Skip to main content

2011 | OriginalPaper | Buchkapitel

17. Neural Tissue Engineering

verfasst von : Erin Lavik

Erschienen in: Biomaterials for Tissue Engineering Applications

Verlag: Springer Vienna

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Biomaterials have played a role in the nervous system as drug delivery vehicles and scaffolds. The nervous system, both the peripheral and central, are capable of repair and regeneration when the appropriate environment is presented and this suggests that biomaterials could fundamentally change treatment following injury and disease by building a permissive environment for repair. Yet, when engineers have used materials particularly as scaffolds, one of the most striking findings is how similar many of their results have been across types of materials and approaches. Clearly, there is much still to learn. Part of that learning process comes from looking at what has succeeded in the clinic and using that to design the next generation of translatable approaches to treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Whittemore S. Lecture at the Kentucky Trust for Spinal Cord Regeneration Conference, 1997. Whittemore S. Lecture at the Kentucky Trust for Spinal Cord Regeneration Conference, 1997.
2.
Zurück zum Zitat Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci 2007;30:209–233.CrossRef Chen ZL, Yu WM, Strickland S. Peripheral regeneration. Annu Rev Neurosci 2007;30:209–233.CrossRef
3.
Zurück zum Zitat Chang AS, Yannas IV. Peripheral Nerve Regeneration. In: Smith B, Adelman G, editors. Neuroscience Year, Supplement to the Enclyclopedia of Neuroscience, 1992. p. 125–126. Chang AS, Yannas IV. Peripheral Nerve Regeneration. In: Smith B, Adelman G, editors. Neuroscience Year, Supplement to the Enclyclopedia of Neuroscience, 1992. p. 125–126.
4.
Zurück zum Zitat Malik RA. Current and future strategies for the management of diabetic neuropathy. Treat Endocrinol 2003;2(6):389–400.CrossRef Malik RA. Current and future strategies for the management of diabetic neuropathy. Treat Endocrinol 2003;2(6):389–400.CrossRef
5.
Zurück zum Zitat Beattie MS, Bresnaan JC, Komon J, Tovar CA, Meter MV, Anderson DK, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 1997;148:453–463.CrossRef Beattie MS, Bresnaan JC, Komon J, Tovar CA, Meter MV, Anderson DK, et al. Endogenous repair after spinal cord contusion injuries in the rat. Exp Neurol 1997;148:453–463.CrossRef
6.
Zurück zum Zitat Siemionow M, Sonmez E. Nerve allograft transplantation: a review. J Reconstr Microsurg 2007;23(8):511–520.CrossRef Siemionow M, Sonmez E. Nerve allograft transplantation: a review. J Reconstr Microsurg 2007;23(8):511–520.CrossRef
7.
Zurück zum Zitat Mackinnon SE, Dellon A. Surgery of the Peripheral Nerve. New York: Thieme Medical Publishers, 1988. Mackinnon SE, Dellon A. Surgery of the Peripheral Nerve. New York: Thieme Medical Publishers, 1988.
8.
Zurück zum Zitat Midha R, Mackinnon SE, Becker LE. The fate of Schwann cells in peripheral nerve allografts. J Neuropathol Exp Neurol 1994;53(3):316–322.CrossRef Midha R, Mackinnon SE, Becker LE. The fate of Schwann cells in peripheral nerve allografts. J Neuropathol Exp Neurol 1994;53(3):316–322.CrossRef
9.
Zurück zum Zitat Livshits A, Catz A, Folman Y, Witz M, Livshits V, Baskov A, et al. Reinnervation of the neurogenic bladder in the late period of the spinal cord trauma. Spinal Cord 2004;42(4):211–217.CrossRef Livshits A, Catz A, Folman Y, Witz M, Livshits V, Baskov A, et al. Reinnervation of the neurogenic bladder in the late period of the spinal cord trauma. Spinal Cord 2004;42(4):211–217.CrossRef
10.
Zurück zum Zitat Tadie M, Liu S, Robert R, Guiheneuc P, Pereon Y, Perrouin-Verbe B, et al. Partial return of motor function in paralyzed legs after surgical bypass of the lesion site by nerve autografts three years after spinal cord injury. J Neurotrauma 2002;19(8):909–916.CrossRef Tadie M, Liu S, Robert R, Guiheneuc P, Pereon Y, Perrouin-Verbe B, et al. Partial return of motor function in paralyzed legs after surgical bypass of the lesion site by nerve autografts three years after spinal cord injury. J Neurotrauma 2002;19(8):909–916.CrossRef
11.
Zurück zum Zitat Oppenheim JS, Spitzer DE, Winfree CJ. Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Experimental article. Neurosurg Focus 2009;26(2):E6.CrossRef Oppenheim JS, Spitzer DE, Winfree CJ. Spinal cord bypass surgery using peripheral nerve transfers: review of translational studies and a case report on its use following complete spinal cord injury in a human. Experimental article. Neurosurg Focus 2009;26(2):E6.CrossRef
12.
Zurück zum Zitat Cheng H, Cao Y, and Olson, L. Spinal Cord Repair in Adult Paraplegic Rats: Partial Restoration of Hind Limb Function. Science 1996;273:510-513.CrossRef Cheng H, Cao Y, and Olson, L. Spinal Cord Repair in Adult Paraplegic Rats: Partial Restoration of Hind Limb Function. Science 1996;273:510-513.CrossRef
13.
Zurück zum Zitat Huang W, Chuang T, Liao K, Shih Y, Lee L, Cheng H. Prospective Study of Nerve Repair in Patients with Chronic Cervical Spinal Injury. Washington, DC: Society for Neuroscience, 2005. Huang W, Chuang T, Liao K, Shih Y, Lee L, Cheng H. Prospective Study of Nerve Repair in Patients with Chronic Cervical Spinal Injury. Washington, DC: Society for Neuroscience, 2005.
14.
Zurück zum Zitat Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27(19):3675–3683. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials 2006;27(19):3675–3683.
15.
Zurück zum Zitat Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 2004;10(11–12):1641–1651.CrossRef Hudson TW, Zawko S, Deister C, Lundy S, Hu CY, Lee K, et al. Optimized acellular nerve graft is immunologically tolerated and supports regeneration. Tissue Eng 2004;10(11–12):1641–1651.CrossRef
16.
