Internet Data Analysis are used in the experiment. Numerical results show that the proposed model predicts better than the three models in terms of measurements used in prediction models. Based on the study, we can conclude the followings: INGARCH can capture the characteristics of network traffic better than other statistic models, it is more tractable than neural networks (NNs) overcoming the black-box nature of NNs, and the performances of some statistical models are comparable or even superior to those of NNs, especially when the data is insufficient to apply deep NNs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhan, M. F., & Elbiaze, H. (2009). Analysis and prediction of real network traffic. Journal of Networks, 4(9), 855–865. Zhan, M. F., & Elbiaze, H. (2009). Analysis and prediction of real network traffic. Journal of Networks, 4(9), 855–865.
3.
Zurück zum Zitat Amiri, M., & Mohammad-Khanli, L. (2017). Survey on prediction models of applications for resources provisioning in Cloud. Journal of Network and Computer Applications, 82, 93–113.CrossRef Amiri, M., & Mohammad-Khanli, L. (2017). Survey on prediction models of applications for resources provisioning in Cloud. Journal of Network and Computer Applications, 82, 93–113.CrossRef
4.
Zurück zum Zitat Chakraborty, D., Ashir, A., Suganuma, T., Keeni, G. M., Roy, T. K., & Shiratori, N. (2004). Self-similar and fractal nature of Internet traffic. International Journal of Network Management, 12(2), 119–129.CrossRef Chakraborty, D., Ashir, A., Suganuma, T., Keeni, G. M., Roy, T. K., & Shiratori, N. (2004). Self-similar and fractal nature of Internet traffic. International Journal of Network Management, 12(2), 119–129.CrossRef
5.
Zurück zum Zitat Karagiannis, T., Molle, M., & Faloutsos, M. (2004). Long-range dependence ten years of Internet traffic modeling. IEEE Internet Computing, 8(5), 57–64.CrossRef Karagiannis, T., Molle, M., & Faloutsos, M. (2004). Long-range dependence ten years of Internet traffic modeling. IEEE Internet Computing, 8(5), 57–64.CrossRef
6.
Zurück zum Zitat Cao, J., Cleveland, W. S., Lin, D., & Sun, D. X. (2001). On the nonstationarity of Internet traffic. In Proceedings of ACM SIGMETRICS (pp. 102–112). Cao, J., Cleveland, W. S., Lin, D., & Sun, D. X. (2001). On the nonstationarity of Internet traffic. In Proceedings of ACM SIGMETRICS (pp. 102–112).
7.
Zurück zum Zitat Hoßfeld, T., Metzger, F., & Heegaard, P. E. (2018). Traffic modeling for aggregated periodic IoT data. In Proceedings of ICIN (pp. 1–8). Hoßfeld, T., Metzger, F., & Heegaard, P. E. (2018). Traffic modeling for aggregated periodic IoT data. In Proceedings of ICIN (pp. 1–8).
8.
Zurück zum Zitat Koukoutsidis, I. & Siris, V. A. (2007). Modeling approximations for an IEEE 802.11 WLAN Under Poisson MAC-Level Arrivals. In Proceedings of networking (pp. 439–449). Koukoutsidis, I. & Siris, V. A. (2007). Modeling approximations for an IEEE 802.11 WLAN Under Poisson MAC-Level Arrivals. In Proceedings of networking (pp. 439–449).
9.
Zurück zum Zitat : Oh, Y. & Hwang, G. (2018). Spatial modelling and analysis of WLAN with Poisson point process. In Proceedings of QTNA (pp. 145–159). : Oh, Y. & Hwang, G. (2018). Spatial modelling and analysis of WLAN with Poisson point process. In Proceedings of QTNA (pp. 145–159).
10.
Zurück zum Zitat Guo, J., Zhang, Y., Chen, X., & Wang, Y. (2017). Spatial stochastic vehicle traffic modeling for VANETs. IEEE Transactions on Intelligent Transportation Systems, 99, 1–10. Guo, J., Zhang, Y., Chen, X., & Wang, Y. (2017). Spatial stochastic vehicle traffic modeling for VANETs. IEEE Transactions on Intelligent Transportation Systems, 99, 1–10.
11.
Zurück zum Zitat Heath, R. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126.MathSciNetMATHCrossRef Heath, R. W., Kountouris, M., & Bai, T. (2013). Modeling heterogeneous network interference using Poisson point processes. IEEE Transactions on Signal Processing, 61(16), 4114–4126.MathSciNetMATHCrossRef
12.
