Skip to main content

2024 | OriginalPaper | Buchkapitel

Neural Graph Revealers

verfasst von : Harsh Shrivastava, Urszula Chajewska

Erschienen in: Machine Learning for Multimodal Healthcare Data

Verlag: Springer Nature Switzerland

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Sparse graph recovery methods work well where the data follows their assumptions, however, they are not always designed for doing downstream probabilistic queries. This limits their adoption to only identifying connections among domain variables. On the other hand, Probabilistic Graphical Models (PGMs) learn an underlying base graph together with a distribution over the variables (nodes). PGM design choices are carefully made such that the inference and sampling algorithms are efficient. This results in certain restrictions and simplifying assumptions. In this work, we propose Neural Graph Revealers (NGRs) which attempt to efficiently merge the sparse graph recovery methods with PGMs into a single flow. The task is to recover a sparse graph showing connections between the features and learn a probability distribution over them at the same time. NGRs use a neural network as a multitask learning framework. We introduce graph-constrained path norm that NGRs leverage to learn a graphical model that captures complex non-linear functional dependencies between features in the form of an undirected sparse graph. NGRs can handle multimodal inputs like images, text, categorical data, embeddings etc. which are not straightforward to incorporate in the existing methods. We show experimental results on data from Gaussian graphical models and a multimodal infant mortality dataset by CDC (Software: https://​github.​com/​harshs27/​neural-graph-revealers).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38, 1312–1319 (2021)CrossRef Aluru, M., Shrivastava, H., Chockalingam, S.P., Shivakumar, S., Aluru, S.: EnGRaiN: a supervised ensemble learning method for recovery of large-scale gene regulatory networks. Bioinformatics 38, 1312–1319 (2021)CrossRef
2.
Zurück zum Zitat Banerjee, O., Ghaoui, L.E., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Rese. 9, 485–516 (2008)MathSciNetMATH Banerjee, O., Ghaoui, L.E., d’Aspremont, A.: Model selection through sparse maximum likelihood estimation for multivariate Gaussian or binary data. J. Mach. Learn. Rese. 9, 485–516 (2008)MathSciNetMATH
3.
Zurück zum Zitat Belilovsky, E., Kastner, K., Varoquaux, G., Blaschko, M.B.: Learning to discover sparse graphical models. In: International Conference on Machine Learning, pp. 440–448. PMLR (2017) Belilovsky, E., Kastner, K., Varoquaux, G., Blaschko, M.B.: Learning to discover sparse graphical models. In: International Conference on Machine Learning, pp. 440–448. PMLR (2017)
4.
Zurück zum Zitat Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classification algorithm for imbalanced datasets. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017) Bhattacharya, S., Rajan, V., Shrivastava, H.: ICU mortality prediction: a classification algorithm for imbalanced datasets. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31 (2017)
5.
Zurück zum Zitat Bhattacharya, S., Rajan, V., Shrivastava, H.: Methods and systems for predicting mortality of a patient, US Patent 10,463,312, 5 November 2019 Bhattacharya, S., Rajan, V., Shrivastava, H.: Methods and systems for predicting mortality of a patient, US Patent 10,463,312, 5 November 2019
6.
Zurück zum Zitat Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730. ACM (2015) Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., Elhadad, N.: Intelligible models for healthcare: predicting pneumonia risk and hospital 30-day readmission. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1721–1730. ACM (2015)
7.
Zurück zum Zitat Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRefMATH Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)CrossRefMATH
9.
Zurück zum Zitat Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)MathSciNetCrossRefMATH Fernández, A., Garcia, S., Herrera, F., Chawla, N.V.: SMOTE for learning from imbalanced data: progress and challenges, marking the 15-year anniversary. J. Artif. Intell. Res. 61, 863–905 (2018)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:1803.03635 (2018) Frankle, J., Carbin, M.: The lottery ticket hypothesis: finding sparse, trainable neural networks. arXiv preprint arXiv:​1803.​03635 (2018)
