Skip to main content

2017 | OriginalPaper | Buchkapitel

Neuromemristive Systems: A Circuit Design Perspective

verfasst von : Cory Merkel, Dhireesha Kudithipudi

Erschienen in: Advances in Neuromorphic Hardware Exploiting Emerging Nanoscale Devices

Verlag: Springer India

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuromemristive systems (NMSs) are brain inspired, adaptive computer architectures based on emerging resistive memory technology (memristors). NMSs adopt a mixed-signal design approach with closely coupled memory and processing, resulting in high area and energy efficiencies. Existing work suggests that NMSs could even supplant conventional architectures in niche application domains. However, given the infancy of the field, there are still a number open design questions, particularly in the area of circuit realization, that must be explored in order for the research to move forward. This chapter reviews a number of theoretical and practical concepts related to NMS circuit design, with particular focus on neuron, synapse, and plasticity circuits.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
For example, different neurons may have different dendritic arborizations, axon lengths, methods of encoding/decoding information, etc.
 
2
However, photoreceptors in our eyes and neurons in the peripheral nervous system have graded (nonspiking) responses to stimuli.
 
Literatur
1.
Zurück zum Zitat Mead, C.: Analog VLSI and Neural Systems. Addison-Wesley (1989) Mead, C.: Analog VLSI and Neural Systems. Addison-Wesley (1989)
2.
Zurück zum Zitat Sinha, A., Kulkarni, M.S., Teuscher, C.: Evolving nanoscale associative memories with memristors. In: IEEE International Conference on Nanotechnology, pp. 861–864 (2011) Sinha, A., Kulkarni, M.S., Teuscher, C.: Evolving nanoscale associative memories with memristors. In: IEEE International Conference on Nanotechnology, pp. 861–864 (2011)
4.
Zurück zum Zitat Kulkarni, M.S.: Memristor-based reservoir computing. In: Nanoarch, pp. 226–232 (2012) Kulkarni, M.S.: Memristor-based reservoir computing. In: Nanoarch, pp. 226–232 (2012)
5.
Zurück zum Zitat Laiho, M., Lehtonen, E.: Cellular nanoscale network cell with memristors for local implication logic and synapses. In: International Symposium on Circuits and Systems, pp. 2051–2054, May 2010 Laiho, M., Lehtonen, E.: Cellular nanoscale network cell with memristors for local implication logic and synapses. In: International Symposium on Circuits and Systems, pp. 2051–2054, May 2010
6.
Zurück zum Zitat Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)CrossRef Ebong, I.E., Mazumder, P.: CMOS and memristor-based neural network design for position detection. Proc. IEEE 100(6), 2050–2060 (2012)CrossRef
7.
Zurück zum Zitat Adhikari, S.P., Yang, C., Kim, H., Chua, L.O.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)CrossRef Adhikari, S.P., Yang, C., Kim, H., Chua, L.O.: Memristor bridge synapse-based neural network and its learning. IEEE Trans. Neural Netw. Learn. Syst. 23(9), 1426–1435 (2012)CrossRef
9.
Zurück zum Zitat Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., Desalvo, B.: Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices 60(7), 2402–2409 (2013) Suri, M., Querlioz, D., Bichler, O., Palma, G., Vianello, E., Vuillaume, D., Gamrat, C., Desalvo, B.: Bio-inspired stochastic computing using binary CBRAM synapses. IEEE Trans. Electron Devices 60(7), 2402–2409 (2013)
10.
Zurück zum Zitat Merkel, C., Kudithipudi, D.: Neuromemristive extreme learning machines for pattern classification. In: International Symposium on VLSI, pp. 77–82 (2014) Merkel, C., Kudithipudi, D.: Neuromemristive extreme learning machines for pattern classification. In: International Symposium on VLSI, pp. 77–82 (2014)
12.
Zurück zum Zitat Chua, L.: Memristor—The missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971) Chua, L.: Memristor—The missing circuit element. IEEE Trans. Circuit Theory CT-18(5), 507–519 (1971)
13.
Zurück zum Zitat Chua, L., Kang, S.-M.: Memristive devices and systems, vol. 64, no. 2 (1976) Chua, L., Kang, S.-M.: Memristive devices and systems, vol. 64, no. 2 (1976)
14.
Zurück zum Zitat Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)CrossRefMATH Chua, L.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)CrossRefMATH
17.