Zurück zum Zitat Gulati, K., Evans, B. L., Andrews, J. G., & Tinsley, K. R. (2010). Statistics of co-channel interference in a field of Poisson and Poisson–Poisson clustered interferers. IEEE Transactions on Signal Processing, 58(12), 6207–6222.MathSciNetMATHCrossRef Gulati, K., Evans, B. L., Andrews, J. G., & Tinsley, K. R. (2010). Statistics of co-channel interference in a field of Poisson and Poisson–Poisson clustered interferers. IEEE Transactions on Signal Processing, 58(12), 6207–6222.MathSciNetMATHCrossRef
13.
Zurück zum Zitat Suarez, C. A. H., Parra, O. J. S., & Díaz, A. E. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Revista Ingenieria E Investigacion, 29(2), 65–69. Suarez, C. A. H., Parra, O. J. S., & Díaz, A. E. (2009). An ARIMA model for forecasting Wi-Fi data network traffic values. Revista Ingenieria E Investigacion, 29(2), 65–69.
14.
Zurück zum Zitat Laner, M., Svoboda, P., & Rupp, M. (2013). Parsimonious fitting of long-range dependent network traffic using ARMA models. IEEE Communications Letters, 17(12), 2368–2371.CrossRef Laner, M., Svoboda, P., & Rupp, M. (2013). Parsimonious fitting of long-range dependent network traffic using ARMA models. IEEE Communications Letters, 17(12), 2368–2371.CrossRef
15.
Zurück zum Zitat Xu, S., & Zeng, B. (2014). Network traffic prediction model based on auto-regressive moving average. Journal of Networks, 9(3), 653–659.CrossRef Xu, S., & Zeng, B. (2014). Network traffic prediction model based on auto-regressive moving average. Journal of Networks, 9(3), 653–659.CrossRef
16.
Zurück zum Zitat Zhou, D., Chen, S., & Dong, S. (2012). Network traffic prediction based on ARFIMA model. International Journal of Computer Science Issues, 9(6, 3), 106–111. Zhou, D., Chen, S., & Dong, S. (2012). Network traffic prediction based on ARFIMA model. International Journal of Computer Science Issues, 9(6, 3), 106–111.
17.
Zurück zum Zitat Jiang, D., & Hu, G. (2009). GARCH model-based large-scale IP traffic matrix estimation. IEEE Communications Letters, 13(1), 52–54.MathSciNetCrossRef Jiang, D., & Hu, G. (2009). GARCH model-based large-scale IP traffic matrix estimation. IEEE Communications Letters, 13(1), 52–54.MathSciNetCrossRef
18.
Zurück zum Zitat Ntlangu, B., & Baghai-Wadji, A. (2017). Modelling network traffic using time series analysis: A Review. In Proceedings of BDIoT (pp. 209–215). Ntlangu, B., & Baghai-Wadji, A. (2017). Modelling network traffic using time series analysis: A Review. In Proceedings of BDIoT (pp. 209–215).
19.
Zurück zum Zitat Kim, S. (2011). Forecasting Internet traffic by using seasonal GARCH models. Journal of Communications and Networks, 13(6), 621–624.CrossRef Kim, S. (2011). Forecasting Internet traffic by using seasonal GARCH models. Journal of Communications and Networks, 13(6), 621–624.CrossRef
20.
Zurück zum Zitat Chen, C., Hu, J., Meng, Q., & Zhang, Y. (2011). Short-time traffic flow prediction with ARIMA-GARCH Model. In Proceedings of IEEE IV (pp. 607–612). Chen, C., Hu, J., Meng, Q., & Zhang, Y. (2011). Short-time traffic flow prediction with ARIMA-GARCH Model. In Proceedings of IEEE IV (pp. 607–612).
21.
Zurück zum Zitat Zeng, D., Xu, J., Gu, J., Liu, L., & Xu, G. (2008) Short term traffic flow prediction using hybrid ARIMA and ANN models. In Proceedings of PEITS (pp. 621–625). Zeng, D., Xu, J., Gu, J., Liu, L., & Xu, G. (2008) Short term traffic flow prediction using hybrid ARIMA and ANN models. In Proceedings of PEITS (pp. 621–625).
22.
Zurück zum Zitat Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11, 2664–2675.CrossRef Khashei, M., & Bijari, M. (2011). A novel hybridization of artificial neural networks and ARIMA models for time series forecasting. Applied Soft Computing, 11, 2664–2675.CrossRef
23.
Zurück zum Zitat Babu, C. N., & Reddy, B. E. (2015). Performance comparison of four new ARIMA-ANN prediction models on Internet traffic data. Journal of Telecommunications and Information Technology, 1, 67–75. Babu, C. N., & Reddy, B. E. (2015). Performance comparison of four new ARIMA-ANN prediction models on Internet traffic data. Journal of Telecommunications and Information Technology, 1, 67–75.
