Skip to main content
Erschienen in: Cognitive Neurodynamics 3/2019

22.09.2018 | Research Article

Neurodynamic analysis of Merkel cell–neurite complex transduction mechanism during tactile sensing

verfasst von: Mengqiu Yao, Rubin Wang

Erschienen in: Cognitive Neurodynamics | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present study aimed to identify the mechanism of tactile sensation by analyzing the regularity of the firing pattern of Merkel cell–neurite complex (MCNC) under the stimulation of different compression depths. The fingertips were exposed to the contact pressure of a spherical object to sense external stimuli in this study. The distribution structure of slowly adapting type I (SAI) mechanoreceptors was considered for analyzing the neural coding of tactile stimuli, especially the firing pattern of SAI neural network for perceiving the external stimulation. The numerical simulation results showed that (1) when the skin was pressed by the same sphere and the depth of the pressing finger skin and position of the force application point remained unchanged, the firing rate of the neuron depended on the synergistic effect of the number of receptors connected with the neuron and the distance between the neuron and the force application point. (2) When the fingertip was pressed by the same sphere at a constant depth and the different contact position, the overall firing rate of the MCNC neural network increased with the number of SAI mechanoreceptors in the area where the force application point was located.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79(4):618–639CrossRef Abraira VE, Ginty DD (2013) The sensory neurons of touch. Neuron 79(4):618–639CrossRef
Zurück zum Zitat Aouiti C (2016) Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cogn Neurodyn 10(6):573–591CrossRef Aouiti C (2016) Neutral impulsive shunting inhibitory cellular neural networks with time-varying coefficients and leakage delays. Cogn Neurodyn 10(6):573–591CrossRef
Zurück zum Zitat Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32(6):1025–1043CrossRef Bessou P, Perl ER (1969) Response of cutaneous sensory units with unmyelinated fibers to noxious stimuli. J Neurophysiol 32(6):1025–1043CrossRef
Zurück zum Zitat Briggaman RA, Wheeler CE Jr (1975) The epidermal-dermal junction. J Investig Dermatol 65(1):71–84CrossRef Briggaman RA, Wheeler CE Jr (1975) The epidermal-dermal junction. J Investig Dermatol 65(1):71–84CrossRef
Zurück zum Zitat Burgess PR, Howe JF, Lessler MJ et al (1974) Cutaneous Receptors supplied by myelinated fibers in the cat. II. number of mechanoreceptors excited by a local stimulus. J Neurophysiol 37(6):1373–1386CrossRef Burgess PR, Howe JF, Lessler MJ et al (1974) Cutaneous Receptors supplied by myelinated fibers in the cat. II. number of mechanoreceptors excited by a local stimulus. J Neurophysiol 37(6):1373–1386CrossRef
Zurück zum Zitat Chan E, Yung WH, Baumann KI (1996) Cytoplasmic Ca2+ concentrations in intact merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 108(3):357–366CrossRef Chan E, Yung WH, Baumann KI (1996) Cytoplasmic Ca2+ concentrations in intact merkel cells of an isolated, functioning rat sinus hair preparation. Exp Brain Res 108(3):357–366CrossRef
Zurück zum Zitat Gerling GJ (2010) SA-I mechanoreceptor position in fingertip skin may impact sensitivity to edge stimuli. Appl Bion Biomech 7(1):19–29CrossRef Gerling GJ (2010) SA-I mechanoreceptor position in fingertip skin may impact sensitivity to edge stimuli. Appl Bion Biomech 7(1):19–29CrossRef
Zurück zum Zitat Gerling GJ, Thomas GW (2008) Fingerprint lines may not directly affect SAI mechanoreceptor response. Somatosens Mot Res 25(1):61–76CrossRef Gerling GJ, Thomas GW (2008) Fingerprint lines may not directly affect SAI mechanoreceptor response. Somatosens Mot Res 25(1):61–76CrossRef
Zurück zum Zitat Goodwin A, Wheat H (1999) Effects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type I primary afferents from the fingerpad. J Neurosci 19(18):8057–8070CrossRef Goodwin A, Wheat H (1999) Effects of nonuniform fiber sensitivity, innervation geometry, and noise on information relayed by a population of slowly adapting type I primary afferents from the fingerpad. J Neurosci 19(18):8057–8070CrossRef
Zurück zum Zitat Güçlü B, Bolanowski SJ (2002) Modeling population responses of rapidly-adapting mechanoreceptive fibers. J Comput Neurosci 12(3):201–218CrossRef Güçlü B, Bolanowski SJ (2002) Modeling population responses of rapidly-adapting mechanoreceptive fibers. J Comput Neurosci 12(3):201–218CrossRef
Zurück zum Zitat Güçlü B, Mahoney GK, Pawson LJ et al (2008) Localization of merkel cells in the monkey skin: an anatomical model. Somatosens Res 25(2):123–138CrossRef Güçlü B, Mahoney GK, Pawson LJ et al (2008) Localization of merkel cells in the monkey skin: an anatomical model. Somatosens Res 25(2):123–138CrossRef
