Skip to main content

2020 | OriginalPaper | Buchkapitel

5. New Approaches for Increasing Demand-Side Flexibility

verfasst von : Roya Ahmadiahangar, Argo Rosin, Ivo Palu, Aydin Azizi

Erschienen in: Demand-side Flexibility in Smart Grid

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Demand-side flexibility is a new topic that has not been addressed much. Most researches consider the possibility of increasing power system flexibility from different generation technologies. Flexibility in demand-side is defined as the capability of consumption modification in response to control signals. Possible sources of those control signals may be external market signals to the smart meters, external signals form the aggregator or grid operator, or internal control signals from the home energy management system. In exploiting flexibility from the demand-side, there is a trend in increasing utilisation of residential energy storage systems, particularly energy storage capacity in Electrical Vehicles.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Ahmadiahangar, A. Sheikholeslami, A. Nabavi Niaki, A. Ranjbar, Dynamic participation of doubly fed induction generators in multi-control area load frequency control. Int. Trans. Electr. Energy Syst. 25(7), 1130–1147 (2015)CrossRef R. Ahmadiahangar, A. Sheikholeslami, A. Nabavi Niaki, A. Ranjbar, Dynamic participation of doubly fed induction generators in multi-control area load frequency control. Int. Trans. Electr. Energy Syst. 25(7), 1130–1147 (2015)CrossRef
2.
Zurück zum Zitat M. Mahmudizad, R. Ahmadiahangar, Improving load frequency control of multi-area power system by considering uncertainty by using optimized type 2 fuzzy pid controller with the harmony search algorithm. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 10(8), 1051–1061 (2016) M. Mahmudizad, R. Ahmadiahangar, Improving load frequency control of multi-area power system by considering uncertainty by using optimized type 2 fuzzy pid controller with the harmony search algorithm. World Acad. Sci. Eng. Technol. Int. J. Electr. Comput. Energ. Electron. Commun. Eng. 10(8), 1051–1061 (2016)
3.
Zurück zum Zitat Cherrelle Eid, Joep Grosveld, Rudi Hakvoort, Assessing the costs of electric flexibility from distributed energy resources: a case from the Netherlands. Sustain. Energy Technol. Assessments 31, 1–8 (2019)CrossRef Cherrelle Eid, Joep Grosveld, Rudi Hakvoort, Assessing the costs of electric flexibility from distributed energy resources: a case from the Netherlands. Sustain. Energy Technol. Assessments 31, 1–8 (2019)CrossRef
4.
Zurück zum Zitat N. Good, K.A. Ellis, P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sustain. Energy Rev. 72, 57–72 (2017)CrossRef N. Good, K.A. Ellis, P. Mancarella, Review and classification of barriers and enablers of demand response in the smart grid. Renew. Sustain. Energy Rev. 72, 57–72 (2017)CrossRef
5.
Zurück zum Zitat Regulatory Recommendations for the Deployment of Flexibility. SGTF-EG3 Report (2015) Regulatory Recommendations for the Deployment of Flexibility. SGTF-EG3 Report (2015)
6.
Zurück zum Zitat K. Kouzelis, Z.H. Tan, B. Bak-Jensen, J.R. Pillai, E. Ritchie, Estimation of residential heat pump consumption for flexibility market applications. IEEE Trans. Smart Grid 6(4), 1852–1864 (2015)CrossRef K. Kouzelis, Z.H. Tan, B. Bak-Jensen, J.R. Pillai, E. Ritchie, Estimation of residential heat pump consumption for flexibility market applications. IEEE Trans. Smart Grid 6(4), 1852–1864 (2015)CrossRef
7.
Zurück zum Zitat P.U. Herath, V. Fusco, M.N. Cáceres, G.K. Venayagamoorthy, S. Squartini, F. Piazza, J.M. Corchado, Computational intelligence-based demand response management in a microgrid. IEEE Trans. Ind. Appl. 55(1), 732–740 (2018)CrossRef P.U. Herath, V. Fusco, M.N. Cáceres, G.K. Venayagamoorthy, S. Squartini, F. Piazza, J.M. Corchado, Computational intelligence-based demand response management in a microgrid. IEEE Trans. Ind. Appl. 55(1), 732–740 (2018)CrossRef
8.