Zurück zum Zitat Ishigaki, T., Kawahara, T., Takemura, R., Ono, K., Ito, K., Matsuoka, H., Ohno, H.: A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions. In: Symposium on VLSI Technology, pp. 47–48 (2010) Ishigaki, T., Kawahara, T., Takemura, R., Ono, K., Ito, K., Matsuoka, H., Ohno, H.: A multi-level-cell spin-transfer torque memory with series-stacked magnetotunnel junctions. In: Symposium on VLSI Technology, pp. 47–48 (2010)
20.
Zurück zum Zitat Yu, S., Lee, B., Wong, H.S.P.: Metal oxide resistive switching memory. In: Wu, J., Cao, J., Han, W.-Q., Janotti, H.A., Kim, H.-C. (eds.) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol. 149, pp. 303–335. Springer, New York (2012) Yu, S., Lee, B., Wong, H.S.P.: Metal oxide resistive switching memory. In: Wu, J., Cao, J., Han, W.-Q., Janotti, H.A., Kim, H.-C. (eds.) Functional Metal Oxide Nanostructures. Springer Series in Materials Science, vol. 149, pp. 303–335. Springer, New York (2012)
21.
Zurück zum Zitat Yang, Y., Lu, W.: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5(21), 10 076–92 (2013) Yang, Y., Lu, W.: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5(21), 10 076–92 (2013)
22.
Zurück zum Zitat Strukov, D.B., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94(3), 515–519 (2008)CrossRef Strukov, D.B., Williams, R.S.: Exponential ionic drift: fast switching and low volatility of thin-film memristors. Appl. Phys. A 94(3), 515–519 (2008)CrossRef
23.
Zurück zum Zitat Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)CrossRef Yang, J.J., Pickett, M.D., Li, X., Ohlberg, D., Stewart, D.R., Williams, R.S.: Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3(7), 429–433 (2008)CrossRef
24.
Zurück zum Zitat Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)CrossRef Strukov, D.B., Borghetti, J.L., Williams, R.S.: Coupled ionic and electronic transport model of thin-film semiconductor memristive behavior. Small 5(9), 1058–1063 (2009)CrossRef
25.
Zurück zum Zitat Mcdonald, N.R.: Al/CuxO/Cu memristive devices: fabrication, characterization, and modeling. Master’s Thesis, SUNY Albany (2012) Mcdonald, N.R.: Al/CuxO/Cu memristive devices: fabrication, characterization, and modeling. Master’s Thesis, SUNY Albany (2012)
26.
Zurück zum Zitat Biolek, Z., Biolek, D., Biolková, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009) Biolek, Z., Biolek, D., Biolková, V.: SPICE model of memristor with nonlinear dopant drift. Radioengineering 18(2), 210–214 (2009)
27.
Zurück zum Zitat Rak, A., Cserey, G.: Macromodeling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)CrossRef Rak, A., Cserey, G.: Macromodeling of the memristor in SPICE. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)CrossRef
30.
Zurück zum Zitat Yakopcic, C., Taha, T., Subramanyam, G., Pino, R.: Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In: International Joint Conference on Neural Networks, pp. 464–470 (2013) Yakopcic, C., Taha, T., Subramanyam, G., Pino, R.: Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time. In: International Joint Conference on Neural Networks, pp. 464–470 (2013)
31.
Zurück zum Zitat Chen, Y., Wang, X.: Compact modeling and corner analysis of spintronic memristor invited paper. In: IEEE/ACM International Symposium on Nanoscale Architectures, pp. 7–12 (2009) Chen, Y., Wang, X.: Compact modeling and corner analysis of spintronic memristor invited paper. In: IEEE/ACM International Symposium on Nanoscale Architectures, pp. 7–12 (2009)
32.
Zurück zum Zitat Shin, S., Kim, K., Kang, S.-M.: Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)CrossRef Shin, S., Kim, K., Kang, S.-M.: Compact models for memristors based on charge-flux constitutive relationships. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 590–598 (2010)CrossRef
33.
Zurück zum Zitat Sheridan, P., Kim, K.-H., Gaba, S., Chang, T., Chen, L., Lu, W.: Device and SPICE modeling of RRAM devices. Nanoscale 3(9), 3833–3840 (2011)CrossRef Sheridan, P., Kim, K.-H., Gaba, S., Chang, T., Chen, L., Lu, W.: Device and SPICE modeling of RRAM devices. Nanoscale 3(9), 3833–3840 (2011)CrossRef
35.
Zurück zum Zitat Toumazou, C., Lidgey, F.J., Haigh, D.G. (eds.): Analogue IC Design: The Current-mode Approach. Peter Peregrinus Ltd. (1990) Toumazou, C., Lidgey, F.J., Haigh, D.G. (eds.): Analogue IC Design: The Current-mode Approach. Peter Peregrinus Ltd. (1990)