11.
Zurück zum Zitat Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)CrossRefMATH Friedman, J., Hastie, T., Tibshirani, R.: Sparse inverse covariance estimation with the graphical lasso. Biostatistics 9(3), 432–441 (2008)CrossRefMATH
13.
Zurück zum Zitat Gogate, V., Webb, W., Domingos, P.: Learning efficient Markov networks. In: Advances in Neural Information Processing Systems, vol. 23 (2010) Gogate, V., Webb, W., Domingos, P.: Learning efficient Markov networks. In: Advances in Neural Information Processing Systems, vol. 23 (2010)
14.
Zurück zum Zitat Greenewald, K., Zhou, S., Hero, A., III.: Tensor graphical lasso (TeraLasso). J. R. Stat. Soc. Ser. B (Stat. Methodol.) 81(5), 901–931 (2019)MathSciNetCrossRefMATH Greenewald, K., Zhou, S., Hero, A., III.: Tensor graphical lasso (TeraLasso). J. R. Stat. Soc. Ser. B (Stat. Methodol.) 81(5), 901–931 (2019)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Hallac, D., Park, Y., Boyd, S., Leskovec, J.: Network inference via the time-varying graphical lasso. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 205–213 (2017) Hallac, D., Park, Y., Boyd, S., Leskovec, J.: Network inference via the time-varying graphical lasso. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 205–213 (2017)
16.
Zurück zum Zitat Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6(1), 145 (2012)CrossRef Haury, A.C., Mordelet, F., Vera-Licona, P., Vert, J.P.: TIGRESS: trustful inference of gene regulation using stability selection. BMC Syst. Biol. 6(1), 145 (2012)CrossRef
18.
Zurück zum Zitat Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)CrossRefMATH Heckerman, D., Geiger, D., Chickering, D.M.: Learning Bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20(3), 197–243 (1995)CrossRefMATH
19.
Zurück zum Zitat Hsieh, C.J., Sustik, M.A., Dhillon, I.S., Ravikumar, P., et al.: QUIC: quadratic approximation for sparse inverse covariance estimation. J. Mach. Learn. Res. 15(1), 2911–2947 (2014)MathSciNetMATH Hsieh, C.J., Sustik, M.A., Dhillon, I.S., Ravikumar, P., et al.: QUIC: quadratic approximation for sparse inverse covariance estimation. J. Mach. Learn. Res. 15(1), 2911–2947 (2014)MathSciNetMATH
21.
Zurück zum Zitat Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009) Koller, D., Friedman, N.: Probabilistic Graphical Models: Principles and Techniques. MIT Press (2009)
22.
Zurück zum Zitat Lee, S.I., Ganapathi, V., Koller, D.: Efficient structure learning of Markov networks using \(l_1\)-regularization. In: Advances in Neural Information Processing Systems, vol. 19 (2006) Lee, S.I., Ganapathi, V., Koller, D.: Efficient structure learning of Markov networks using \(l_1\)-regularization. In: Advances in Neural Information Processing Systems, vol. 19 (2006)
23.
Zurück zum Zitat Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631. ACM (2013) Lou, Y., Caruana, R., Gehrke, J., Hooker, G.: Accurate intelligible models with pairwise interactions. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 623–631. ACM (2013)
24.
Zurück zum Zitat Margolin, A.A., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf. 7, 1–15 (2006)CrossRef Margolin, A.A., et al.: ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context. BMC Bioinf. 7, 1–15 (2006)CrossRef
25.
Zurück zum Zitat Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2019)CrossRef Moerman, T., et al.: GRNBoost2 and Arboreto: efficient and scalable inference of gene regulatory networks. Bioinformatics 35(12), 2159–2161 (2019)CrossRef
26.
Zurück zum Zitat Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect. Basic Books (2018) Pearl, J., Mackenzie, D.: The Book of Why: The New Science of Cause and Effect. Basic Books (2018)
27.
Zurück zum Zitat Pu, X., Cao, T., Zhang, X., Dong, X., Chen, S.: Learning to learn graph topologies. In: Advances in Neural Information Processing Systems, vol. 34 (2021) Pu, X., Cao, T., Zhang, X., Dong, X., Chen, S.: Learning to learn graph topologies. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
28.
Zurück zum Zitat Rajbhandari, S., Shrivastava, H., He, Y.: AntMan: sparse low-rank compression to accelerate RNN inference. arXiv preprint arXiv:1910.01740 (2019) Rajbhandari, S., Shrivastava, H., He, Y.: AntMan: sparse low-rank compression to accelerate RNN inference. arXiv preprint arXiv:​1910.​01740 (2019)
29.