Zurück zum Zitat Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 2009;39(6):787–799.CrossRef Whitlock EL, Tuffaha SH, Luciano JP, Yan Y, Hunter DA, Magill CK, et al. Processed allografts and type I collagen conduits for repair of peripheral nerve gaps. Muscle Nerve 2009;39(6):787–799.CrossRef
17.
Zurück zum Zitat Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 1998;154(2):315–329.CrossRef Chamberlain LJ, Yannas IV, Hsu HP, Strichartz G, Spector M. Collagen-GAG substrate enhances the quality of nerve regeneration through collagen tubes up to level of autograft. Exp Neurol 1998;154(2):315–329.CrossRef
18.
Zurück zum Zitat Lundborg G, Rosen B, Dahlin L, Holmberg J, Rosen I. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br 2004;29(2):100–107.CrossRef Lundborg G, Rosen B, Dahlin L, Holmberg J, Rosen I. Tubular repair of the median or ulnar nerve in the human forearm: a 5-year follow-up. J Hand Surg Br 2004;29(2):100–107.CrossRef
19.
Zurück zum Zitat Dahlin LB, Lundborg G. Use of tubes in peripheral nerve repair. Neurosurg Clin N Am 2001;12(2):341–352. Dahlin LB, Lundborg G. Use of tubes in peripheral nerve repair. Neurosurg Clin N Am 2001;12(2):341–352.
20.
Zurück zum Zitat Dahlin LB, Anagnostaki L, Lundborg G. Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Surg Hand Surg 2001;35(1):29–34.CrossRef Dahlin LB, Anagnostaki L, Lundborg G. Tissue response to silicone tubes used to repair human median and ulnar nerves. Scand J Plast Reconstr Surg Hand Surg 2001;35(1):29–34.CrossRef
21.
Zurück zum Zitat Wangensteen KJ, Kalliainen LK. Collagen Tube Conduits in Peripheral Nerve Repair: A Retrospective Analysis. Hand (N Y) 2009 Nov 24. Wangensteen KJ, Kalliainen LK. Collagen Tube Conduits in Peripheral Nerve Repair: A Retrospective Analysis. Hand (N Y) 2009 Nov 24.
22.
Zurück zum Zitat Meyer RA, Bagheri SC. A bioabsorbable collagen nerve cuff (NeuraGen) for repair of lingual and inferior alveolar nerve injuries: a case series. J Oral Maxillofac Surg 2009;67(11):2550–2551.CrossRef Meyer RA, Bagheri SC. A bioabsorbable collagen nerve cuff (NeuraGen) for repair of lingual and inferior alveolar nerve injuries: a case series. J Oral Maxillofac Surg 2009;67(11):2550–2551.CrossRef
23.
Zurück zum Zitat Barnett SC. Olfactory ensheathing cells: unique glial cell types? J Neurotrauma 2004; 21(4):375–382.CrossRef Barnett SC. Olfactory ensheathing cells: unique glial cell types? J Neurotrauma 2004; 21(4):375–382.CrossRef
24.
Zurück zum Zitat Au WW, Treloar HB, Greer CA. Sublaminar organization of the mouse olfactory bulb nerve layer. J Comp Neurol 2002;446(1):68–80.CrossRef Au WW, Treloar HB, Greer CA. Sublaminar organization of the mouse olfactory bulb nerve layer. J Comp Neurol 2002;446(1):68–80.CrossRef
25.
Zurück zum Zitat Kawaja MD, Boyd JG, Smithson LJ, Jahed A, Doucette R. Technical strategies to isolate olfactory ensheathing cells for intraspinal implantation. J Neurotrauma 2009;26(2):155–177.CrossRef Kawaja MD, Boyd JG, Smithson LJ, Jahed A, Doucette R. Technical strategies to isolate olfactory ensheathing cells for intraspinal implantation. J Neurotrauma 2009;26(2):155–177.CrossRef
26.
Zurück zum Zitat Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 2003;116(10):1488–1491. Huang H, Chen L, Wang H, Xiu B, Li B, Wang R, et al. Influence of patients’ age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 2003;116(10):1488–1491.
27.
Zurück zum Zitat Dobkin BH, Curt A, Guest J. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair 2006; 20(1):5–13.CrossRef Dobkin BH, Curt A, Guest J. Cellular transplants in China: observational study from the largest human experiment in chronic spinal cord injury. Neurorehabil Neural Repair 2006; 20(1):5–13.CrossRef
28.
Zurück zum Zitat Cyranoski D. Patients warned about unproven spinal surgery. Nature 2006;440(7086):850–851.CrossRef Cyranoski D. Patients warned about unproven spinal surgery. Nature 2006;440(7086):850–851.CrossRef
29.
Zurück zum Zitat Judson H. The problematical Dr. Huang Hongyun. Technol Rev 2005;5(1):1–5. Judson H. The problematical Dr. Huang Hongyun. Technol Rev 2005;5(1):1–5.
30.
Zurück zum Zitat Chew S, Khandji AG, Montes J, Mitsumoto H, Gordon PH. Olfactory ensheathing glia injections in Beijing: misleading patients with ALS. Amyotroph Lateral Scler 2007;8(5):314–316.CrossRef Chew S, Khandji AG, Montes J, Mitsumoto H, Gordon PH. Olfactory ensheathing glia injections in Beijing: misleading patients with ALS. Amyotroph Lateral Scler 2007;8(5):314–316.CrossRef
31.
Zurück zum Zitat Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007;45(3):190–205.CrossRef Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, et al. Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 2007;45(3):190–205.CrossRef
32.
Zurück zum Zitat Cyranoski D. Chinese network to start trials of spinal surgery. Nature 2007;446(7135):476–477.CrossRef Cyranoski D. Chinese network to start trials of spinal surgery. Nature 2007;446(7135):476–477.CrossRef
33.
Zurück zum Zitat Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008;131(Pt 9):2376–2386.CrossRef Mackay-Sim A, Feron F, Cochrane J, Bassingthwaighte L, Bayliss C, Davies W, et al. Autologous olfactory ensheathing cell transplantation in human paraplegia: a 3-year clinical trial. Brain 2008;131(Pt 9):2376–2386.CrossRef
34.
