Skip to main content

2013 | OriginalPaper | Buchkapitel

4. Neutral Evolution

verfasst von : Naruya Saitou

Erschienen in: Introduction to Evolutionary Genomics

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neutral evolution is the default process of the genome changes. This is because our world is finite and the randomness is important when we consider history of a finite world. The random nature of DNA propagation is discussed using branching process, coalescent process, Markov process, and diffusion process. Expected evolutionary patterns under neutrality are then discussed on fixation probability, rate of evolution, and amount of DNA variation kept in population. We then discuss various features of neutral evolution starting from evolutionary rates, synonymous and nonsynonymous substitutions, junk DNA, and pseudogenes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRef Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.CrossRef
2.
Zurück zum Zitat Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University Press.
3.
Zurück zum Zitat Mouse Genome Sequencing Consortium. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520–562.CrossRef Mouse Genome Sequencing Consortium. (2002). Initial sequencing and comparative analysis of the mouse genome. Nature, 420, 520–562.CrossRef
4.
Zurück zum Zitat International Chicken Genome Sequencing Consortium. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432, 695–716.CrossRef International Chicken Genome Sequencing Consortium. (2004). Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature, 432, 695–716.CrossRef
5.
Zurück zum Zitat Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.CrossRef Kimura, M. (1968). Evolutionary rate at the molecular level. Nature, 217, 624–626.CrossRef
6.
Zurück zum Zitat Bonner, J. T. (2008). The social amoebae: The biology of cellular slime molds. Princeton: Princeton University Press. Bonner, J. T. (2008). The social amoebae: The biology of cellular slime molds. Princeton: Princeton University Press.
7.
Zurück zum Zitat Cook, R. E. (1979). Asexual reproduction: A further consideration. American Naturalist, 113, 769–772.CrossRef Cook, R. E. (1979). Asexual reproduction: A further consideration. American Naturalist, 113, 769–772.CrossRef
8.
Zurück zum Zitat Ewens, W. J. (1979). Mathematical population genetics. Berlin/New York: Springer.MATH Ewens, W. J. (1979). Mathematical population genetics. Berlin/New York: Springer.MATH
9.
Zurück zum Zitat Watson, H. W., & Galton, F. (1874). On the probability of the extinction of families. Journal of Anthropological Institute, 4, 138–144. Watson, H. W., & Galton, F. (1874). On the probability of the extinction of families. Journal of Anthropological Institute, 4, 138–144.
10.
Zurück zum Zitat Haccou, P., Jagers, P., & Vatutin, V. A. (2005). Branching processes: Variation, growth, and extinction of populations. Cambridge: Cambridge University Press.CrossRef Haccou, P., Jagers, P., & Vatutin, V. A. (2005). Branching processes: Variation, growth, and extinction of populations. Cambridge: Cambridge University Press.CrossRef
11.
Zurück zum Zitat Crow, J. F. (1989). The estimation of inbreeding from isonymy. Human Biology, 61, 935–948. Crow, J. F. (1989). The estimation of inbreeding from isonymy. Human Biology, 61, 935–948.
12.
Zurück zum Zitat Saitou, N. (1983). An attempt to estimate the migration pattern in Japan by surname data (in Japanese). Jinruigaku Zasshi, 91, 309–322. Saitou, N. (1983). An attempt to estimate the migration pattern in Japan by surname data (in Japanese). Jinruigaku Zasshi, 91, 309–322.
13.
Zurück zum Zitat Fisher, R. A. (1930). The distribution of gene ratios for rare mutations. Proceedings of Royal Society of Edinburgh, 50, 205–220. Fisher, R. A. (1930). The distribution of gene ratios for rare mutations. Proceedings of Royal Society of Edinburgh, 50, 205–220.
14.
Zurück zum Zitat Feller, W. (1968). Introduction to probability theory and its applications (3rd ed., Vol. 1). New York: Wiley.MATH Feller, W. (1968). Introduction to probability theory and its applications (3rd ed., Vol. 1). New York: Wiley.MATH
15.