Zurück zum Zitat Ke Wang, Rongxin Yin, Liangzhong Yao, Jianguo Yao, Taiyou Yong, A two-layer framework for quantifying demand response flexibility at bulk supply points. IEEE Trans. Smart Grid 9(4), 3616–3628 (2018)CrossRef Ke Wang, Rongxin Yin, Liangzhong Yao, Jianguo Yao, Taiyou Yong, A two-layer framework for quantifying demand response flexibility at bulk supply points. IEEE Trans. Smart Grid 9(4), 3616–3628 (2018)CrossRef
9.
Zurück zum Zitat T. Péan, R. Costa-Castelló, E. Fuentes, Experimental testing of variable speed heat pump control strategies for enhancing energy flexibility in buildings. IEEE Access (2019) T. Péan, R. Costa-Castelló, E. Fuentes, Experimental testing of variable speed heat pump control strategies for enhancing energy flexibility in buildings. IEEE Access (2019)
10.
Zurück zum Zitat I. Pavić, T. Capuder, I. Kuzle, A comprehensive approach for maximizing flexibility benefits of electric vehicles. IEEE Syst. J. 12(3), 2882–2893 (2018)CrossRef I. Pavić, T. Capuder, I. Kuzle, A comprehensive approach for maximizing flexibility benefits of electric vehicles. IEEE Syst. J. 12(3), 2882–2893 (2018)CrossRef
11.
Zurück zum Zitat A.S. Gazafroudi, J.M. Corchado, A. Keane, A. Soroudi, Decentralised flexibility management for EVs. IET Renew. Power Gener. 13(6), 952–960 (2018)CrossRef A.S. Gazafroudi, J.M. Corchado, A. Keane, A. Soroudi, Decentralised flexibility management for EVs. IET Renew. Power Gener. 13(6), 952–960 (2018)CrossRef
12.
Zurück zum Zitat I.I. Avramidis, V.A. Evangelopoulos, P.S. Georgilakis, Demand side flexibility schemes for facilitating the high penetration of residential distributed energy resources. IET Gener. Transm. Distrib. 12(18), 4079–4088 (2018)CrossRef I.I. Avramidis, V.A. Evangelopoulos, P.S. Georgilakis, Demand side flexibility schemes for facilitating the high penetration of residential distributed energy resources. IET Gener. Transm. Distrib. 12(18), 4079–4088 (2018)CrossRef
13.
Zurück zum Zitat A. Taşcıkaraoğlu, N.G. Paterakis, O. Erdinç, J.P. Catalao, Combining the flexibility from shared energy storage systems and DLC-based demand response of HVAC units for distribution system operation enhancement. IEEE Trans. Sustain. Energy 10(1), 137–148 (2018)CrossRef A. Taşcıkaraoğlu, N.G. Paterakis, O. Erdinç, J.P. Catalao, Combining the flexibility from shared energy storage systems and DLC-based demand response of HVAC units for distribution system operation enhancement. IEEE Trans. Sustain. Energy 10(1), 137–148 (2018)CrossRef
14.
Zurück zum Zitat M. Inês Verdelho, R. Prata, D. Koraki, Demand flexibility benefits from the DSO perspective—A sustainable case study, in CIRED Workshop—Helsinki, 14–15 June 2016 M. Inês Verdelho, R. Prata, D. Koraki, Demand flexibility benefits from the DSO perspective—A sustainable case study, in CIRED Workshop—Helsinki, 14–15 June 2016
15.
Zurück zum Zitat Satu Paiho, Heidi Saastamoinen, Elina Hakkaraine, Increasing flexibility of Finnish energy systems—a review of potential technologies and means. Sustain. Cities Soc. 43, 509–523 (2018)CrossRef Satu Paiho, Heidi Saastamoinen, Elina Hakkaraine, Increasing flexibility of Finnish energy systems—a review of potential technologies and means. Sustain. Cities Soc. 43, 509–523 (2018)CrossRef
16.