Zurück zum Zitat Taupin P. HuCNS-SC stemcells. Curr Opin Mol Ther 2006;8(2):156–163. Taupin P. HuCNS-SC stemcells. Curr Opin Mol Ther 2006;8(2):156–163.
35.
Zurück zum Zitat Cooper JD. Moving towards therapies for juvenile Batten disease? Exp Neurol 2008;211(2):329–331.CrossRef Cooper JD. Moving towards therapies for juvenile Batten disease? Exp Neurol 2008;211(2):329–331.CrossRef
36.
Zurück zum Zitat Martin RA, Robert JS. Is risky pediatric research without prospect of direct benefit ever justified? Am J Bioeth 2007;7(3):12–15.CrossRef Martin RA, Robert JS. Is risky pediatric research without prospect of direct benefit ever justified? Am J Bioeth 2007;7(3):12–15.CrossRef
37.
Zurück zum Zitat Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006;7(1):41–53.CrossRef Abbott NJ, Ronnback L, Hansson E. Astrocyte-endothelial interactions at the blood–brain barrier. Nat Rev Neurosci 2006;7(1):41–53.CrossRef
38.
Zurück zum Zitat Rite I, Machado A, Cano J, Venero JL. Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 2007;101(6):1567–1582.CrossRef Rite I, Machado A, Cano J, Venero JL. Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J Neurochem 2007;101(6):1567–1582.CrossRef
39.
Zurück zum Zitat Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57(2):178–201.CrossRef Zlokovic BV. The blood–brain barrier in health and chronic neurodegenerative disorders. Neuron 2008;57(2):178–201.CrossRef
40.
Zurück zum Zitat Zünkeler B, Carson R, Olson J, Blasberg R, DeVroom H, Lutz R, et al. Quantification and pharmacokinetics of blood–brain barrier disruption in humans. J Neurosurg 1996;85(6): 1056–1065.CrossRef Zünkeler B, Carson R, Olson J, Blasberg R, DeVroom H, Lutz R, et al. Quantification and pharmacokinetics of blood–brain barrier disruption in humans. J Neurosurg 1996;85(6): 1056–1065.CrossRef
41.
Zurück zum Zitat Bracken MB, Shepard M, Holford T, Leosummers L, Aldrich E, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. JAMA 1997;277:1597–1604.CrossRef Bracken MB, Shepard M, Holford T, Leosummers L, Aldrich E, Fazl M, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. JAMA 1997;277:1597–1604.CrossRef
42.
Zurück zum Zitat Hawryluk GW, Rowland J, Kwon BK, Fehlings MG. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 2008;25(5):E14.CrossRef Hawryluk GW, Rowland J, Kwon BK, Fehlings MG. Protection and repair of the injured spinal cord: a review of completed, ongoing, and planned clinical trials for acute spinal cord injury. Neurosurg Focus 2008;25(5):E14.CrossRef
43.
Zurück zum Zitat Dang WB, Daviau T, Ying P, Zhao Y, Nowotnik D, Clow CS, et al. Effects of GLIADEL(R) wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 1996;42(1):83–92.CrossRef Dang WB, Daviau T, Ying P, Zhao Y, Nowotnik D, Clow CS, et al. Effects of GLIADEL(R) wafer initial molecular weight on the erosion of wafer and release of BCNU. J Control Release 1996;42(1):83–92.CrossRef
44.
Zurück zum Zitat Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, et al. Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 2008;15(10):2887–2893.CrossRef Attenello FJ, Mukherjee D, Datoo G, McGirt MJ, Bohan E, Weingart JD, et al. Use of Gliadel (BCNU) wafer in the surgical treatment of malignant glioma: a 10-year institutional experience. Ann Surg Oncol 2008;15(10):2887–2893.CrossRef
45.
Zurück zum Zitat Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10(5):459–466.CrossRef Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009;10(5):459–466.CrossRef
46.
Zurück zum Zitat Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9(5):589–595.CrossRef Gill SS, Patel NK, Hotton GR, O'Sullivan K, McCarter R, Bunnage M, et al. Direct brain infusion of glial cell line-derived neurotrophic factor in Parkinson disease. Nat Med 2003; 9(5):589–595.CrossRef
47.
Zurück zum Zitat GDNF poses troubling questions for doctors, drug maker. Toxicity, negative outcome raise doubts. Ann Neurol 2006;59(3):A5–6. GDNF poses troubling questions for doctors, drug maker. Toxicity, negative outcome raise doubts. Ann Neurol 2006;59(3):A5–6.
48.
Zurück zum Zitat Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006;59(3):459–466.CrossRef Lang AE, Gill S, Patel NK, Lozano A, Nutt JG, Penn R, et al. Randomized controlled trial of intraputamenal glial cell line-derived neurotrophic factor infusion in Parkinson disease. Ann Neurol 2006;59(3):459–466.CrossRef
49.
Zurück zum Zitat Corcia P, Meininger V. Management of amyotrophic lateral sclerosis. Drugs 2008;68(8):1037–1048.CrossRef Corcia P, Meininger V. Management of amyotrophic lateral sclerosis. Drugs 2008;68(8):1037–1048.CrossRef
50.
Zurück zum Zitat Al-Shahi Salman R. Haemostatic drug therapies for acute spontaneous intracerebral haemorrhage. Cochrane Database Syst Rev 2009(4):CD005951. Al-Shahi Salman R. Haemostatic drug therapies for acute spontaneous intracerebral haemorrhage. Cochrane Database Syst Rev 2009(4):CD005951.
51.
Zurück zum Zitat Wardlaw JM, Murray V, Berge E, Del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2009(4):CD000213. Wardlaw JM, Murray V, Berge E, Del Zoppo GJ. Thrombolysis for acute ischaemic stroke. Cochrane Database Syst Rev 2009(4):CD000213.
52.
Zurück zum Zitat Nakamura M, Bregman BS. Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol 2001;169(2):407–415.CrossRef Nakamura M, Bregman BS. Differences in neurotrophic factor gene expression profiles between neonate and adult rat spinal cord after injury. Exp Neurol 2001;169(2):407–415.CrossRef
53.