Zurück zum Zitat Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. New York: Prentice-Hall. Crow, J. F., & Kimura, M. (1970). An introduction to population genetics theory. New York: Prentice-Hall.
16.
Zurück zum Zitat Howell, N. (1979). Demography of the Dobe !Kung. New York: Academic. Howell, N. (1979). Demography of the Dobe !Kung. New York: Academic.
17.
Zurück zum Zitat Saitou, N., Shimizu, H., & Omoto, K. (1988). On the effect of the fluctuating population size on the age of a mutant gene. Journal of the Anthropological Society of Nippon, 96, 449–458.CrossRef Saitou, N., Shimizu, H., & Omoto, K. (1988). On the effect of the fluctuating population size on the age of a mutant gene. Journal of the Anthropological Society of Nippon, 96, 449–458.CrossRef
18.
Zurück zum Zitat Kingman, J. F. C. (1982). On the genealogy of large populations. Journal of Applied Probability, 19A, 27–43.CrossRefMathSciNet Kingman, J. F. C. (1982). On the genealogy of large populations. Journal of Applied Probability, 19A, 27–43.CrossRefMathSciNet
19.
Zurück zum Zitat Hudson, R. R. (1983). Testing the constant rate neutral allele model with protein sequence data. Evolution, 37, 203–217.CrossRef Hudson, R. R. (1983). Testing the constant rate neutral allele model with protein sequence data. Evolution, 37, 203–217.CrossRef
20.
Zurück zum Zitat Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437–460. Tajima, F. (1983). Evolutionary relationship of DNA sequences in finite populations. Genetics, 105, 437–460.
21.
Zurück zum Zitat Fu, Y.-X. (2006). Exact coalescent for the Wright-Fisher model. Theoretical Population Biology, 69, 385–394.CrossRefMATH Fu, Y.-X. (2006). Exact coalescent for the Wright-Fisher model. Theoretical Population Biology, 69, 385–394.CrossRefMATH
22.
Zurück zum Zitat Hein, J., Schierup, M. H., & Wiuf, C. (2005). Gene genealogies, variation, and evolution – a primer in coalescent theory. Oxford: Oxford University Press.MATH Hein, J., Schierup, M. H., & Wiuf, C. (2005). Gene genealogies, variation, and evolution – a primer in coalescent theory. Oxford: Oxford University Press.MATH
23.
Zurück zum Zitat Wakeley, J. (2008). Coalescent theory: An introduction. Greenwood Village: Roberts & Co. Wakeley, J. (2008). Coalescent theory: An introduction. Greenwood Village: Roberts & Co.
24.
Zurück zum Zitat Kimura, M. (1955). Solution of a process of random genetic drift with a continuous model. Proceedings of National Academy of Sciences USA, 41, 144–150.CrossRefMATH Kimura, M. (1955). Solution of a process of random genetic drift with a continuous model. Proceedings of National Academy of Sciences USA, 41, 144–150.CrossRefMATH
26.
Zurück zum Zitat Kimura, M., & Ohta, T. (1971). Protein polymorphism as a phase of molecular evolution. Nature, 229, 467–469.CrossRef Kimura, M., & Ohta, T. (1971). Protein polymorphism as a phase of molecular evolution. Nature, 229, 467–469.CrossRef
27.
Zurück zum Zitat Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725–738. Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725–738.
28.
Zurück zum Zitat Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics, 61, 893–903. Kimura, M. (1969). The number of heterozygous nucleotide sites maintained in a finite population due to steady flux of mutations. Genetics, 61, 893–903.
29.
Zurück zum Zitat Kimura, M. (1968). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research, 1, 247–269.CrossRef Kimura, M. (1968). Genetic variability maintained in a finite population due to mutational production of neutral and nearly neutral isoalleles. Genetical Research, 1, 247–269.CrossRef
30.
Zurück zum Zitat Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S. W., & Lee, C. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36, 949–951.CrossRef Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, S. W., & Lee, C. (2004). Detection of large-scale variation in the human genome. Nature Genetics, 36, 949–951.CrossRef
31.
