Skip to main content
Erschienen in: Experimental Mechanics 2/2013

01.02.2013

Neutron Diffraction Measurement of Stress Redistribution in Parallel Seven-Wire Strands after Local Fracture

verfasst von: F. Mei, I. C. Noyan, A. Brügger, R. Betti, B. Clausen, D. Brown, T. Sisneros

Erschienen in: Experimental Mechanics | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report results from neutron diffraction experiments where partitioning of applied tensile load between the inner and outer wires of seven-wire parallel and quasi-parallel wire strands were measured while 1-all wires were undergoing elastic deformation, 2-where one wire within the bundle was undergoing plastic flow and, 3-when one or more wires fractured under load. The results indicate that mechanical interference and friction mechanisms have similar contributions to the load transferred to fractured wires, and both mechanisms should be included in analytical or numerical formulations of strain partitioning in quasi-parallel wire cables.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We define the “effective stress transfer length” as the longitudinal distance, measured from the fracture location, a broken wire recovers its full share of the applied load when multiple strain transfer mechanisms are operating.
 
2
Figure 1(b) depicts a load-bearing wire with a full twist around a short wire-segment. In our experiments the outer wires were twisted very slightly around the central axis. However, since the wires were clamped together, compatibility of deformation within the strand would hinder unraveling of individual wires and create pinch points.
 
5
We are using ∂ε yy / ∂σ A only as a relative measure of the load uptake between identical wires loaded simultaneously, in parallel, from a common set of grips in the elastic regime. If all other parameters are equal, ∂ε yy / ∂σ A should be identical in all wires[1619]. Further details about Rietveld fitting and associated reliability factors can be found in Reference [20].
 
6
To check the precision of the data, strain measurements were repeated in each wire of Sample S3-I at 225 MPa applied load. We observe that the scatter in the data for all wires are quite close to the error calculated by the GSAS program.
 
7
This also shows that the strain calculated through the Rietveld procedure is equivalent to the average macroscopic elastic strain.
 
8
Such constraint can also account for the compressive residual strain observed in the central wire after fracture: due to the rapid, dynamic, contraction, the broken wire segment shrinks past the zero strain level and the friction of the (stationary) surrounding wires prevent it from lengthening subsequently to reach zero strain.
 