Zurück zum Zitat Widenfalk J, Lundstromer K, Jubran M, Brene S, Olson L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 2001;21(10):3457–3475. Widenfalk J, Lundstromer K, Jubran M, Brene S, Olson L. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid. J Neurosci 2001;21(10):3457–3475.
54.
Zurück zum Zitat Khan T, Dauzvardis M, Sayers S. Carbon filament implants promote axonal growth across the transected rat spinal cord. Brain Res 1991;541:139–145.CrossRef Khan T, Dauzvardis M, Sayers S. Carbon filament implants promote axonal growth across the transected rat spinal cord. Brain Res 1991;541:139–145.CrossRef
55.
Zurück zum Zitat Marchand R, Woerly S. Transected spinal cords grafted with in situ self-assembled collagen matrices. Neuroscientist 1990;36:45–60. Marchand R, Woerly S. Transected spinal cords grafted with in situ self-assembled collagen matrices. Neuroscientist 1990;36:45–60.
56.
Zurück zum Zitat Guest JD, Hesse D, Schnell L, Schwab ME, Bunge MB, Bunge RP. Influence of IN-1 antibody and acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell grafts. J Neurosci Res 1997;50:888–905.CrossRef Guest JD, Hesse D, Schnell L, Schwab ME, Bunge MB, Bunge RP. Influence of IN-1 antibody and acidic FGF-fibrin glue on the response of injured corticospinal tract axons to human Schwann cell grafts. J Neurosci Res 1997;50:888–905.CrossRef
57.
Zurück zum Zitat Guest JD, Rao A, Olson L, Bunge MB, Bunge RP. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 1997;148:502–522.CrossRef Guest JD, Rao A, Olson L, Bunge MB, Bunge RP. The ability of human Schwann cell grafts to promote regeneration in the transected nude rat spinal cord. Exp Neurol 1997;148:502–522.CrossRef
58.
Zurück zum Zitat Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000;25:425–435.CrossRef Ramón-Cueto A, Cordero MI, Santos-Benito FF, Avila J. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia. Neuron 2000;25:425–435.CrossRef
59.
Zurück zum Zitat Xu XM, Guénard V, Kleitman N, Bunge MB. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 1995;351:145–160.CrossRef Xu XM, Guénard V, Kleitman N, Bunge MB. Axonal regeneration into Schwann cell-seeded guidance channels grafted into transected adult rat spinal cord. J Comp Neurol 1995;351:145–160.CrossRef
60.
Zurück zum Zitat Xu XM, Guénard V, Kleitman N, Aebischer P, Bunge MB. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann Cell grafts in adult rat thoracic spinal cord. Exp Neurol 1995;134:261–272.CrossRef Xu XM, Guénard V, Kleitman N, Aebischer P, Bunge MB. A combination of BDNF and NT-3 promotes supraspinal axonal regeneration into Schwann Cell grafts in adult rat thoracic spinal cord. Exp Neurol 1995;134:261–272.CrossRef
61.
Zurück zum Zitat Gautier SE, Oudega M, Fragoso M, Chapon P, Plant GW, Bunge MB, et al. Poly(α-hydroxyacids) for application in the spinal cord: resorbability and biocompatability with adult rat Schwann cells and spinal cord. J Biomed Mater Res 1998;42:642–654.CrossRef Gautier SE, Oudega M, Fragoso M, Chapon P, Plant GW, Bunge MB, et al. Poly(α-hydroxyacids) for application in the spinal cord: resorbability and biocompatability with adult rat Schwann cells and spinal cord. J Biomed Mater Res 1998;42:642–654.CrossRef
62.
Zurück zum Zitat Xu XM, Chen A, Guénard V, Kleitman N, Bunge MB. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of the transected adult rat spinal cord. J Neurocytol 1997;26:1–16.CrossRef Xu XM, Chen A, Guénard V, Kleitman N, Bunge MB. Bridging Schwann cell transplants promote axonal regeneration from both the rostral and caudal stumps of the transected adult rat spinal cord. J Neurocytol 1997;26:1–16.CrossRef
63.
Zurück zum Zitat Xu X, Zhang S-X, Li H, Aebischer P, Bunge M. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 1999;11:1723–1740.CrossRef Xu X, Zhang S-X, Li H, Aebischer P, Bunge M. Regrowth of axons into the distal spinal cord through a Schwann-cell-seeded mini-channel implanted into hemisected adult rat spinal cord. Eur J Neurosci 1999;11:1723–1740.CrossRef
64.
Zurück zum Zitat Chen A, Xu XM, Kleitman N, Bunge MB. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp Neurol 1996;138:261–276.CrossRef Chen A, Xu XM, Kleitman N, Bunge MB. Methylprednisolone administration improves axonal regeneration into Schwann cell grafts in transected adult rat thoracic spinal cord. Exp Neurol 1996;138:261–276.CrossRef
65.
Zurück zum Zitat Schwab ME, and Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 1988;8:2381–2393. Schwab ME, and Caroni, P. Oligodendrocytes and CNS myelin are nonpermissive substrates for neurite growth and fibroblast spreading in vitro. J Neurosci 1988;8:2381–2393.
66.
Zurück zum Zitat Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 1990;343:269–272.CrossRef Schnell L, Schwab ME. Axonal regeneration in the rat spinal cord produced by an antibody against myelin-associated neurite growth inhibitors. Nature 1990;343:269–272.CrossRef
67.
Zurück zum Zitat Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci 2000;20:8061–8068. Brosamle C, Huber AB, Fiedler M, Skerra A, Schwab ME. Regeneration of lesioned corticospinal tract fibers in the adult rat induced by a recombinant, humanized IN-1 antibody fragment. J Neurosci 2000;20:8061–8068.
68.
Zurück zum Zitat Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 1995;378:498–501.CrossRef Bregman BS, Kunkel-Bagden E, Schnell L, Dai HN, Gao D, Schwab ME. Recovery from spinal cord injury mediated by antibodies to neurite growth inhibitors. Nature 1995;378:498–501.CrossRef
69.