Zurück zum Zitat Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305, 525–528.CrossRef Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Maner, S., Massa, H., Walker, M., Chi, M., et al. (2004). Large-scale copy number polymorphism in the human genome. Science, 305, 525–528.CrossRef
32.
Zurück zum Zitat Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic. Zuckerkandl, E., & Pauling, L. (1965). Evolutionary divergence and convergence in proteins. In V. Bryson & H. J. Vogel (Eds.), Evolving genes and proteins (pp. 97–166). New York: Academic.
33.
Zurück zum Zitat Kimura, M., & Ohta, T. (1973). Mutation and evolution at the molecular level. Genetics (Supplement), 73, 19–35. Kimura, M., & Ohta, T. (1973). Mutation and evolution at the molecular level. Genetics (Supplement), 73, 19–35.
34.
Zurück zum Zitat Wu, C.-I., & Li, W.-H. (1985). Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences of the United States of America, 82, 1741–1745.CrossRef Wu, C.-I., & Li, W.-H. (1985). Evidence for higher rates of nucleotide substitution in rodents than in man. Proceedings of the National Academy of Sciences of the United States of America, 82, 1741–1745.CrossRef
35.
Zurück zum Zitat Li, W.-H., & Wu, C.-I. (1987). Rates of nucleotide substitution are evidently higher in rodents than in man. Molecular Biology and Evolution, 4, 74–82. Li, W.-H., & Wu, C.-I. (1987). Rates of nucleotide substitution are evidently higher in rodents than in man. Molecular Biology and Evolution, 4, 74–82.
36.
Zurück zum Zitat Rhesus Macaque Sequencing and Analysis Consortium. (2007). Evolutionary and biomedical insights from the rhesus macaque genome. Science, 316, 222–234.CrossRef Rhesus Macaque Sequencing and Analysis Consortium. (2007). Evolutionary and biomedical insights from the rhesus macaque genome. Science, 316, 222–234.CrossRef
37.
Zurück zum Zitat Abe, K., Noguchi, H., Tagawa, K., Yuzuriha, M., Toyoda, A., Kojima, T., Ezawa, K., Saitou, N., Hattori, M., Sakaki, Y., Moriwaki, K., & Shiroishi, T. (2004). Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC end sequence-SNP analysis. Genome Research, 14, 2239–2247.CrossRef Abe, K., Noguchi, H., Tagawa, K., Yuzuriha, M., Toyoda, A., Kojima, T., Ezawa, K., Saitou, N., Hattori, M., Sakaki, Y., Moriwaki, K., & Shiroishi, T. (2004). Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC end sequence-SNP analysis. Genome Research, 14, 2239–2247.CrossRef
38.
Zurück zum Zitat Hendriks, W., Leunissen, J., Nevo, E., Bloemendal, H., & de Jong, W. W. (1987). The lens protein alpha A-crystallin of the blind mole rat, Spalax ehrenbergi: Evolutionary change and functional constraints. Proceedings of the National Academy of Sciences of the United States of America, 84, 5320–5324.CrossRef Hendriks, W., Leunissen, J., Nevo, E., Bloemendal, H., & de Jong, W. W. (1987). The lens protein alpha A-crystallin of the blind mole rat, Spalax ehrenbergi: Evolutionary change and functional constraints. Proceedings of the National Academy of Sciences of the United States of America, 84, 5320–5324.CrossRef
39.
Zurück zum Zitat Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 2, 13–34. Ikemura, T. (1985). Codon usage and tRNA content in unicellular and multicellular organisms. Molecular Biology and Evolution, 2, 13–34.
40.
Zurück zum Zitat Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symposium in Biology, 23, 366–370. Ohno, S. (1972). So much “junk” DNA in our genome. Brookhaven Symposium in Biology, 23, 366–370.
41.
Zurück zum Zitat International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef International Human Genome Sequencing Consortium. (2004). Finishing the euchromatic sequence of the human genome. Nature, 431, 931–945.CrossRef
42.