24.
Zurück zum Zitat Li, K. -L., Zhai, C. -J., & Xu, J. -M. (2017). Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ANN. In Proceedings of CAC (pp. 2804–2807). Li, K. -L., Zhai, C. -J., & Xu, J. -M. (2017). Short-term traffic flow prediction using a methodology based on ARIMA and RBF-ANN. In Proceedings of CAC (pp. 2804–2807).
25.
Zurück zum Zitat Katris, C., & Daskalaki, S. (2015). Comparing forecasting approaches for Internet traffic. Expert Systems with Applications, 42, 1872–8183.MATHCrossRef Katris, C., & Daskalaki, S. (2015). Comparing forecasting approaches for Internet traffic. Expert Systems with Applications, 42, 1872–8183.MATHCrossRef
26.
Zurück zum Zitat Chabaa, S., Zeroual, A., & Antari, J. (2010). Identification and prediction of internet traffic using artificial neural networks. Journal of Intelligent Learning Systems and Applications, 2, 147–155.CrossRef Chabaa, S., Zeroual, A., & Antari, J. (2010). Identification and prediction of internet traffic using artificial neural networks. Journal of Intelligent Learning Systems and Applications, 2, 147–155.CrossRef
27.
Zurück zum Zitat Luo, Y. (2015). Network traffic prediction based on LMD and neural network. In Proceedings of ICMMITA (pp. 371–374). Luo, Y. (2015). Network traffic prediction based on LMD and neural network. In Proceedings of ICMMITA (pp. 371–374).
28.
Zurück zum Zitat Zhuo, Q., Li, Q., Yan, H., & Qi, Y. (2017). Long short-term memory neural network for network traffic prediction. In Proceedings of ISKE (pp. 1–6). Zhuo, Q., Li, Q., Yan, H., & Qi, Y. (2017). Long short-term memory neural network for network traffic prediction. In Proceedings of ISKE (pp. 1–6).
29.
Zurück zum Zitat Li, R., Zhao, Z., Zheng, J., Mei, C., Cai, Y., & Zhang, H. (2017). The learning and prediction of application-level traffic data in cellular networks. IEEE Transactions on Wireless Communications, 16(6), 3899–3912.CrossRef Li, R., Zhao, Z., Zheng, J., Mei, C., Cai, Y., & Zhang, H. (2017). The learning and prediction of application-level traffic data in cellular networks. IEEE Transactions on Wireless Communications, 16(6), 3899–3912.CrossRef
30.
Zurück zum Zitat Qiu, C., Zhang, Y., Feng, Z., Zhang, P., & Cui, S. (2018). Spatio-temporal wireless traffic prediction with recurrent neural network. IEEE Wireless Communications letters, 7(4), 554–557.CrossRef Qiu, C., Zhang, Y., Feng, Z., Zhang, P., & Cui, S. (2018). Spatio-temporal wireless traffic prediction with recurrent neural network. IEEE Wireless Communications letters, 7(4), 554–557.CrossRef
31.
Zurück zum Zitat Dalgkitsis, A., Louta, M., & Karetsos, G. T. (2018). Traffic forecasting in cellular networks using the LSTM RNN. In Proceedings of PCI (pp. 28–33). Dalgkitsis, A., Louta, M., & Karetsos, G. T. (2018). Traffic forecasting in cellular networks using the LSTM RNN. In Proceedings of PCI (pp. 28–33).
32.
Zurück zum Zitat Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., & Bertin, P. (2018). Improving traffic forecasting for 5G core network scalability: A machine learning approach. IEEE Network, 32(6), 42–49.CrossRef Alawe, I., Ksentini, A., Hadjadj-Aoul, Y., & Bertin, P. (2018). Improving traffic forecasting for 5G core network scalability: A machine learning approach. IEEE Network, 32(6), 42–49.CrossRef
33.
Zurück zum Zitat Mozo, A., Ordozgoiti, B., & Gómez-Canaval, S. (2018). Forecasting short-term data center network traffic load with convolutional neural networks. PLoS ONE, 13(2), e0191939.CrossRef Mozo, A., Ordozgoiti, B., & Gómez-Canaval, S. (2018). Forecasting short-term data center network traffic load with convolutional neural networks. PLoS ONE, 13(2), e0191939.CrossRef
34.