Zurück zum Zitat R. D’hulst, W. Labeeuw, B. Beusen, S. Claessens, G. Deconinck, K. Vanthournout, Demand response flexibility and flexibility potential of residential smart appliances: experiences from large pilot test in Belgium. Appl. Energy 155, 79–90 (2015)CrossRef R. D’hulst, W. Labeeuw, B. Beusen, S. Claessens, G. Deconinck, K. Vanthournout, Demand response flexibility and flexibility potential of residential smart appliances: experiences from large pilot test in Belgium. Appl. Energy 155, 79–90 (2015)CrossRef
17.
Zurück zum Zitat Jelena Ponocko, Jovica V. Milanovic, Forecasting demand flexibility of aggregated residential load using smart meter data. IEEE Trans. Power Syst. 33(5), 5446–5455 (2018)CrossRef Jelena Ponocko, Jovica V. Milanovic, Forecasting demand flexibility of aggregated residential load using smart meter data. IEEE Trans. Power Syst. 33(5), 5446–5455 (2018)CrossRef
18.
Zurück zum Zitat C. C. C4.112, Guidelines for Power Quality Monitoring—Measurement Locations, Processing and Presentation of Data (London, UK, 2014) C. C. C4.112, Guidelines for Power Quality Monitoring—Measurement Locations, Processing and Presentation of Data (London, UK, 2014)
19.
Zurück zum Zitat M. Pipattanasomporn, M. Kuzlu, S. Rahman, Y. Teklu, Load profiles of selected major household appliances and their demand response opportunities. IEEE Trans. Smart Grids 5(2), 742–750 (2014)CrossRef M. Pipattanasomporn, M. Kuzlu, S. Rahman, Y. Teklu, Load profiles of selected major household appliances and their demand response opportunities. IEEE Trans. Smart Grids 5(2), 742–750 (2014)CrossRef
20.
Zurück zum Zitat Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans. Industr. Inf. 12(1), 425–437 (2016) Smart electricity meter data intelligence for future energy systems: a survey. IEEE Trans. Industr. Inf. 12(1), 425–437 (2016)
21.
Zurück zum Zitat K. Zhou, C. Fu, S. Yang, Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016)CrossRef K. Zhou, C. Fu, S. Yang, Big data driven smart energy management: from big data to big insights. Renew. Sustain. Energy Rev. 56, 215–225 (2016)CrossRef
22.
Zurück zum Zitat E. Bagheri, H. Fazlollahtabar, M. Talebi Ashoori, Product pricing with marketing data under risk using business intelligence. Revista Inteligência Competitiva 8(3), 1–14 (2018) E. Bagheri, H. Fazlollahtabar, M. Talebi Ashoori, Product pricing with marketing data under risk using business intelligence. Revista Inteligência Competitiva 8(3), 1–14 (2018)
23.
Zurück zum Zitat N. Shabbir, R. Ahmadiahangar, L. Kütt, M.N. Iqbal, A. Rosin, Forecasting short term wind energy generation using machine learning, in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2019) N. Shabbir, R. Ahmadiahangar, L. Kütt, M.N. Iqbal, A. Rosin, Forecasting short term wind energy generation using machine learning, in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2019)
24.
Zurück zum Zitat A.B. Dayani, H. Fazlollahtabar, R. Ahmadiahangar, A. Rosin, M.S. Naderi, M. Bagheri, Applying reinforcement learning method for real-time energy management, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (2019) A.B. Dayani, H. Fazlollahtabar, R. Ahmadiahangar, A. Rosin, M.S. Naderi, M. Bagheri, Applying reinforcement learning method for real-time energy management, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe) (2019)
25.
Zurück zum Zitat H. Su, E. Zio, J. Zhang, L. Chi, X. Li, Z.A. Zhang, Systematic data-driven demand side management method for smart natural gas supply systems. Energy Convers. Manag. 185, 368–383 (2019)CrossRef H. Su, E. Zio, J. Zhang, L. Chi, X. Li, Z.A. Zhang, Systematic data-driven demand side management method for smart natural gas supply systems. Energy Convers. Manag. 185, 368–383 (2019)CrossRef
26.
Zurück zum Zitat S. Noor, W. Yang, M. Guo, K.H. van Dam, X. Wang, Energy Demand Side Management within micro-grid networks enhanced by blockchain. Appl. Energy 228, 1385–1398 (2018)CrossRef S. Noor, W. Yang, M. Guo, K.H. van Dam, X. Wang, Energy Demand Side Management within micro-grid networks enhanced by blockchain. Appl. Energy 228, 1385–1398 (2018)CrossRef
27.