Zurück zum Zitat Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1):25–71CrossRef Hodgkin AL, Huxley AF (1990) A quantitative description of membrane current and its application to conduction and excitation in nerve. Bull Math Biol 52(1):25–71CrossRef
Zurück zum Zitat Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200(3):763–796CrossRef Iggo A, Muir AR (1969) The structure and function of a slowly adapting touch corpuscle in hairy skin. J Physiol 200(3):763–796CrossRef
Zurück zum Zitat Johansson RS, Vallbo AB (1980) Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 184(2):66–353 Johansson RS, Vallbo AB (1980) Spatial properties of the population of mechanoreceptive units in the glabrous skin of the human hand. Brain Res 184(2):66–353
Zurück zum Zitat Johansson RS, Landström U, Lundström R (1982) Sensitivity to edges of mechanoreceptive afferent units innervating the glabrous skin of the human head. Brain Res 244(1):27–35CrossRef Johansson RS, Landström U, Lundström R (1982) Sensitivity to edges of mechanoreceptive afferent units innervating the glabrous skin of the human head. Brain Res 244(1):27–35CrossRef
Zurück zum Zitat Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461CrossRef Johnson KO (2001) The roles and functions of cutaneous mechanoreceptors. Curr Opin Neurobiol 11(4):455–461CrossRef
Zurück zum Zitat Johnson KO, Yoshioka T, Vegabermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17(6):539–558CrossRef Johnson KO, Yoshioka T, Vegabermudez F (2000) Tactile functions of mechanoreceptive afferents innervating the hand. J Clin Neurophysiol 17(6):539–558CrossRef
Zurück zum Zitat Kim EK,Gerling GJ,Wellnitz SA et al (2010) Using force sensors and neural models to encode tactile stimuli as spike-based responses. In: Proceedings of Symposium Haptic Interface Virtual Environment and Teleoperator Systems, 2010, pp 195–198 Kim EK,Gerling GJ,Wellnitz SA et al (2010) Using force sensors and neural models to encode tactile stimuli as spike-based responses. In: Proceedings of Symposium Haptic Interface Virtual Environment and Teleoperator Systems, 2010, pp 195–198
Zurück zum Zitat Maeno T, Kobayashi K, Yamazaki N (1998) Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int J Ser C Mech Syst Mach Elem Manuf 41(2):566–573 Maeno T, Kobayashi K, Yamazaki N (1998) Relationship between the structure of human finger tissue and the location of tactile receptors. JSME Int J Ser C Mech Syst Mach Elem Manuf 41(2):566–573
Zurück zum Zitat Maio VD, Ventriglia F, Santillo S (2016) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10(4):315–325CrossRef Maio VD, Ventriglia F, Santillo S (2016) A model of cooperative effect of AMPA and NMDA receptors in glutamatergic synapses. Cogn Neurodyn 10(4):315–325CrossRef
Zurück zum Zitat Maksimovic S, Nakatani M, Baba Y et al (2014) Epidermal merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621CrossRef Maksimovic S, Nakatani M, Baba Y et al (2014) Epidermal merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509(7502):617–621CrossRef
Zurück zum Zitat Manivannan R, Samidurai R, Cao J et al (2016) New delay-interval-dependent stability criteria for switched Hopfield neural networks of neutral type with successive time-varying delay components. Cogn Neurodyn 10(6):543–562CrossRef Manivannan R, Samidurai R, Cao J et al (2016) New delay-interval-dependent stability criteria for switched Hopfield neural networks of neutral type with successive time-varying delay components. Cogn Neurodyn 10(6):543–562CrossRef
Zurück zum Zitat Marshall KL, Lumpkin EA (2012) The molecular basis of mechanosensory transduction. Adv Exp Med Biol 739:142–155CrossRef Marshall KL, Lumpkin EA (2012) The molecular basis of mechanosensory transduction. Adv Exp Med Biol 739:142–155CrossRef
Zurück zum Zitat Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11(2):135–146CrossRef Mizraji E, Lin J (2017) The feeling of understanding: an exploration with neural models. Cogn Neurodyn 11(2):135–146CrossRef
Zurück zum Zitat Montagna W, Kligman AM, Ms KSC (1993) Atlas of normal human skin. Springer, Berlin Montagna W, Kligman AM, Ms KSC (1993) Atlas of normal human skin. Springer, Berlin
Zurück zum Zitat Munger BL, Ide C (2011) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51(1):1–34CrossRef Munger BL, Ide C (2011) The structure and function of cutaneous sensory receptors. Arch Histol Cytol 51(1):1–34CrossRef
Zurück zum Zitat Peters JF, Tozzi A, Ramanna S et al (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(4):391–394CrossRef Peters JF, Tozzi A, Ramanna S et al (2017) The human brain from above: an increase in complexity from environmental stimuli to abstractions. Cogn Neurodyn 11(4):391–394CrossRef