Zurück zum Zitat Meyenburg Jv, Brøsamle C, Metz GAS, Schwab ME. Regeneration and sprouting of chronically injured corticospinal tract fibers in adult rats promoted by NT-3 and the mAb IN-1, which neutralizes myelin-associated neurite growth inhibitors. Exp Neurol 1998;154:583–594.CrossRef Meyenburg Jv, Brøsamle C, Metz GAS, Schwab ME. Regeneration and sprouting of chronically injured corticospinal tract fibers in adult rats promoted by NT-3 and the mAb IN-1, which neutralizes myelin-associated neurite growth inhibitors. Exp Neurol 1998;154:583–594.CrossRef
70.
Zurück zum Zitat Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 1997;390:680–683. Davies SJ, Fitch MT, Memberg SP, Hall AK, Raisman G, Silver J. Regeneration of adult axons in white matter tracts of the central nervous system. Nature 1997;390:680–683.
71.
Zurück zum Zitat Davies SJA, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 1999;19:5810–5822. Davies SJA, Goucher DR, Doller C, Silver J. Robust regeneration of adult sensory axons in degenerating white matter of the adult rat spinal cord. J Neurosci 1999;19:5810–5822.
72.
Zurück zum Zitat Osterholm JL. The pathological response to spinal cord injury. J Neurosurg 1974;40:5–33. Osterholm JL. The pathological response to spinal cord injury. J Neurosurg 1974;40:5–33.
73.
Zurück zum Zitat Properzi F, Asher R, Fawcett J. Chondroitin sulphate proteoglycans in the central nervous system: changes and synthesis after injury. Biochem Soc Trans 2003;31(2):335–336.CrossRef Properzi F, Asher R, Fawcett J. Chondroitin sulphate proteoglycans in the central nervous system: changes and synthesis after injury. Biochem Soc Trans 2003;31(2):335–336.CrossRef
74.
Zurück zum Zitat Rhodes K, Fawcett J. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 2004;204(1):33–48.CrossRef Rhodes K, Fawcett J. Chondroitin sulphate proteoglycans: preventing plasticity or protecting the CNS? J Anat 2004;204(1):33–48.CrossRef
75.
Zurück zum Zitat Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5(2):146–156.CrossRef Silver J, Miller JH. Regeneration beyond the glial scar. Nat Rev Neurosci 2004;5(2):146–156.CrossRef
76.
Zurück zum Zitat Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004;10(6):610–616.CrossRef Pearse DD, Pereira FC, Marcillo AE, Bates ML, Berrocal YA, Filbin MT, et al. cAMP and Schwann cells promote axonal growth and functional recovery after spinal cord injury. Nat Med 2004;10(6):610–616.CrossRef
77.
Zurück zum Zitat Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 2005;25(5):1169–1178.CrossRef Fouad K, Schnell L, Bunge MB, Schwab ME, Liebscher T, Pearse DD. Combining Schwann cell bridges and olfactory-ensheathing glia grafts with chondroitinase promotes locomotor recovery after complete transection of the spinal cord. J Neurosci 2005;25(5):1169–1178.CrossRef
78.
Zurück zum Zitat Saunders NR, Kitchener P, Knott GW, Nicholls JG, Potter A, Smith TJ. Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum Monodelphis domestica. J Neurosci 1998;18:339–355. Saunders NR, Kitchener P, Knott GW, Nicholls JG, Potter A, Smith TJ. Development of walking, swimming and neuronal connections after complete spinal cord transection in the neonatal opossum Monodelphis domestica. J Neurosci 1998;18:339–355.
79.
Zurück zum Zitat Jakeman LB, Reier PJ. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol 1991;307:311–334.CrossRef Jakeman LB, Reier PJ. Axonal projections between fetal spinal cord transplants and the adult rat spinal cord: a neuroanatomical tracing study of local interactions. J Comp Neurol 1991;307:311–334.CrossRef
80.
Zurück zum Zitat Bregman BS, McAtee M, Dai HN, Kuhn PL. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997;148:475–494.CrossRef Bregman BS, McAtee M, Dai HN, Kuhn PL. Neurotrophic factors increase axonal growth after spinal cord injury and transplantation in the adult rat. Exp Neurol 1997;148:475–494.CrossRef
81.
Zurück zum Zitat Coumans J, Lin TT-S, Dai H, MacArthur L, McAtee M, Nash C, et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 2001;21:9334–9344. Coumans J, Lin TT-S, Dai H, MacArthur L, McAtee M, Nash C, et al. Axonal regeneration and functional recovery after complete spinal cord transection in rats by delayed treatment with transplants and neurotrophins. J Neurosci 2001;21:9334–9344.
82.
Zurück zum Zitat Barinaga M. Fetal neuron grafts pave the way for stem cell therapies. Science 2000;287:1421–1422.CrossRef Barinaga M. Fetal neuron grafts pave the way for stem cell therapies. Science 2000;287:1421–1422.CrossRef
83.
84.
Zurück zum Zitat Nishida A, Takahashi M, Tanihara H, Nakano I, Takahashi JB, Mizoguchi A, et al. Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 2000;41(13):4268–4274. Nishida A, Takahashi M, Tanihara H, Nakano I, Takahashi JB, Mizoguchi A, et al. Incorporation and differentiation of hippocampus-derived neural stem cells transplanted in injured adult rat retina. Invest Ophthalmol Vis Sci 2000;41(13):4268–4274.
85.
Zurück zum Zitat Kurimoto Y, Shibuki H, Kaneko Y, Ichikawa M, Kurokawa T, Takahashi M, et al. Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci Lett 2001;306(1–2):57–60.CrossRef Kurimoto Y, Shibuki H, Kaneko Y, Ichikawa M, Kurokawa T, Takahashi M, et al. Transplantation of adult rat hippocampus-derived neural stem cells into retina injured by transient ischemia. Neurosci Lett 2001;306(1–2):57–60.CrossRef
86.
Zurück zum Zitat Isacson O, Deacon TW, Pakzaban P, Galpern WR, Dinsmore J, Burns LH. Transplanted xenogenic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1995;1:1189–1194.CrossRef Isacson O, Deacon TW, Pakzaban P, Galpern WR, Dinsmore J, Burns LH. Transplanted xenogenic neural cells in neurodegenerative disease models exhibit remarkable axonal target specificity and distinct growth patterns of glial and axonal fibres. Nat Med 1995;1:1189–1194.CrossRef
87.
