Skip to main content

2011 | OriginalPaper | Buchkapitel

New Bio-Inspired Multiphase Thermal Functional Fluid

verfasst von : José L. Lage

Erschienen in: Heat Transfer in Multi-Phase Materials

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efforts in harvesting the potential benefits of mimicking the gas exchange in alveolar capillary for channel heat transfer processes has led to a new bio-inspired multiphase thermal functional fluid (MTFF). This MTFF is originally conceived as encapsulated phase-change material particles, with diameter comparable to the channel size, flowing with the cooling liquid. The two main benefits of this new MTFF are not only the phase-change effect of the particles in the heat transfer process, but also the specific geometry of the particle and channel leading to the sweeping of the boundary layer in the channel. This last effect is believed to be responsible for the very high efficiency of the gas exchange taking place in the alveolar capillaries. Preliminary numerical simulation results seem to confirm the benefit of both effects. A groundbreaking experimental apparatus, designed as a pumpless flow loop, uses vortical effects created by a magnetic stirrer to set the liquid and particles of the MTFF in motion, overcoming the settling and clogging difficulties so characteristic of a multiphase fluid flow. Experimental tests, with octadecane paraffin (EPCM) particles or with acrylonitrile butadiene styrene (ABS) plastic particles (with no latent heat capacity), both flowing in water, have been performed and the results compared to results obtained with clear (of particulates) water flow. All tests indicate the advantages of using the MTFF in comparison to clear water, even at relatively low particle concentrations. Moreover, the tests seem to confirm the same behavior found in capillary blood flow, namely the detrimental effect of increasing the particle concentration beyond an optimum concentration, either leading to a reduction in the boundary layer sweeping effect or to an increased competition among particles for the heat transfer. This effort highlights the importance of learning from efficient biological systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Darwish, T., Bayoumi, M.: Trends in low-power VLSI design. In: Chen, W-K. (ed) Electrical Engineering Handbook, vol. 3(5), pp. 263–280. Academic Press, San Diego (2005) Darwish, T., Bayoumi, M.: Trends in low-power VLSI design. In: Chen, W-K. (ed) Electrical Engineering Handbook, vol. 3(5), pp. 263–280. Academic Press, San Diego (2005)
2.
Zurück zum Zitat Steinke, M.E., Kandlikar, S.G.: Review of single phase heat transfer enhancement techniques for application in microchannels, minichannels and microdevices. Int. J. Heat Technol. 22(2), 3–11 (2004) Steinke, M.E., Kandlikar, S.G.: Review of single phase heat transfer enhancement techniques for application in microchannels, minichannels and microdevices. Int. J. Heat Technol. 22(2), 3–11 (2004)
3.
Zurück zum Zitat Charunyaorn, P., Sengupta, S., Roy, S.K.: Forced convective heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int. J. Heat Mass Transf. 34(3), 819–833 (1991)CrossRef Charunyaorn, P., Sengupta, S., Roy, S.K.: Forced convective heat transfer in microencapsulated phase change material slurries: flow in circular ducts. Int. J. Heat Mass Transf. 34(3), 819–833 (1991)CrossRef
4.
Zurück zum Zitat Sohn, C.W., Chen, M.M.: Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity Couette flow experiment. J. Heat Transf. 103, 47–50 (1991)CrossRef Sohn, C.W., Chen, M.M.: Microconvective thermal conductivity in disperse two-phase mixture as observed in a low velocity Couette flow experiment. J. Heat Transf. 103, 47–50 (1991)CrossRef
5.
Zurück zum Zitat Choi, E., Cho, Y., Lorsch, H.G.: Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube. Int. J. Heat Mass Transf. 37(2), 207–215 (1993) Choi, E., Cho, Y., Lorsch, H.G.: Forced convection heat transfer with phase-change-material slurries: turbulent flow in a circular tube. Int. J. Heat Mass Transf. 37(2), 207–215 (1993)
6.
Zurück zum Zitat Goel, M., Roy, S.K., Sengupta, S.: Laminar forced convection heat transfer in microencapsulated phase change material suspensions. Int. J. Heat Mass Transf. 37(4), 593–604 (1994)CrossRef Goel, M., Roy, S.K., Sengupta, S.: Laminar forced convection heat transfer in microencapsulated phase change material suspensions. Int. J. Heat Mass Transf. 37(4), 593–604 (1994)CrossRef
7.
Zurück zum Zitat Zhang, Y., Faghri, A.: Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J. Thermophys. Heat Transf. 9(4), 727–732 (1995)CrossRef Zhang, Y., Faghri, A.: Analysis of forced convection heat transfer in microencapsulated phase change material suspensions. J. Thermophys. Heat Transf. 9(4), 727–732 (1995)CrossRef
8.
Zurück zum Zitat Mulligan, J.C., Colvin, D.P., Bryan, Y.G.: Microencapsulated phasechange material suspensions for heat transfer in spacecraft thermal systems. J. Spacecr. Rockets 33(2), 278–284 (1996)CrossRef Mulligan, J.C., Colvin, D.P., Bryan, Y.G.: Microencapsulated phasechange material suspensions for heat transfer in spacecraft thermal systems. J. Spacecr. Rockets 33(2), 278–284 (1996)CrossRef