Zurück zum Zitat Nie, L., Wang, X., Wan, L., Yu, S., Song, H., & Jiang, D. (2018). Network traffic prediction based on deep belief network and spatiotemporal compressive sensing in wireless mesh backbone networks. Wireless Communications and Mobile Computing, Article ID 1260860, 10 pages. Nie, L., Wang, X., Wan, L., Yu, S., Song, H., & Jiang, D. (2018). Network traffic prediction based on deep belief network and spatiotemporal compressive sensing in wireless mesh backbone networks. Wireless Communications and Mobile Computing, Article ID 1260860, 10 pages.
35.
Zurück zum Zitat Kim, M. (2019). Supervised learn-based DDoS attacks detection: Tuning hyperparameters. ETRI Journal, 41(5), 560–573.CrossRef Kim, M. (2019). Supervised learn-based DDoS attacks detection: Tuning hyperparameters. ETRI Journal, 41(5), 560–573.CrossRef
36.
Zurück zum Zitat Chen, Z., Wen, J., & Geng, Y. (2016). Predicting future traffic using hidden Markov models. In Proceedings of IEEE ICNP (pp. 1–6). Chen, Z., Wen, J., & Geng, Y. (2016). Predicting future traffic using hidden Markov models. In Proceedings of IEEE ICNP (pp. 1–6).
37.
Zurück zum Zitat Maheshwari, S., Mahapatra, S., Kumar, C. S., & Vasu, K. (2013). A joint parametric prediction model for wireless internet traffic using Hidden Markov Model. Wireless Networks, 19(6), 1171–1185.CrossRef Maheshwari, S., Mahapatra, S., Kumar, C. S., & Vasu, K. (2013). A joint parametric prediction model for wireless internet traffic using Hidden Markov Model. Wireless Networks, 19(6), 1171–1185.CrossRef
38.
Zurück zum Zitat Li, R., Zhao, Z., Zhou, X., Palicot, J., & Zhang, H. (2014). The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice. IEEE Communications Magazine, 52(6), 234–240.CrossRef Li, R., Zhao, Z., Zhou, X., Palicot, J., & Zhang, H. (2014). The prediction analysis of cellular radio access network traffic: From entropy theory to networking practice. IEEE Communications Magazine, 52(6), 234–240.CrossRef
39.
Zurück zum Zitat Bayati, A., Nguyen, K., & Cheriet, M. (2018). Multiple-step-ahead traffic prediction in high-speed networks. IEEE Communications Letters, 22(12), 244–2450.CrossRef Bayati, A., Nguyen, K., & Cheriet, M. (2018). Multiple-step-ahead traffic prediction in high-speed networks. IEEE Communications Letters, 22(12), 244–2450.CrossRef
40.
Zurück zum Zitat Tran, Q. T., Li, H., & Trinh, Q. K. (2019). Cellular network traffic prediction using exponential smoothing methods. Journal of Information and Communications Technology, 18(1), 1–18.CrossRef Tran, Q. T., Li, H., & Trinh, Q. K. (2019). Cellular network traffic prediction using exponential smoothing methods. Journal of Information and Communications Technology, 18(1), 1–18.CrossRef
41.
Zurück zum Zitat Iqbal, M. F., Zahid, M., Habib, D., & John, L. K. (2019). Efficient prediction of network traffic for real-time applications. Journal of Computer Networks and Communications, Article ID 4067135, 11 pages. Iqbal, M. F., Zahid, M., Habib, D., & John, L. K. (2019). Efficient prediction of network traffic for real-time applications. Journal of Computer Networks and Communications, Article ID 4067135, 11 pages.
43.
Zurück zum Zitat Doukhan, P., Oppenheim, G., & Taqqu, M. (Eds.). (2003). Theory and applications of long-range dependence. Basel: Birkhäuser.MATH Doukhan, P., Oppenheim, G., & Taqqu, M. (Eds.). (2003). Theory and applications of long-range dependence. Basel: Birkhäuser.MATH
44.
Zurück zum Zitat Maheu, J. (2007). Can GARCH models capture long-range dependence? Studies in Nonlinear Dynamics & Econometrics, 9(4), 1–41.MathSciNetMATH Maheu, J. (2007). Can GARCH models capture long-range dependence? Studies in Nonlinear Dynamics & Econometrics, 9(4), 1–41.MathSciNetMATH
45.
Zurück zum Zitat Sun, W. Rachev, S. Z., & Fabozzi, F. (2008). Long-range dependence, fractal processes, and intra daily data. In D. Seese, C. Weinhardt, and F. Schlottmann (Eds.), Handbook on Information Technology in Finance (pp. 543–585). Sun, W. Rachev, S. Z., & Fabozzi, F. (2008). Long-range dependence, fractal processes, and intra daily data. In D. Seese, C. Weinhardt, and F. Schlottmann (Eds.), Handbook on Information Technology in Finance (pp. 543–585).