Zurück zum Zitat Castilho R, Hansson O, Brundin P. Improving the survival of grafted embryonic dopamine neurons in rodent models of Parkinson's disease. Prog Brain Res 2000;127:203–231.CrossRef Castilho R, Hansson O, Brundin P. Improving the survival of grafted embryonic dopamine neurons in rodent models of Parkinson's disease. Prog Brain Res 2000;127:203–231.CrossRef
88.
Zurück zum Zitat Armstrong RJE, Tyers P, Jain M, Richards A, Dunnett SB, Rosser AE, et al. Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 2003;151(2):204–217.CrossRef Armstrong RJE, Tyers P, Jain M, Richards A, Dunnett SB, Rosser AE, et al. Transplantation of expanded neural precursor cells from the developing pig ventral mesencephalon in a rat model of Parkinson’s disease. Exp Brain Res 2003;151(2):204–217.CrossRef
89.
Zurück zum Zitat Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002;69(6):925–933.CrossRef Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002;69(6):925–933.CrossRef
90.
Zurück zum Zitat Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003;422(6933):688–694.CrossRef Pluchino S, Quattrini A, Brambilla E, Gritti A, Salani G, Dina G, et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003;422(6933):688–694.CrossRef
91.
Zurück zum Zitat Onifer SM, Cannon AB, Whittemore SR. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord. Cell Transplant 1997;6:327–338.CrossRef Onifer SM, Cannon AB, Whittemore SR. Altered differentiation of CNS neural progenitor cells after transplantation into the injured adult rat spinal cord. Cell Transplant 1997;6:327–338.CrossRef
92.
Zurück zum Zitat Park K, Liu S, Flax J, Nissim S, Stieg P, Snyder E. Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J Neurotrauma 1999;16:675–687.CrossRef Park K, Liu S, Flax J, Nissim S, Stieg P, Snyder E. Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction. J Neurotrauma 1999;16:675–687.CrossRef
93.
Zurück zum Zitat Cao Q, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Wittemore SR. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 2001;167:48–58.CrossRef Cao Q, Zhang YP, Howard RM, Walters WM, Tsoulfas P, Wittemore SR. Pluripotent stem cells engrafted into the normal or lesioned adult rat spinal cord are restricted to a glial lineage. Exp Neurol 2001;167:48–58.CrossRef
94.
Zurück zum Zitat Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science 1997;277:1684–1687.CrossRef Pfrieger FW, Barres BA. Synaptic efficacy enhanced by glial cells in vitro. Science 1997;277:1684–1687.CrossRef
95.
Zurück zum Zitat Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, et al. Embryonic Stem Cells Differentiate into Oligodendrocytes and Myelinate in Culture and After Spinal Cord Transplantation. Proc Natl Acad Sci U S A 2000;97:6126–6131.CrossRef Liu S, Qu Y, Stewart TJ, Howard MJ, Chakrabortty S, Holekamp TF, et al. Embryonic Stem Cells Differentiate into Oligodendrocytes and Myelinate in Culture and After Spinal Cord Transplantation. Proc Natl Acad Sci U S A 2000;97:6126–6131.CrossRef
96.
Zurück zum Zitat Jeffery ND, Crang AJ, O'Leary MT, Hodge SJ, Blakemore WF. Behavioral Consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur J Neurosci 1999;11:1508–1514.CrossRef Jeffery ND, Crang AJ, O'Leary MT, Hodge SJ, Blakemore WF. Behavioral Consequences of oligodendrocyte progenitor cell transplantation into experimental demyelinating lesions in the rat spinal cord. Eur J Neurosci 1999;11:1508–1514.CrossRef
97.
Zurück zum Zitat Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 2001;167:27–39.CrossRef Akiyama Y, Honmou O, Kato T, Uede T, Hashi K, Kocsis JD. Transplantation of clonal neural precursor cells derived from adult human brain establishes functional peripheral myelin in the rat spinal cord. Exp Neurol 2001;167:27–39.CrossRef
98.
Zurück zum Zitat Einstein O, Ben-Menachem-Tzidon O, Mizrachi-Kol R, Reinhartz E, Grigoriadis N, Ben-Hur T. Survival of neural precursor cells in growth factor-poor environment: implications for transplantation in chronic disease. Glia 2006;53(4):449–455.CrossRef Einstein O, Ben-Menachem-Tzidon O, Mizrachi-Kol R, Reinhartz E, Grigoriadis N, Ben-Hur T. Survival of neural precursor cells in growth factor-poor environment: implications for transplantation in chronic disease. Glia 2006;53(4):449–455.CrossRef
99.
Zurück zum Zitat Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y. Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 2003;14(3):191–198.CrossRef Okano H, Ogawa Y, Nakamura M, Kaneko S, Iwanami A, Toyama Y. Transplantation of neural stem cells into the spinal cord after injury. Semin Cell Dev Biol 2003;14(3):191–198.CrossRef
100.
Zurück zum Zitat Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 2005;23(10):1579–1588.CrossRef Tomita M, Lavik E, Klassen H, Zahir T, Langer R, Young MJ. Biodegradable polymer composite grafts promote the survival and differentiation of retinal progenitor cells. Stem Cells 2005;23(10):1579–1588.CrossRef
101.
Zurück zum Zitat Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303(5662):1352–1355.CrossRef Silva GA, Czeisler C, Niece KL, Beniash E, Harrington DA, Kessler JA, et al. Selective differentiation of neural progenitor cells by high-epitope density nanofibers. Science 2004;303(5662):1352–1355.CrossRef
102.
Zurück zum Zitat Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603–2610.CrossRef Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly (l-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials 2005;26(15):2603–2610.CrossRef
103.
Zurück zum Zitat Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 2002; 22(17):7536–7547. Matthews RT, Kelly GM, Zerillo CA, Gray G, Tiemeyer M, Hockfield S. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. J Neurosci 2002; 22(17):7536–7547.
104.
