2024 | OriginalPaper | Buchkapitel
Neural Graph Revealers
verfasst von : Harsh Shrivastava, Urszula Chajewska
Erschienen in: Machine Learning for Multimodal Healthcare Data
Verlag: Springer Nature Switzerland
Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.
Wählen Sie Textabschnitte aus um mit Künstlicher Intelligenz passenden Patente zu finden. powered by
Markieren Sie Textabschnitte, um KI-gestützt weitere passende Inhalte zu finden. powered by (Link öffnet in neuem Fenster)
Abstract
NGRs
) which attempt to efficiently merge the sparse graph recovery methods with PGMs into a single flow. The task is to recover a sparse graph showing connections between the features and learn a probability distribution over them at the same time. NGRs
use a neural network as a multitask learning framework. We introduce graph-constrained path norm that NGRs
leverage to learn a graphical model that captures complex non-linear functional dependencies between features in the form of an undirected sparse graph. NGRs
can handle multimodal inputs like images, text, categorical data, embeddings etc. which are not straightforward to incorporate in the existing methods. We show experimental results on data from Gaussian graphical models and a multimodal infant mortality dataset by CDC (Software: https://github.com/harshs27/neural-graph-revealers).