46.
Zurück zum Zitat Wang, X., Smith-Miles, K., & Hyndman, R. J. (2009). Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing, 72(10), 2581–2594.CrossRef Wang, X., Smith-Miles, K., & Hyndman, R. J. (2009). Rule induction for forecasting method selection: Meta-learning the characteristics of univariate time series. Neurocomputing, 72(10), 2581–2594.CrossRef
47.
Zurück zum Zitat Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination. Neurocomputing, 73(10), 2006–2016.CrossRef Lemke, C., & Gabrys, B. (2010). Meta-learning for time series forecasting and forecast combination. Neurocomputing, 73(10), 2006–2016.CrossRef
48.
Zurück zum Zitat Widodo, A. & Budi, I. (2013). Model selection using dimensionality reduction of time series characteristics. In Proceedings of ISF (pp. 1–8). Widodo, A. & Budi, I. (2013). Model selection using dimensionality reduction of time series characteristics. In Proceedings of ISF (pp. 1–8).
49.
Zurück zum Zitat Kück, M., Crone, S., & Freitag, M. (2016). Meta-learning with neural networks and landmarking for forecasting model selection—An empirical evaluation of different feature sets applied to industry data. In Proceedings of IJCNN (pp. 1499–1506). Kück, M., Crone, S., & Freitag, M. (2016). Meta-learning with neural networks and landmarking for forecasting model selection—An empirical evaluation of different feature sets applied to industry data. In Proceedings of IJCNN (pp. 1499–1506).
50.
Zurück zum Zitat Talagala, T. S., Hyndman, R. J., & Athanasopoulos, G. (2018). Meta-learning how to forecast time series. Melbourne: Monash University. Talagala, T. S., Hyndman, R. J., & Athanasopoulos, G. (2018). Meta-learning how to forecast time series. Melbourne: Monash University.
51.
Zurück zum Zitat Barak, S., Nasiri, M., & Rostamzadeh, M. (2019). Time series model selection with a meta-learning approach; evidence from a pool of forecasting algorithms (pp. 1–30). e-print arXiv:1908.08489v1. Barak, S., Nasiri, M., & Rostamzadeh, M. (2019). Time series model selection with a meta-learning approach; evidence from a pool of forecasting algorithms (pp. 1–30). e-print arXiv:​1908.​08489v1.
52.
Zurück zum Zitat Afolabi, D., Guan, S.-U., Man, K. L., Wong, P. W. H., & Zhao, X. (2017). Hierarchical meta-learning in time series forecasting for improved interference-less machine learning. Symmetry, 9, 283.CrossRef Afolabi, D., Guan, S.-U., Man, K. L., Wong, P. W. H., & Zhao, X. (2017). Hierarchical meta-learning in time series forecasting for improved interference-less machine learning. Symmetry, 9, 283.CrossRef
53.
Zurück zum Zitat Quoreshi, A. M. M. S. (2014). A long-memory integer-valued time series model, INARFIMA, for financial application. Quantitative Finance, 14(12), 2225–2235.MathSciNetMATHCrossRef Quoreshi, A. M. M. S. (2014). A long-memory integer-valued time series model, INARFIMA, for financial application. Quantitative Finance, 14(12), 2225–2235.MathSciNetMATHCrossRef
54.
Zurück zum Zitat Ferland, R., Latour, A., & Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27(6), 923–942.MathSciNetMATHCrossRef Ferland, R., Latour, A., & Oraichi, D. (2006). Integer-valued GARCH process. Journal of Time Series Analysis, 27(6), 923–942.MathSciNetMATHCrossRef
56.
Zurück zum Zitat Cui, Y., & Wu, R. (2016). On conditional maximum likelihood estimation for INGARCH(p, q) models. Statistics and Probability Letters, 118, 1–7.MathSciNetMATHCrossRef Cui, Y., & Wu, R. (2016). On conditional maximum likelihood estimation for INGARCH(p, q) models. Statistics and Probability Letters, 118, 1–7.MathSciNetMATHCrossRef
57.
Zurück zum Zitat Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52, 5–59.MATHCrossRef Bollerslev, T., Chou, R. Y., & Kroner, K. F. (1992). ARCH modeling in finance: A review of the theory and empirical evidence. Journal of Econometrics, 52, 5–59.MATHCrossRef
Metadaten
Titel
Network traffic prediction based on INGARCH model
verfasst von
Meejoung Kim
Publikationsdatum
22.07.2020
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 8/2020
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-020-02431-y

Weitere Artikel der Ausgabe 8/2020

Wireless Networks 8/2020 Zur Ausgabe

Neuer Inhalt