36.
Zurück zum Zitat Manem, H., Rajendran, J., Rose, G.S.: Stochastic gradient descent inspired training technique for a CMOS/Nano memristive trainable threshold gate array. IEEE Trans. Circuits Syst. 59(5), 1051–1060 (2012)MathSciNetCrossRef Manem, H., Rajendran, J., Rose, G.S.: Stochastic gradient descent inspired training technique for a CMOS/Nano memristive trainable threshold gate array. IEEE Trans. Circuits Syst. 59(5), 1051–1060 (2012)MathSciNetCrossRef
37.
Zurück zum Zitat Soltiz, M., Member, S., Kudithipudi, D., Merkel, C., Rose, G.S., Pino, R.E.: Memristor-based neural logic blocks for non-linearly separable functions. IEEE Trans. Comput. 62(8), 1597–1606 (2013)MathSciNetCrossRef Soltiz, M., Member, S., Kudithipudi, D., Merkel, C., Rose, G.S., Pino, R.E.: Memristor-based neural logic blocks for non-linearly separable functions. IEEE Trans. Comput. 62(8), 1597–1606 (2013)MathSciNetCrossRef
38.
Zurück zum Zitat Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRef Kim, H., Sah, M.P., Yang, C., Roska, T., Chua, L.O.: Memristor bridge synapses. Proc. IEEE 100(6), 2061–2070 (2012)CrossRef
42.
Zurück zum Zitat Minsky, M., Papert, S.: Perceptrons—Expanded edition: An Introduction to Computational Geometry. MIT Press (1987) Minsky, M., Papert, S.: Perceptrons—Expanded edition: An Introduction to Computational Geometry. MIT Press (1987)
43.
Zurück zum Zitat Kandel, E.J., Schwartz, J. H., Jessell, T.J., Siegelbaum, S.A., Hudspeth, A. J.: Principles of Neural Science, 5th edn. McGraw Hill (2013) Kandel, E.J., Schwartz, J. H., Jessell, T.J., Siegelbaum, S.A., Hudspeth, A. J.: Principles of Neural Science, 5th edn. McGraw Hill (2013)
44.
Zurück zum Zitat Soudry, D., Castro, D. D., Gal, A., Kolodny, A., Kvatinsky, S.: Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2015) Soudry, D., Castro, D. D., Gal, A., Kolodny, A., Kvatinsky, S.: Memristor-based multilayer neural networks with online gradient descent training. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2015)
45.
Zurück zum Zitat Karlik, B.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1(4), 111–122 (2015) Karlik, B.: Performance analysis of various activation functions in generalized MLP architectures of neural networks. Int. J. Artif. Intell. Expert Syst. 1(4), 111–122 (2015)
46.
Zurück zum Zitat Wilamowski, B.M.: Understanding neural networks. In: Wilamowski, B.M., Irwin, J.D. (eds.) Intelligent Systems (Industrial Electronics), 2nd edn., Chap. 5, pp. 5–1. CRC Press (2011) Wilamowski, B.M.: Understanding neural networks. In: Wilamowski, B.M., Irwin, J.D. (eds.) Intelligent Systems (Industrial Electronics), 2nd edn., Chap. 5, pp. 5–1. CRC Press (2011)
47.
Zurück zum Zitat Merkel, C., Kudithipudi, D., Sereni, N.: Periodic activation functions in memristor-based analog neural networks. In: International Joint Conference on Neural Networks, pp. 1–7 (2013) Merkel, C., Kudithipudi, D., Sereni, N.: Periodic activation functions in memristor-based analog neural networks. In: International Joint Conference on Neural Networks, pp. 1–7 (2013)
51.
Zurück zum Zitat Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.-S., White, L.E.: Neuroscience, 5th edn. Sinauer Associates, Inc. (2012) Purves, D., Augustine, G.J., Fitzpatrick, D., Hall, W.C., LaMantia, A.-S., White, L.E.: Neuroscience, 5th edn. Sinauer Associates, Inc. (2012)
52.
Zurück zum Zitat Merkel, C., Kudithipudi, D.: A stochastic learning algorithm for neuromemristive systems. In: System on Chip Conference, pp. 359–364 (2014) Merkel, C., Kudithipudi, D.: A stochastic learning algorithm for neuromemristive systems. In: System on Chip Conference, pp. 359–364 (2014)
53.
Zurück zum Zitat Widrow, B.: An adaptive “ADALINE” neuron using chemical “Memistors”. Stanford University, Tech. Rep. (1960) Widrow, B.: An adaptive “ADALINE” neuron using chemical “Memistors”. Stanford University, Tech. Rep. (1960)
54.
Zurück zum Zitat Merkel, C., Kudithipudi, D.: IEEE National Aerospace and Electronics Conference, NAECON’15. IEEE (2015) Merkel, C., Kudithipudi, D.: IEEE National Aerospace and Electronics Conference, NAECON’15. IEEE (2015)
Metadaten
Titel
Neuromemristive Systems: A Circuit Design Perspective
verfasst von
Cory Merkel
Dhireesha Kudithipudi
Copyright-Jahr
2017
Verlag
Springer India
DOI
https://doi.org/10.1007/978-81-322-3703-7_3

Neuer Inhalt