Zurück zum Zitat Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., & Haussler, D. (2004). Ultraconserved elements in the human genome. Science, 304, 1321–1325.CrossRef Bejerano, G., Pheasant, M., Makunin, I., Stephen, S., Kent, W. J., Mattick, J. S., & Haussler, D. (2004). Ultraconserved elements in the human genome. Science, 304, 1321–1325.CrossRef
43.
Zurück zum Zitat Takahashi, M., & Saitou, N. (2012). Identification and characterization of lineage-specific highly conserved noncoding sequences in mammalian genomes. Genome Biology and Evolution, 4, 641–657.CrossRef Takahashi, M., & Saitou, N. (2012). Identification and characterization of lineage-specific highly conserved noncoding sequences in mammalian genomes. Genome Biology and Evolution, 4, 641–657.CrossRef
44.
Zurück zum Zitat Bejerano, G., Lowe, C. B., Ahituv, N., King, B., Siepel, A., Salama, S. R., Rubin, E. M., Kent, W. J., & Haussler, D. (2006). A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature, 441, 87–90.CrossRef Bejerano, G., Lowe, C. B., Ahituv, N., King, B., Siepel, A., Salama, S. R., Rubin, E. M., Kent, W. J., & Haussler, D. (2006). A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature, 441, 87–90.CrossRef
45.
Zurück zum Zitat Sasaki, T., Nishihara, H., Hirakawa, M., Fujimura, K., Tanaka, M., Kokubo, N., Kimura-Yoshida, C., Matsuo, I., Sumiyama, K., Saitou, N., Shimogori, T., & Okada, N. (2008). Possible involvement of SINEs in mammalian-specific brain formation. Proceedings of the National Academy of Sciences of the United States of America, 105, 4220–4225.CrossRef Sasaki, T., Nishihara, H., Hirakawa, M., Fujimura, K., Tanaka, M., Kokubo, N., Kimura-Yoshida, C., Matsuo, I., Sumiyama, K., Saitou, N., Shimogori, T., & Okada, N. (2008). Possible involvement of SINEs in mammalian-specific brain formation. Proceedings of the National Academy of Sciences of the United States of America, 105, 4220–4225.CrossRef
46.
Zurück zum Zitat Johnson, J. M., Edwards, S., Shoemaker, D., & Schadt, E. E. (2005). Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends in Genetics, 21, 93–102.CrossRef Johnson, J. M., Edwards, S., Shoemaker, D., & Schadt, E. E. (2005). Dark matter in the genome: Evidence of widespread transcription detected by microarray tiling experiments. Trends in Genetics, 21, 93–102.CrossRef
47.
Zurück zum Zitat Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., et al. (2007). Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature, 447, 799–816.CrossRef Birney, E., Stamatoyannopoulos, J. A., Dutta, A., Guigo, R., Gingeras, T. R., et al. (2007). Identification and analysis of functional elements in 1 % of the human genome by the ENCODE pilot project. Nature, 447, 799–816.CrossRef
48.
Zurück zum Zitat van Bakel, H., Nislow, C., Blencowe, B. J., & Hughes, T. R. (2010). Most “dark matter” transcripts are associated with known genes. PLoS Biology, 8, e1000371.CrossRef van Bakel, H., Nislow, C., Blencowe, B. J., & Hughes, T. R. (2010). Most “dark matter” transcripts are associated with known genes. PLoS Biology, 8, e1000371.CrossRef
49.
Zurück zum Zitat Li, W.-H., Gojobori, T., & Nei, M. (1981). Pseudogenes as paradigm of the neutral evolution. Nature, 292, 237–239.CrossRef Li, W.-H., Gojobori, T., & Nei, M. (1981). Pseudogenes as paradigm of the neutral evolution. Nature, 292, 237–239.CrossRef
50.
Zurück zum Zitat King, J. L., & Jukes, T. H. (1969). Non-Darwinian evolution. Science, 164, 788–798.CrossRef King, J. L., & Jukes, T. H. (1969). Non-Darwinian evolution. Science, 164, 788–798.CrossRef
51.
