Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

12.03.2020 | Original Article

Neural network approach for solving nonlocal boundary value problems

Zeitschrift:
Neural Computing and Applications
Autoren:
V. Palade, M. S. Petrov, T. D. Todorov
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

This paper proposes a radial basis function (RBF) network-based method for solving a nonlinear second-order elliptic equation with Dirichlet boundary conditions. The nonlocal term involved in the differential equation needs a completely different approach from the up-to-now-known methods for solving boundary value problems by using neural networks. A numerical integration procedure is developed for computing the local \(L^2\)-inner product. It is known that the non-variational methods are not effective in solving nonlocal problems. In this paper, the weak formulation of the nonlocal problem is reduced to the minimization of a nonlinear functional. Unlike many previous works, we use an integral objective functional for implementing the learning procedure. Well-distributed nodes are used as the centers of the RBF neural network. The weights of the RBF network are determined by a two-point step size gradient method. The neural network method proposed in this paper is an alternative to the finite-element method (FEM) for solving nonlocal boundary value problems in non-Lipschitz domains. A new variable learning rate strategy has been developed and implemented in order to avoid the divergence of the training process. A comparison between the proposed neural network approach and the FEM is illustrated by challenging examples, and the performance of both methods is thoroughly analyzed.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

    Bildnachweise