Zurück zum Zitat Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020) Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi, A., Rastegari, M.: What’s hidden in a randomly weighted neural network? In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11893–11902 (2020)
30.
Zurück zum Zitat Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., Maleki, A.: Iterative thresholding algorithm for sparse inverse covariance estimation. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1574–1582 (2012) Rolfs, B., Rajaratnam, B., Guillot, D., Wong, I., Maleki, A.: Iterative thresholding algorithm for sparse inverse covariance estimation. In: Advances in Neural Information Processing Systems, vol. 25, pp. 1574–1582 (2012)
31.
Zurück zum Zitat Van de Sande, B., et al.: A scalable scenic workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15(7), 2247–2276 (2020)CrossRef Van de Sande, B., et al.: A scalable scenic workflow for single-cell gene regulatory network analysis. Nat. Protoc. 15(7), 2247–2276 (2020)CrossRef
32.
33.
Zurück zum Zitat Shrivastava, H.: On using inductive biases for designing deep learning architectures. Ph.D. thesis, Georgia Institute of Technology (2020) Shrivastava, H.: On using inductive biases for designing deep learning architectures. Ph.D. thesis, Georgia Institute of Technology (2020)
34.
Zurück zum Zitat Shrivastava, H., Bart, E., Price, B., Dai, H., Dai, B., Aluru, S.: Cooperative neural networks (CoNN): exploiting prior independence structure for improved classification. arXiv preprint arXiv:1906.00291 (2019) Shrivastava, H., Bart, E., Price, B., Dai, H., Dai, B., Aluru, S.: Cooperative neural networks (CoNN): exploiting prior independence structure for improved classification. arXiv preprint arXiv:​1906.​00291 (2019)
35.
Zurück zum Zitat Shrivastava, H., Chajewska, U.: Methods for recovering conditional independence graphs: a survey. arXiv preprint arXiv:2211.06829 (2022) Shrivastava, H., Chajewska, U.: Methods for recovering conditional independence graphs: a survey. arXiv preprint arXiv:​2211.​06829 (2022)
38.
Zurück zum Zitat Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: uGLAD: sparse graph recovery by optimizing deep unrolled networks. arXiv preprint arXiv:2205.11610 (2022) Shrivastava, H., Chajewska, U., Abraham, R., Chen, X.: uGLAD: sparse graph recovery by optimizing deep unrolled networks. arXiv preprint arXiv:​2205.​11610 (2022)
40.
Zurück zum Zitat Shrivastava, H., Garg, A., Cao, Y., Zhang, Y., Sainath, T.: Echo state speech recognition. In: 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2021, pp. 5669–5673. IEEE (2021) Shrivastava, H., Garg, A., Cao, Y., Zhang, Y., Sainath, T.: Echo state speech recognition. In: 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2021, pp. 5669–5673. IEEE (2021)
41.
Zurück zum Zitat Shrivastava, H., Huddar, V., Bhattacharya, S., Rajan, V.: Classification with imbalance: a similarity-based method for predicting respiratory failure. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 707–714. IEEE (2015) Shrivastava, H., Huddar, V., Bhattacharya, S., Rajan, V.: Classification with imbalance: a similarity-based method for predicting respiratory failure. In: 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 707–714. IEEE (2015)
42.
Zurück zum Zitat Shrivastava, H., Huddar, V., Bhattacharya, S., Rajan, V.: System and method for predicting health condition of a patient. US Patent 11,087,879, 10 August 2021 Shrivastava, H., Huddar, V., Bhattacharya, S., Rajan, V.: System and method for predicting health condition of a patient. US Patent 11,087,879, 10 August 2021
43.
Zurück zum Zitat Shrivastava, H., Zhang, X., Aluru, S., Song, L.: GRNUlar: gene regulatory network reconstruction using unrolled algorithm from single cell RNA-sequencing data. bioRxiv (2020) Shrivastava, H., Zhang, X., Aluru, S., Song, L.: GRNUlar: gene regulatory network reconstruction using unrolled algorithm from single cell RNA-sequencing data. bioRxiv (2020)
44.
Zurück zum Zitat Shrivastava, H., Zhang, X., Song, L., Aluru, S.: GRNUlar: a deep learning framework for recovering single-cell gene regulatory networks. J. Comput. Biol. 29(1), 27–44 (2022)CrossRef Shrivastava, H., Zhang, X., Song, L., Aluru, S.: GRNUlar: a deep learning framework for recovering single-cell gene regulatory networks. J. Comput. Biol. 29(1), 27–44 (2022)CrossRef
45.