Zurück zum Zitat Lehninger, A. L. (1975). Biochemistry. New York: Worth Publishers. Lehninger, A. L. (1975). Biochemistry. New York: Worth Publishers.
52.
Zurück zum Zitat Toyohara, H., Nakata, T., Touhata, K., Hashimoto, H., Kinoshita, M., Sakaguchi, M., Nishikimi, M., Yagi, K., Wakamatsu, Y., & Ozato, K. (1996). Transgenic expression of L-gulono-gamma-lactone oxidase in medaka (Oryzias latipes), a teleost fish that lacks this enzyme necessary for L-ascorbic acid biosynthesis. Biochemical and Biophysical Research Communications, 223, 650–653.CrossRef Toyohara, H., Nakata, T., Touhata, K., Hashimoto, H., Kinoshita, M., Sakaguchi, M., Nishikimi, M., Yagi, K., Wakamatsu, Y., & Ozato, K. (1996). Transgenic expression of L-gulono-gamma-lactone oxidase in medaka (Oryzias latipes), a teleost fish that lacks this enzyme necessary for L-ascorbic acid biosynthesis. Biochemical and Biophysical Research Communications, 223, 650–653.CrossRef
53.
Zurück zum Zitat Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., & Yagi, K. (1994). Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. Journal of Biological Chemistry, 269, 13685–13688. Nishikimi, M., Fukuyama, R., Minoshima, S., Shimizu, N., & Yagi, K. (1994). Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. Journal of Biological Chemistry, 269, 13685–13688.
54.
Zurück zum Zitat Cole, S. T., & others. (2001). Massive gene decay in the leprosy bacillus. Nature, 409, 1007–1011. Cole, S. T., & others. (2001). Massive gene decay in the leprosy bacillus. Nature, 409, 1007–1011.
55.
Zurück zum Zitat Saitou, N. (2007). Genomu Shinkagaku Nyumon (written in Japanese, meaning ‘Introduction to evolutionary genomics’). Tokyo: Kyoritsu Shuppan. Saitou, N. (2007). Genomu Shinkagaku Nyumon (written in Japanese, meaning ‘Introduction to evolutionary genomics’). Tokyo: Kyoritsu Shuppan.
56.
Zurück zum Zitat Babarinde, I. A., & Saitou, N. (2013). Heterogeneous tempo and mode of conserved noncoding sequence evolution among four mammalian orders. Genome Biology and Evolution (advance access). Babarinde, I. A., & Saitou, N. (2013). Heterogeneous tempo and mode of conserved noncoding sequence evolution among four mammalian orders. Genome Biology and Evolution (advance access).
57.
Zurück zum Zitat Ohtsuka, H., Oyanagi, M., Mafune, Y., Miyashita, N., Shiroishi, T., Moriwaki, K., Kominami, R., & Saitou, N. (1996). The presence/absence polymorphism and evolution of p53 pseudogene within the genus Mus. Molecular Phylogenetics and Evolution, 5, 548–556.CrossRef Ohtsuka, H., Oyanagi, M., Mafune, Y., Miyashita, N., Shiroishi, T., Moriwaki, K., Kominami, R., & Saitou, N. (1996). The presence/absence polymorphism and evolution of p53 pseudogene within the genus Mus. Molecular Phylogenetics and Evolution, 5, 548–556.CrossRef
58.
Zurück zum Zitat Nei, M. (2013a). Mutation-driven evolution. Oxford: Oxford University Press. Nei, M. (2013a). Mutation-driven evolution. Oxford: Oxford University Press.
59.
Zurück zum Zitat Takahatan, N. (1993). Allelic genealogy and human evolution. Molecular Biology and Evolution, 10, 2–22. Takahatan, N. (1993). Allelic genealogy and human evolution. Molecular Biology and Evolution, 10, 2–22.
Metadaten
Titel
Neutral Evolution
verfasst von
Naruya Saitou
Copyright-Jahr
2013
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-5304-7_4