Zurück zum Zitat F. Ruelens, B.J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška, R. Belmans, Reinforcement learning applied to an electric water heater: from theory to practice. IEEE Trans. Smart Grid 9(4), 3792–3800 (2018)CrossRef F. Ruelens, B.J. Claessens, S. Quaiyum, B. De Schutter, R. Babuška, R. Belmans, Reinforcement learning applied to an electric water heater: from theory to practice. IEEE Trans. Smart Grid 9(4), 3792–3800 (2018)CrossRef
28.
Zurück zum Zitat B.J. Claessens, P. Vrancx, F. Ruelens, Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control. IEEE Trans. Smart Grid 9(4), 3259–3271 (2018)CrossRef B.J. Claessens, P. Vrancx, F. Ruelens, Convolutional neural networks for automatic state-time feature extraction in reinforcement learning applied to residential load control. IEEE Trans. Smart Grid 9(4), 3259–3271 (2018)CrossRef
29.
Zurück zum Zitat E. Thomas, R. Sharma, Y. Nazarathy, Towards demand side management control using household specific Markovian models. Automatica 101, 450–457 (2019)MathSciNetCrossRef E. Thomas, R. Sharma, Y. Nazarathy, Towards demand side management control using household specific Markovian models. Automatica 101, 450–457 (2019)MathSciNetCrossRef
30.
Zurück zum Zitat P. Olivella-Rosell, E. Bullich-Massagué, M. Aragüés-Peñalba, A. Sumper, S.Ø. Ottesen, Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources. Appl. Energy 210, 881–895 (2018)CrossRef P. Olivella-Rosell, E. Bullich-Massagué, M. Aragüés-Peñalba, A. Sumper, S.Ø. Ottesen, Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources. Appl. Energy 210, 881–895 (2018)CrossRef
31.
Zurück zum Zitat T. Häring, R. Ahmadiahangar, A. Rosin, H. Biechl, T. Korõtko, Comparison of the impact of different household occupancies on load matching algorithms, in 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (2019) T. Häring, R. Ahmadiahangar, A. Rosin, H. Biechl, T. Korõtko, Comparison of the impact of different household occupancies on load matching algorithms, in 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (2019)
32.
Zurück zum Zitat Gianluca Lipari, Gerard Del Rosario, Cristina Corchero, Ferdinanda Ponci, A real-time commercial aggregator for distributed energy resources flexibility management. Sustain. Energy Grids Netw. 15, 63–75 (2018)CrossRef Gianluca Lipari, Gerard Del Rosario, Cristina Corchero, Ferdinanda Ponci, A real-time commercial aggregator for distributed energy resources flexibility management. Sustain. Energy Grids Netw. 15, 63–75 (2018)CrossRef
33.
Zurück zum Zitat Sareh Agheb, Xiaoqi Tan, Bo Sun, Contract design for aggregating, trading, and distributing reserves in demand-side frequency regulation. IEEE Trans. Industr. Inf. 14(6), 2539–2550 (2018)CrossRef Sareh Agheb, Xiaoqi Tan, Bo Sun, Contract design for aggregating, trading, and distributing reserves in demand-side frequency regulation. IEEE Trans. Industr. Inf. 14(6), 2539–2550 (2018)CrossRef
34.
Zurück zum Zitat I. Lampropoulos, T. Alskaif, J. Blom, W. van Sark, A framework for the provision of flexibility services at the transmission and distribution levels through aggregator companies. Sustain. Energy Grids Netw. 17, 100187 (2019)CrossRef I. Lampropoulos, T. Alskaif, J. Blom, W. van Sark, A framework for the provision of flexibility services at the transmission and distribution levels through aggregator companies. Sustain. Energy Grids Netw. 17, 100187 (2019)CrossRef
35.
Zurück zum Zitat P. Olivella-Rosell, P. Lloret-Gallego, Í. Munné-Collado, Local flexibility market design for aggregators providing multiple flexibility services at distribution network level. Energies 11, 822 (2018)CrossRef P. Olivella-Rosell, P. Lloret-Gallego, Í. Munné-Collado, Local flexibility market design for aggregators providing multiple flexibility services at distribution network level. Energies 11, 822 (2018)CrossRef
36.