Zurück zum Zitat Singh, M., Valtorta, M.: An algorithm for the construction of Bayesian network structures from data. In: Uncertainty in Artificial Intelligence, pp. 259–265. Elsevier (1993) Singh, M., Valtorta, M.: An algorithm for the construction of Bayesian network structures from data. In: Uncertainty in Artificial Intelligence, pp. 259–265. Elsevier (1993)
46.
Zurück zum Zitat Städler, N., Bühlmann, P.: Missing values: sparse inverse covariance estimation and an extension to sparse regression. Stat. Comput. 22(1), 219–235 (2012) Städler, N., Bühlmann, P.: Missing values: sparse inverse covariance estimation and an extension to sparse regression. Stat. Comput. 22(1), 219–235 (2012)
47.
Zurück zum Zitat United States Department of Health and Human Services (US DHHS), Centers of Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), Division of Vital Statistics (DVS): Birth Cohort Linked Birth - Infant Death Data Files, 2004–2015, compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program, on CDC WONDER On-line Database. https://www.cdc.gov/nchs/data_access/vitalstatsonline.htm United States Department of Health and Human Services (US DHHS), Centers of Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS), Division of Vital Statistics (DVS): Birth Cohort Linked Birth - Infant Death Data Files, 2004–2015, compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program, on CDC WONDER On-line Database. https://​www.​cdc.​gov/​nchs/​data_​access/​vitalstatsonline​.​htm
48.
Zurück zum Zitat Vân Anh Huynh-Thu, A.I., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010) Vân Anh Huynh-Thu, A.I., Wehenkel, L., Geurts, P.: Inferring regulatory networks from expression data using tree-based methods. PLoS ONE 5(9), e12776 (2010)
49.
Zurück zum Zitat Wang, Y., Jang, B., Hero, A.: The Sylvester Graphical Lasso (SyGlasso). In: International Conference on Artificial Intelligence and Statistics, pp. 1943–1953. PMLR (2020) Wang, Y., Jang, B., Hero, A.: The Sylvester Graphical Lasso (SyGlasso). In: International Conference on Artificial Intelligence and Statistics, pp. 1943–1953. PMLR (2020)
50.
Zurück zum Zitat Williams, D.R.: Beyond Lasso: a survey of nonconvex regularization in Gaussian graphical models (2020) Williams, D.R.: Beyond Lasso: a survey of nonconvex regularization in Gaussian graphical models (2020)
51.
Zurück zum Zitat Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In: International Conference on Systems Biology, vol. 2002 (2002) Yu, J., Smith, V.A., Wang, P.P., Hartemink, A.J., Jarvis, E.D.: Using Bayesian network inference algorithms to recover molecular genetic regulatory networks. In: International Conference on Systems Biology, vol. 2002 (2002)
52.
Zurück zum Zitat Yu, Y., Chen, J., Gao, T., Yu, M.: DAG-GNN: DAG structure learning with graph neural networks. In: International Conference on Machine Learning, pp. 7154–7163. PMLR (2019) Yu, Y., Chen, J., Gao, T., Yu, M.: DAG-GNN: DAG structure learning with graph neural networks. In: International Conference on Machine Learning, pp. 7154–7163. PMLR (2019)
53.
Zurück zum Zitat Zhang, M., Jiang, S., Cui, Z., Garnett, R., Chen, Y.: D-VAE: a variational autoencoder for directed acyclic graphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019) Zhang, M., Jiang, S., Cui, Z., Garnett, R., Chen, Y.: D-VAE: a variational autoencoder for directed acyclic graphs. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
54.
Zurück zum Zitat Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: DAGs with NO TEARS: Continuous optimization for structure learning. In: Advances in Neural Information Processing Systems, vol. 31, pp. 9472–9483 (2018) Zheng, X., Aragam, B., Ravikumar, P.K., Xing, E.P.: DAGs with NO TEARS: Continuous optimization for structure learning. In: Advances in Neural Information Processing Systems, vol. 31, pp. 9472–9483 (2018)
55.
Zurück zum Zitat Zheng, X., Dan, C., Aragam, B., Ravikumar, P., Xing, E.: Learning sparse nonparametric DAGs. In: International Conference on Artificial Intelligence and Statistics, pp. 3414–3425. PMLR (2020) Zheng, X., Dan, C., Aragam, B., Ravikumar, P., Xing, E.: Learning sparse nonparametric DAGs. In: International Conference on Artificial Intelligence and Statistics, pp. 3414–3425. PMLR (2020)
Metadaten
Titel
Neural Graph Revealers
verfasst von
Harsh Shrivastava
Urszula Chajewska
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-47679-2_2

Premium Partner