Zurück zum Zitat Kabos P, Matundan H, Zandian M, Bertolotto C, Robinson ML, Davy BE, et al. Neural precursors express multiple chondroitin sulfate proteoglycans, including the lectican family. Biochem Biophys Res Commun 2004;318(4):955–963.CrossRef Kabos P, Matundan H, Zandian M, Bertolotto C, Robinson ML, Davy BE, et al. Neural precursors express multiple chondroitin sulfate proteoglycans, including the lectican family. Biochem Biophys Res Commun 2004;318(4):955–963.CrossRef
105.
Zurück zum Zitat Pan L, Ren Y, Cui F, Xu Q. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 2009;87(14):3207–3220.CrossRef Pan L, Ren Y, Cui F, Xu Q. Viability and differentiation of neural precursors on hyaluronic acid hydrogel scaffold. J Neurosci Res 2009;87(14):3207–3220.CrossRef
106.
Zurück zum Zitat Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 2009;61(12):1055–1064.CrossRef Cao H, Liu T, Chew SY. The application of nanofibrous scaffolds in neural tissue engineering. Adv Drug Deliv Rev 2009;61(12):1055–1064.CrossRef
107.
Zurück zum Zitat Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater 2009;4(4):45004.CrossRef Carlberg B, Axell MZ, Nannmark U, Liu J, Kuhn HG. Electrospun polyurethane scaffolds for proliferation and neuronal differentiation of human embryonic stem cells. Biomed Mater 2009;4(4):45004.CrossRef
108.
Zurück zum Zitat Yao L, O'Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B Appl Biomater 2009;90(2):483–491. Yao L, O'Brien N, Windebank A, Pandit A. Orienting neurite growth in electrospun fibrous neural conduits. J Biomed Mater Res B Appl Biomater 2009;90(2):483–491.
109.
Zurück zum Zitat Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, et al. Creation of highly aligned electrospun poly-l-lactic acid fibers for nerve regeneration applications. J Neural Eng 2009;6(1):016001.CrossRef Wang HB, Mullins ME, Cregg JM, Hurtado A, Oudega M, Trombley MT, et al. Creation of highly aligned electrospun poly-l-lactic acid fibers for nerve regeneration applications. J Neural Eng 2009;6(1):016001.CrossRef
110.
Zurück zum Zitat Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 2002;78(1–3):199–209.CrossRef Anseth KS, Metters AT, Bryant SJ, Martens PJ, Elisseeff JH, Bowman CN. In situ forming degradable networks and their application in tissue engineering and drug delivery. J Control Release 2002;78(1–3):199–209.CrossRef
111.
Zurück zum Zitat Hynes SR, Rauch MF, Bertram J, Lavik EB. A library of tunable poly(ethylene glycol)/poly- l-lysine hydrogels to investigate the materials cues that influence neural stem cell differentiation. J Biomed Mater Res A 2009;89(2):499–509. Hynes SR, Rauch MF, Bertram J, Lavik EB. A library of tunable poly(ethylene glycol)/poly- l-lysine hydrogels to investigate the materials cues that influence neural stem cell differentiation. J Biomed Mater Res A 2009;89(2):499–509.
112.
Zurück zum Zitat Ma W, Fitzgerald W, Liu QY, O'Shaughnessy TJ, Maric D, Lin HJ, et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004;190(2):276–288.CrossRef Ma W, Fitzgerald W, Liu QY, O'Shaughnessy TJ, Maric D, Lin HJ, et al. CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels. Exp Neurol 2004;190(2):276–288.CrossRef
113.
Zurück zum Zitat Teixeira AI, Duckworth JK, Hermanson O. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 2007;17(1):56–61.CrossRef Teixeira AI, Duckworth JK, Hermanson O. Getting the right stuff: controlling neural stem cell state and fate in vivo and in vitro with biomaterials. Cell Res 2007;17(1):56–61.CrossRef
114.
Zurück zum Zitat Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009;30(27):4695–4699.CrossRef Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 2009;30(27):4695–4699.CrossRef
115.
Zurück zum Zitat Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J 2008;95(9):4426–4438.CrossRef Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, et al. Substrate modulus directs neural stem cell behavior. Biophys J 2008;95(9):4426–4438.CrossRef
116.
Zurück zum Zitat Jiang FX, Yurke B, Firestein BL, Langrana NA. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann Biomed Eng 2008;36(9):1565–1579.CrossRef Jiang FX, Yurke B, Firestein BL, Langrana NA. Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann Biomed Eng 2008;36(9):1565–1579.CrossRef
117.
Zurück zum Zitat Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–689.CrossRef Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell 2006;126(4):677–689.CrossRef
118.
Zurück zum Zitat Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel (TM)). Biomaterials 2001;22(10):1095–1111.CrossRef Woerly S, Pinet E, de Robertis L, Van Diep D, Bousmina M. Spinal cord repair with PHPMA hydrogel containing RGD peptides (NeuroGel (TM)). Biomaterials 2001;22(10):1095–1111.CrossRef
119.
Zurück zum Zitat Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa-Jeffrey A. Prevention of gliotic scar formation by NeuroGel (TM) allows partial endogenous repair of transected cat spinal cord. J Neurosci Res 2004;75(2):262–272.CrossRef Woerly S, Doan VD, Sosa N, de Vellis J, Espinosa-Jeffrey A. Prevention of gliotic scar formation by NeuroGel (TM) allows partial endogenous repair of transected cat spinal cord. J Neurosci Res 2004;75(2):262–272.CrossRef
120.
Zurück zum Zitat Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002;99(5):3024–3029.CrossRef Teng YD, Lavik EB, Qu X, Park KI, Ourednik J, Zurakowski D, et al. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002;99(5):3024–3029.CrossRef
121.
Zurück zum Zitat Tsai EC, Dalton PD, Shoichet MS, Tator CH. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma 2004;21(6):789–804.CrossRef Tsai EC, Dalton PD, Shoichet MS, Tator CH. Synthetic hydrogel guidance channels facilitate regeneration of adult rat brainstem motor axons after complete spinal cord transection. J Neurotrauma 2004;21(6):789–804.CrossRef
122.
Zurück zum Zitat Tsai EC, Dalton PD, Shoichet MS, Tator CH. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 2006;27(3):519–533.CrossRef Tsai EC, Dalton PD, Shoichet MS, Tator CH. Matrix inclusion within synthetic hydrogel guidance channels improves specific supraspinal and local axonal regeneration after complete spinal cord transection. Biomaterials 2006;27(3):519–533.CrossRef
123.