Zurück zum Zitat Thomas Morstyn, Alexander Teytelboym, Malcolm D. McCulloch, Designing decentralized markets for distribution system flexibility. IEEE Trans. Power Syst. 34(3), 2128–2140 (2019)CrossRef Thomas Morstyn, Alexander Teytelboym, Malcolm D. McCulloch, Designing decentralized markets for distribution system flexibility. IEEE Trans. Power Syst. 34(3), 2128–2140 (2019)CrossRef
37.
Zurück zum Zitat C. Cordobés, EMPOWER H2020 Project Grant Agreement 646476; eSmart Systems (Bellevue, WA, USA, 2017) C. Cordobés, EMPOWER H2020 Project Grant Agreement 646476; eSmart Systems (Bellevue, WA, USA, 2017)
38.
Zurück zum Zitat I. Ilieva, B. Bremdal, S. Ødegaard Ottesen, J. Rajasekharan, P. Olivella-Rosell, Design characteristics of a smart grid dominated local market, in Proceedings of the CIRED Workshop, Helsinki, Finland, pp 1–4, 14–15 June 2016 I. Ilieva, B. Bremdal, S. Ødegaard Ottesen, J. Rajasekharan, P. Olivella-Rosell, Design characteristics of a smart grid dominated local market, in Proceedings of the CIRED Workshop, Helsinki, Finland, pp 1–4, 14–15 June 2016
39.
Zurück zum Zitat S. Goutte, P. Vassilopoulos, The value of flexibility in power markets. Energy Policy 125, 347–357 (2019)CrossRef S. Goutte, P. Vassilopoulos, The value of flexibility in power markets. Energy Policy 125, 347–357 (2019)CrossRef
40.
Zurück zum Zitat C. Dang, X. Wang, X. Wang, F. Li, B. Zhou, DG planning incorporating demand flexibility to promote renewable integration. IET Gener. Transm. Distrib. 12(20), 4419–4425 (2018)CrossRef C. Dang, X. Wang, X. Wang, F. Li, B. Zhou, DG planning incorporating demand flexibility to promote renewable integration. IET Gener. Transm. Distrib. 12(20), 4419–4425 (2018)CrossRef
41.
Zurück zum Zitat Designing individual penalty signals for improved energy flexibility utilisation. Int. Fed. Autom. Control 52(4), 123–128 (2019) Designing individual penalty signals for improved energy flexibility utilisation. Int. Fed. Autom. Control 52(4), 123–128 (2019)
42.
Zurück zum Zitat Demand response management for profit maximizing energy loads in real-time electricity market. IEEE Trans. Power Syst. 33(6), 6387–6396 (2019) Demand response management for profit maximizing energy loads in real-time electricity market. IEEE Trans. Power Syst. 33(6), 6387–6396 (2019)
43.
Zurück zum Zitat K. Peterson, R. Ahmadiahangar, N. Shabbir, T. Vinnal, Analysis of microgrid configuration effects on energy efficiency, in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2019) K. Peterson, R. Ahmadiahangar, N. Shabbir, T. Vinnal, Analysis of microgrid configuration effects on energy efficiency, in 2019 IEEE 60th International Scientific Conference on Power and Electrical Engineering of Riga Technical University (RTUCON) (2019)
44.
Zurück zum Zitat M. Caserza Magro, M. Giannettoni, P. Pinceti, Real time simulator for microgrids. Electr. Power Syst. Res. 160, 381–396 (2018)CrossRef M. Caserza Magro, M. Giannettoni, P. Pinceti, Real time simulator for microgrids. Electr. Power Syst. Res. 160, 381–396 (2018)CrossRef
45.
Zurück zum Zitat F. Huerta, R.L. Tello, M. Prodanovic, Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines. IEEE Trans. Industr. Electron. 64(3), 1893–1904 (2016)CrossRef F. Huerta, R.L. Tello, M. Prodanovic, Real-time power-hardware-in-the-loop implementation of variable-speed wind turbines. IEEE Trans. Industr. Electron. 64(3), 1893–1904 (2016)CrossRef
46.