Zurück zum Zitat Phillips JR, Johnson KO (1981a) Tactile spatial resolution. III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J Neurophysiol 46(6):1204–1225CrossRef Phillips JR, Johnson KO (1981a) Tactile spatial resolution. III. A continuum mechanics model of skin predicting mechanoreceptor responses to bars, edges, and gratings. J Neurophysiol 46(6):1204–1225CrossRef
Zurück zum Zitat Phillips JR, Johnson KO (1981b) Tactile spatial resolution. II. neural representation of bars, edges, and gratings in monkey primary afferents. J Neurophysiol 46(6):1192–1203CrossRef Phillips JR, Johnson KO (1981b) Tactile spatial resolution. II. neural representation of bars, edges, and gratings in monkey primary afferents. J Neurophysiol 46(6):1192–1203CrossRef
Zurück zum Zitat Reid CA, Bekkers JM, Clements JD (2003) Presynaptic Ca2+ channels: a functional patchwork. Trends Neurosci 26(12):683–687CrossRef Reid CA, Bekkers JM, Clements JD (2003) Presynaptic Ca2+ channels: a functional patchwork. Trends Neurosci 26(12):683–687CrossRef
Zurück zum Zitat Rubinov M, Sporns O, Thivierge JP et al (2011) Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput Biol 7(6):e1002038CrossRef Rubinov M, Sporns O, Thivierge JP et al (2011) Neurobiologically realistic determinants of self-organized criticality in networks of spiking neurons. PLoS Comput Biol 7(6):e1002038CrossRef
Zurück zum Zitat Shimawaki S, Sakai N (2007) Quasi-static deformation analysis of a human finger using a three-dimensional finite element model constructed from Ct images. J Environ Eng 2(1):56–63CrossRef Shimawaki S, Sakai N (2007) Quasi-static deformation analysis of a human finger using a three-dimensional finite element model constructed from Ct images. J Environ Eng 2(1):56–63CrossRef
Zurück zum Zitat Srinivasan MA, Lamotte RH (1996) Abilities and mechanisms. Tactual Discrimination of Softness. Birkhäuser, Basel, pp 123–135 Srinivasan MA, Lamotte RH (1996) Abilities and mechanisms. Tactual Discrimination of Softness. Birkhäuser, Basel, pp 123–135
Zurück zum Zitat Sripati AP, Bensmaia SJ, Johnson KO (2006) A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J Neurophysiol 95(6):3852–3864CrossRef Sripati AP, Bensmaia SJ, Johnson KO (2006) A continuum mechanical model of mechanoreceptive afferent responses to indented spatial patterns. J Neurophysiol 95(6):3852–3864CrossRef
Zurück zum Zitat Tazaki M, Suzuki T (1998) Calcium inflow of hamster merkel cells in response to hyposmotic stimulation indicate a stretch activated ion channel. Neurosci Lett 243(1):69–72CrossRef Tazaki M, Suzuki T (1998) Calcium inflow of hamster merkel cells in response to hyposmotic stimulation indicate a stretch activated ion channel. Neurosci Lett 243(1):69–72CrossRef
Zurück zum Zitat Wang Y, Baba Y, Lumpkin EA et al (2016) Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics. J Neurophysiol 116(1):218–228CrossRef Wang Y, Baba Y, Lumpkin EA et al (2016) Computational modeling indicates that surface pressure can be reliably conveyed to tactile receptors even amidst changes in skin mechanics. J Neurophysiol 116(1):218–228CrossRef
Zurück zum Zitat Wei H, Bu Y, Dai D (2017) A decision-making model based on a spiking neural circuit and synaptic plasticity. Cogn Neurodyn 11(5):415–431CrossRef Wei H, Bu Y, Dai D (2017) A decision-making model based on a spiking neural circuit and synaptic plasticity. Cogn Neurodyn 11(5):415–431CrossRef
Zurück zum Zitat Wheat HE, Goodwin AW (2000) Tactile discrimination of gaps by slowly adapting afferents: effects of population parameters and anisotropy in the fingerpad. J Neurophysiol 84(3):1430–1444CrossRef Wheat HE, Goodwin AW (2000) Tactile discrimination of gaps by slowly adapting afferents: effects of population parameters and anisotropy in the fingerpad. J Neurophysiol 84(3):1430–1444CrossRef
Zurück zum Zitat Woo SH, Ranade S, Weyer AD et al (2014) Piezo2 is required for merkel-cell mechanotransduction. Nature 509(7502):622–626CrossRef Woo SH, Ranade S, Weyer AD et al (2014) Piezo2 is required for merkel-cell mechanotransduction. Nature 509(7502):622–626CrossRef
Zurück zum Zitat Woo SH, Lumpkin EA, Patapoutian A (2015) Merkel cells and neurons keep in touch. Trends Cell Biol 25(2):74–81CrossRef Woo SH, Lumpkin EA, Patapoutian A (2015) Merkel cells and neurons keep in touch. Trends Cell Biol 25(2):74–81CrossRef
Metadaten
Titel
Neurodynamic analysis of Merkel cell–neurite complex transduction mechanism during tactile sensing
verfasst von
Mengqiu Yao
Rubin Wang
Publikationsdatum
22.09.2018
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 3/2019
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-018-9507-z

Weitere Artikel der Ausgabe 3/2019

Cognitive Neurodynamics 3/2019 Zur Ausgabe

Neuer Inhalt