Zurück zum Zitat Johnson PJ, Parker SR, Sakiyama-Elbert SE. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A 2010;92(1):152–163. Johnson PJ, Parker SR, Sakiyama-Elbert SE. Fibrin-based tissue engineering scaffolds enhance neural fiber sprouting and delay the accumulation of reactive astrocytes at the lesion in a subacute model of spinal cord injury. J Biomed Mater Res A 2010;92(1):152–163.
124.
Zurück zum Zitat Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 2008;28(14):3814–3823.CrossRef Tysseling-Mattiace VM, Sahni V, Niece KL, Birch D, Czeisler C, Fehlings MG, et al. Self-assembling nanofibers inhibit glial scar formation and promote axon elongation after spinal cord injury. J Neurosci 2008;28(14):3814–3823.CrossRef
125.
Zurück zum Zitat Woerly S, Doan VD, Evans-Martin F, Paramore CG, Peduzzi JD. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J Neurosci Res 2001; 66(6):1187–1197.CrossRef Woerly S, Doan VD, Evans-Martin F, Paramore CG, Peduzzi JD. Spinal cord reconstruction using NeuroGel implants and functional recovery after chronic injury. J Neurosci Res 2001; 66(6):1187–1197.CrossRef
126.
Zurück zum Zitat Piantino J, Burdick JA, Goldberg D, Langer R, Benowitz LI. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol 2006;201(2):359–367.CrossRef Piantino J, Burdick JA, Goldberg D, Langer R, Benowitz LI. An injectable, biodegradable hydrogel for trophic factor delivery enhances axonal rewiring and improves performance after spinal cord injury. Exp Neurol 2006;201(2):359–367.CrossRef
127.
Zurück zum Zitat Taylor SJ, McDonald JW, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 2004;98(2):281–294.CrossRef Taylor SJ, McDonald JW, Sakiyama-Elbert SE. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J Control Release 2004;98(2):281–294.CrossRef
128.
Zurück zum Zitat Jain A, Kim YT, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 2006;27(3):497–504.CrossRef Jain A, Kim YT, McKeon RJ, Bellamkonda RV. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 2006;27(3):497–504.CrossRef
129.
Zurück zum Zitat Park J, Lim E, Back S, Na H, Park Y, Sun K. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A 2010;93(3):1091–1099. Park J, Lim E, Back S, Na H, Park Y, Sun K. Nerve regeneration following spinal cord injury using matrix metalloproteinase-sensitive, hyaluronic acid-based biomimetic hydrogel scaffold containing brain-derived neurotrophic factor. J Biomed Mater Res A 2010;93(3):1091–1099.
130.
Zurück zum Zitat Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R, Oudega M. Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 2004;25(9):1569–1582.CrossRef Patist CM, Mulder MB, Gautier SE, Maquet V, Jerome R, Oudega M. Freeze-dried poly(D, L-lactic acid) macroporous guidance scaffolds impregnated with brain-derived neurotrophic factor in the transected adult rat thoracic spinal cord. Biomaterials 2004;25(9):1569–1582.CrossRef
131.
Zurück zum Zitat Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 2006;27(3):443–451.CrossRef Stokols S, Tuszynski MH. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 2006;27(3):443–451.CrossRef
132.
Zurück zum Zitat Iannotti C, Li HY, Yan P, Lu XB, Wirthlin L, Xu XM. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 2003;183(2):379–393.CrossRef Iannotti C, Li HY, Yan P, Lu XB, Wirthlin L, Xu XM. Glial cell line-derived neurotrophic factor-enriched bridging transplants promote propriospinal axonal regeneration and enhance myelination after spinal cord injury. Exp Neurol 2003;183(2):379–393.CrossRef
133.
Zurück zum Zitat Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009;17(8):564–574.CrossRef Kurakhmaeva KB, Djindjikhashvili IA, Petrov VE, Balabanyan VU, Voronina TA, Trofimov SS, et al. Brain targeting of nerve growth factor using poly(butyl cyanoacrylate) nanoparticles. J Drug Target 2009;17(8):564–574.CrossRef
134.
Zurück zum Zitat Ren T, Xu N, Cao C, Yuan W, Yu X, Chen J, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed 2009;20(10):1369–1380.CrossRef Ren T, Xu N, Cao C, Yuan W, Yu X, Chen J, et al. Preparation and therapeutic efficacy of polysorbate-80-coated amphotericin B/PLA-b-PEG nanoparticles. J Biomater Sci Polym Ed 2009;20(10):1369–1380.CrossRef
135.
Zurück zum Zitat Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G. Recent advances in medicinal chemistry and pharmaceutical technology – strategies for drug delivery to the brain. Curr Top Med Chem 2009;9(2):182–196.CrossRef Denora N, Trapani A, Laquintana V, Lopedota A, Trapani G. Recent advances in medicinal chemistry and pharmaceutical technology – strategies for drug delivery to the brain. Curr Top Med Chem 2009;9(2):182–196.CrossRef
136.
Zurück zum Zitat Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009;23(1):35–58.CrossRef Patel MM, Goyal BR, Bhadada SV, Bhatt JS, Amin AF. Getting into the brain: approaches to enhance brain drug delivery. CNS Drugs 2009;23(1):35–58.CrossRef
137.
Zurück zum Zitat Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 2006;3(2):219–232.CrossRef Tiwari SB, Amiji MM. A review of nanocarrier-based CNS delivery systems. Curr Drug Deliv 2006;3(2):219–232.CrossRef
138.
Zurück zum Zitat Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release 2005 28;108(2–3):193–214.CrossRef Roney C, Kulkarni P, Arora V, Antich P, Bonte F, Wu A, et al. Targeted nanoparticles for drug delivery through the blood-brain barrier for Alzheimer’s disease. J Control Release 2005 28;108(2–3):193–214.CrossRef
Metadaten
Titel
Neural Tissue Engineering
verfasst von
Erin Lavik
Copyright-Jahr
2011
Verlag
Springer Vienna
DOI
https://doi.org/10.1007/978-3-7091-0385-2_17

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.