Zurück zum Zitat R. Ahmadiahangar, A. Rosin, A.N. Niaki, I. Palu, T. Korõtko, A review on real-time simulation and analysis methods of microgrids. Int. Trans. Electr. Energy Syst. 29(11), e12106 (2019)CrossRef R. Ahmadiahangar, A. Rosin, A.N. Niaki, I. Palu, T. Korõtko, A review on real-time simulation and analysis methods of microgrids. Int. Trans. Electr. Energy Syst. 29(11), e12106 (2019)CrossRef
47.
Zurück zum Zitat A. Rosin, I. Drovtar, J. Kilter, Solutions and active measures for wind power integration, in Large Scale Grid Integration of Renewable Energy Sources (IET, 2017) A. Rosin, I. Drovtar, J. Kilter, Solutions and active measures for wind power integration, in Large Scale Grid Integration of Renewable Energy Sources (IET, 2017)
49.
Zurück zum Zitat H. Turker, S. Bacha, D. Chatroux, Impact of plug-in hybrid electric vehicles (PHEVs) on the french electric grid, in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe) (Gothenburg, 2010) H. Turker, S. Bacha, D. Chatroux, Impact of plug-in hybrid electric vehicles (PHEVs) on the french electric grid, in 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe) (Gothenburg, 2010)
50.
Zurück zum Zitat N. Good, P. Mancarella, Flexibility in multi-energy communities with electrical and thermal storage: a stochastic, robust approach for multi-service demand response. IEEE Trans. Smart Grid 10(1), 503–514 (2019)CrossRef N. Good, P. Mancarella, Flexibility in multi-energy communities with electrical and thermal storage: a stochastic, robust approach for multi-service demand response. IEEE Trans. Smart Grid 10(1), 503–514 (2019)CrossRef
51.
Zurück zum Zitat R. Ahmadiahangar, T. Häring, A. Rosin, T. Korõtko, J. Martins, Residential load forecasting for flexibility prediction using machine learning-based regression model, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genoa, Italy (2019) R. Ahmadiahangar, T. Häring, A. Rosin, T. Korõtko, J. Martins, Residential load forecasting for flexibility prediction using machine learning-based regression model, in 2019 IEEE International Conference on Environment and Electrical Engineering and 2019 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Genoa, Italy (2019)
52.
Zurück zum Zitat N. Shabbir, R. Ahmadiahangar, L. Kütt, A. Rosin, Comparison of machine learning based methods for residential load forecasting, in 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (2019) N. Shabbir, R. Ahmadiahangar, L. Kütt, A. Rosin, Comparison of machine learning based methods for residential load forecasting, in 2019 Electric Power Quality and Supply Reliability Conference (PQ) & 2019 Symposium on Electrical Engineering and Mechatronics (SEEM) (2019)
53.
Zurück zum Zitat T. Häring, R. Ahmadiahangar, A. Rosin, H. Biechl, Impact of load matching algorithms on the battery capacity with different household occupancies, in IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (Lisbon, 2019) T. Häring, R. Ahmadiahangar, A. Rosin, H. Biechl, Impact of load matching algorithms on the battery capacity with different household occupancies, in IECON 2019-45th Annual Conference of the IEEE Industrial Electronics Society (Lisbon, 2019)
56.
Zurück zum Zitat L. Söder, P.D. Lund, H. Koduvere, T.F. Bolkesjø, A review of demand side flexibility potential in Northern Europe. Renew. Sustain. Energy Rev. 91, 654–664 (2018)CrossRef L. Söder, P.D. Lund, H. Koduvere, T.F. Bolkesjø, A review of demand side flexibility potential in Northern Europe. Renew. Sustain. Energy Rev. 91, 654–664 (2018)CrossRef
57.
Zurück zum Zitat G. Power, Feasibility Study on the Inter-Connection Variants for the Integration of the Baltic States to the EU Internal Electricity Market Gothia Power (2015) G. Power, Feasibility Study on the Inter-Connection Variants for the Integration of the Baltic States to the EU Internal Electricity Market Gothia Power (2015)
Metadaten
Titel
New Approaches for Increasing Demand-Side Flexibility
verfasst von
Roya Ahmadiahangar
Argo Rosin
Ivo Palu
Aydin Azizi
Copyright-Jahr
2020
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-15-4627-3_5