Skip to main content
main-content

Über dieses Buch

Micromechanical manufacturing based on microequipment creates new possibi- ties in goods production. If microequipment sizes are comparable to the sizes of the microdevices to be produced, it is possible to decrease the cost of production drastically. The main components of the production cost - material, energy, space consumption, equipment, and maintenance - decrease with the scaling down of equipment sizes. To obtain really inexpensive production, labor costs must be reduced to almost zero. For this purpose, fully automated microfactories will be developed. To create fully automated microfactories, we propose using arti?cial neural networks having different structures. The simplest perceptron-like neural network can be used at the lowest levels of microfactory control systems. Adaptive Critic Design, based on neural network models of the microfactory objects, can be used for manufacturing process optimization, while associative-projective neural n- works and networks like ART could be used for the highest levels of control systems. We have examined the performance of different neural networks in traditional image recognition tasks and in problems that appear in micromechanical manufacturing. We and our colleagues also have developed an approach to mic- equipment creation in the form of sequential generations. Each subsequent gene- tion must be of a smaller size than the previous ones and must be made by previous generations. Prototypes of ?rst-generation microequipment have been developed and assessed.

Inhaltsverzeichnis

Frontmatter

2010 | OriginalPaper | Buchkapitel

Chapter 1. Introduction

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 2. Classical Neural Networks

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 3. Neural Classifiers

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 4. Permutation Coding Technique for Image Recognition System

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 5. Associative-Projective Neural Networks (APNNs)

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 6. Recognition of Textures, Object Shapes, and Handwritten Words

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 7. Hardware for Neural Networks

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 8. Micromechanics

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 9. Applications of Neural Networks in Micromechanics

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 10. Texture Recognition in Micromechanics

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

2010 | OriginalPaper | Buchkapitel

Chapter 11. Adaptive Algorithms Based on Technical Vision

Ernst Kussul, Tatiana Baidyk, Donald C. Wunsch

Backmatter

Weitere Informationen

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

INDUSTRIE 4.0

Der Hype um Industrie 4.0 hat sich gelegt – nun geht es an die Umsetzung. Das Whitepaper von Protolabs zeigt Unternehmen und Führungskräften, wie sie die 4. Industrielle Revolution erfolgreich meistern. Es liegt an den Herstellern, die besten Möglichkeiten und effizientesten Prozesse bereitzustellen, die Unternehmen für die Herstellung von Produkten nutzen können. Lesen Sie mehr zu: Verbesserten Strukturen von Herstellern und Fabriken | Konvergenz zwischen Soft- und Hardwareautomatisierung | Auswirkungen auf die Neuaufstellung von Unternehmen | verkürzten Produkteinführungszeiten
Jetzt gratis downloaden!

Bildnachweise