9
This value is calculated from the applied load with the actual cross-section for six wires.
 
Literatur
1.
Zurück zum Zitat Costello GA (1997) Theory of wire rope, 2nd edn. Springer Verlag, New YorkCrossRef Costello GA (1997) Theory of wire rope, 2nd edn. Springer Verlag, New YorkCrossRef
2.
Zurück zum Zitat Feyrer K (2007) Wire ropes: tension, endurance, reliability. Springer Verlag, BerlinCrossRef Feyrer K (2007) Wire ropes: tension, endurance, reliability. Springer Verlag, BerlinCrossRef
3.
Zurück zum Zitat Talbot M, Laflamme JF, Glisic B (2007) Stress measurements in the main cable of a suspension bridge under dead and traffic loads. Proceedings EVACES Porto, Portugal, Paper 138 Talbot M, Laflamme JF, Glisic B (2007) Stress measurements in the main cable of a suspension bridge under dead and traffic loads. Proceedings EVACES Porto, Portugal, Paper 138
4.
Zurück zum Zitat Utting WS, Jones N (1985) Tensile testing of a wire rope strand. J Strain Anal Eng Des 20:151–164CrossRef Utting WS, Jones N (1985) Tensile testing of a wire rope strand. J Strain Anal Eng Des 20:151–164CrossRef
5.
Zurück zum Zitat Cappa P (1988) Experimental study of wire strains in an undamaged and damaged steel strand subjected to tensile load. Exp Mech 28:346–349CrossRef Cappa P (1988) Experimental study of wire strains in an undamaged and damaged steel strand subjected to tensile load. Exp Mech 28:346–349CrossRef
6.
Zurück zum Zitat Noyan IC, Brugger A, Betti R, Clausen B (2010) Measurement of strain/load transfer in parallel seven-wire strands with neutron diffraction. Exp Mech 50:265–272CrossRef Noyan IC, Brugger A, Betti R, Clausen B (2010) Measurement of strain/load transfer in parallel seven-wire strands with neutron diffraction. Exp Mech 50:265–272CrossRef
7.
Zurück zum Zitat Utting WS, Jones N (1987) Response of wire rope strands to axial tensile loads - Part I. Experimental results and theoretical predictions. Int J Mech Sci 29:605–619CrossRef Utting WS, Jones N (1987) Response of wire rope strands to axial tensile loads - Part I. Experimental results and theoretical predictions. Int J Mech Sci 29:605–619CrossRef
8.
Zurück zum Zitat Wilson C, MacFarlane J (2000) Failure of wire rope sockets under impact loading. J Phys IV 10:553–558 Wilson C, MacFarlane J (2000) Failure of wire rope sockets under impact loading. J Phys IV 10:553–558
9.
Zurück zum Zitat Bourke MAM, Dunand DC, Ustundag E (2002) SMARTS—a spectrometer for strain measurement in engineering materials. Appl Phys A 72:S1707–S1709CrossRef Bourke MAM, Dunand DC, Ustundag E (2002) SMARTS—a spectrometer for strain measurement in engineering materials. Appl Phys A 72:S1707–S1709CrossRef
10.
Zurück zum Zitat Brown EN, Rae PJ, Dattelbaum DM, Clausen B, Brown DW (2008) In-situ measurement of crystalline lattice strains in polytetrafluoroethylene. Exp Mech 48:119–131CrossRef Brown EN, Rae PJ, Dattelbaum DM, Clausen B, Brown DW (2008) In-situ measurement of crystalline lattice strains in polytetrafluoroethylene. Exp Mech 48:119–131CrossRef
11.
Zurück zum Zitat Bourke MAM, Roberts JA, Davis D (1997) Macrostrain measurement using radial collimators at LANSCE. Proc SPIE Crete Greece 2867:136–139CrossRef Bourke MAM, Roberts JA, Davis D (1997) Macrostrain measurement using radial collimators at LANSCE. Proc SPIE Crete Greece 2867:136–139CrossRef
12.
Zurück zum Zitat Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152CrossRef Rietveld HM (1967) Line profiles of neutron powder-diffraction peaks for structure refinement. Acta Crystallogr 22:151–152CrossRef
13.
Zurück zum Zitat Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
14.
Zurück zum Zitat Von Dreele RB, Jorgensen JD, Windsor CG (1982) Rietveld refinement with spallation neutron powder diffraction data. J Appl Crystallogr 15:581–589CrossRef Von Dreele RB, Jorgensen JD, Windsor CG (1982) Rietveld refinement with spallation neutron powder diffraction data. J Appl Crystallogr 15:581–589CrossRef
15.
Zurück zum Zitat Waisman H, Montoya A, Betti R, Noyan IC (2011) Load transfer and recovery length in parallel wires of suspension bridge cables. J Eng Mech ASCE 137:227–237CrossRef Waisman H, Montoya A, Betti R, Noyan IC (2011) Load transfer and recovery length in parallel wires of suspension bridge cables. J Eng Mech ASCE 137:227–237CrossRef
16.
Zurück zum Zitat Daymond MR, Bourke MAM, Von Dreele RB, Clausen B, Lorentzen T (1997) Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra. J Appl Phys 82:1554–1562CrossRef Daymond MR, Bourke MAM, Von Dreele RB, Clausen B, Lorentzen T (1997) Use of Rietveld refinement for elastic macrostrain determination and for evaluation of plastic strain history from diffraction spectra. J Appl Phys 82:1554–1562CrossRef
17.
Zurück zum Zitat Clausen B, Lorentzen T, Bourke MAM, Daymond MR (1999) Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater Sci Eng A 259:17–24CrossRef Clausen B, Lorentzen T, Bourke MAM, Daymond MR (1999) Lattice strain evolution during uniaxial tensile loading of stainless steel. Mater Sci Eng A 259:17–24CrossRef
18.
Zurück zum Zitat Daymond MR, Bourke MAM, Von Dreele RB (1999) Use of Rietveld refinement to fit a hexagonal crystal structure in the presence of elastic and plastic anisotropy. J Appl Phys 85:739–747CrossRef Daymond MR, Bourke MAM, Von Dreele RB (1999) Use of Rietveld refinement to fit a hexagonal crystal structure in the presence of elastic and plastic anisotropy. J Appl Phys 85:739–747CrossRef
19.
Zurück zum Zitat Daymond MR, Priesmeyer HG (2002) Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modeling. Acta Mater 50:1613–1626CrossRef Daymond MR, Priesmeyer HG (2002) Elastoplastic deformation of ferritic steel and cementite studied by neutron diffraction and self-consistent modeling. Acta Mater 50:1613–1626CrossRef
20.
Zurück zum Zitat Toby BH (2006) R factors in Rietveld analysis: how good is good enough? Powder Diffract 21:67–70CrossRef Toby BH (2006) R factors in Rietveld analysis: how good is good enough? Powder Diffract 21:67–70CrossRef
Metadaten
Titel
Neutron Diffraction Measurement of Stress Redistribution in Parallel Seven-Wire Strands after Local Fracture
verfasst von
F. Mei
I. C. Noyan
A. Brügger
R. Betti
B. Clausen
D. Brown
T. Sisneros
Publikationsdatum
01.02.2013
Verlag
Springer US
Erschienen in
Experimental Mechanics / Ausgabe 2/2013
Print ISSN: 0014-4851
Elektronische ISSN: 1741-2765
DOI
https://doi.org/10.1007/s11340-012-9621-5

Weitere Artikel der Ausgabe 2/2013

Experimental Mechanics 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.