9.
Zurück zum Zitat Yamagishi, Y., Takeuchi, H., Pyatenko, A., Kayukawa, N.: Characteristic of microencapsulated PCM slurry as a heat-transfer fluid. AIChE J 45(4), 696–707 (1999)CrossRef Yamagishi, Y., Takeuchi, H., Pyatenko, A., Kayukawa, N.: Characteristic of microencapsulated PCM slurry as a heat-transfer fluid. AIChE J 45(4), 696–707 (1999)CrossRef
10.
Zurück zum Zitat Alisetti, L., Roy, S.K.: Forced convection heat transfer to phase change material slurries in circular ducts. J. Thermophys. Heat Transf. 14(1), 115–118 (2000)CrossRef Alisetti, L., Roy, S.K.: Forced convection heat transfer to phase change material slurries in circular ducts. J. Thermophys. Heat Transf. 14(1), 115–118 (2000)CrossRef
11.
Zurück zum Zitat Roy, S.K., Avanic, B.L.: Laminar forced convection heat transfer with phase change material suspensions. Int. Commun. Heat Mass Transf. 28(7), 895–904 (2001)CrossRef Roy, S.K., Avanic, B.L.: Laminar forced convection heat transfer with phase change material suspensions. Int. Commun. Heat Mass Transf. 28(7), 895–904 (2001)CrossRef
12.
Zurück zum Zitat Royon, L., Guiffant, G., Perrot, P.: Forced convection heat transfer in a slurry of phase change material in an agitated tank. Int. Commun. Heat Mass Transf. 27(8), 1057–1065 (2000)CrossRef Royon, L., Guiffant, G., Perrot, P.: Forced convection heat transfer in a slurry of phase change material in an agitated tank. Int. Commun. Heat Mass Transf. 27(8), 1057–1065 (2000)CrossRef
13.
Zurück zum Zitat Hu, X.X., Zhang, Y.P.: Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall. Acta Energiae Solaris Sin. 23, 626–633 (2002) Hu, X.X., Zhang, Y.P.: Theoretical analysis of the convective heat transfer enhancement of latent functionally thermal fluid with isothermal wall. Acta Energiae Solaris Sin. 23, 626–633 (2002)
14.
Zurück zum Zitat Hu, X.X., Zhang, Y.P.: Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminarflow in a circular tube with constant heat flux. Int. J. Heat Mass Transf. 45, 3163–3172 (2002)CrossRef Hu, X.X., Zhang, Y.P.: Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminarflow in a circular tube with constant heat flux. Int. J. Heat Mass Transf. 45, 3163–3172 (2002)CrossRef
15.
Zurück zum Zitat Ayel, V., Lottin, O., Peerhossaini, H.: Rheology, flow behavior and heat transfer of ice slurries: a review of the state of the art. Int. J. Refrig. 26, 95–107 (2003)CrossRef Ayel, V., Lottin, O., Peerhossaini, H.: Rheology, flow behavior and heat transfer of ice slurries: a review of the state of the art. Int. J. Refrig. 26, 95–107 (2003)CrossRef
16.
Zurück zum Zitat Xin, W., Yinping, Z., Xlanxu, H.: Turbulent heat transfer enhancement of microencapsulated phase change material slurries with constant wall heat flux. Enhanced Heat Transf. 11(1), 13–22 (2003) Xin, W., Yinping, Z., Xlanxu, H.: Turbulent heat transfer enhancement of microencapsulated phase change material slurries with constant wall heat flux. Enhanced Heat Transf. 11(1), 13–22 (2003)
17.
Zurück zum Zitat Zhang, Y.P., Hu, X.X., Wang, X.: Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries. Heat Mass Transf. 40, 59–66 (2003)CrossRef Zhang, Y.P., Hu, X.X., Wang, X.: Theoretical analysis of convective heat transfer enhancement of microencapsulated phase change material slurries. Heat Mass Transf. 40, 59–66 (2003)CrossRef
18.
Zurück zum Zitat Ho, C.J., Lin, J.F., Chiu, S.Y.: Heat transfer of solid-liquid phase change material suspension in circular pipes: effects of wall conduction. Num. Heat Transf. 45((A)), 171–190 (2004) Ho, C.J., Lin, J.F., Chiu, S.Y.: Heat transfer of solid-liquid phase change material suspension in circular pipes: effects of wall conduction. Num. Heat Transf. 45((A)), 171–190 (2004)
19.
Zurück zum Zitat Tiarks, F., Landfester, K., Antonietti, M.: Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17(3), 908–918 (2001)CrossRef Tiarks, F., Landfester, K., Antonietti, M.: Preparation of polymeric nanocapsules by miniemulsion polymerization. Langmuir 17(3), 908–918 (2001)CrossRef
20.
Zurück zum Zitat Momoda, L.A., Phelps, A.C.: Nanometer sized phase change materials for enhanced heat transfer fluid performance. US Patent US 6447692, 2002 Momoda, L.A., Phelps, A.C.: Nanometer sized phase change materials for enhanced heat transfer fluid performance. US Patent US 6447692, 2002
21.
Zurück zum Zitat Cho, J.S., Kwon, A., Cho, C.G.: Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci. 280, 260–266 (2002)CrossRef Cho, J.S., Kwon, A., Cho, C.G.: Microencapsulation of octadecane as a phase-change material by interfacial polymerization in an emulsion system. Colloid Polym. Sci. 280, 260–266 (2002)CrossRef
22.
Zurück zum Zitat Zhang, X.X., Fan, Y.F., Tao, X.M., Yick, K.L.: Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater. Chem. Phys. 88, 300–307 (2004)CrossRef Zhang, X.X., Fan, Y.F., Tao, X.M., Yick, K.L.: Fabrication and properties of microcapsules and nanocapsules containing n-octadecane. Mater. Chem. Phys. 88, 300–307 (2004)CrossRef
23.
Zurück zum Zitat Luo, Y.W., Zhou, X.D.: Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J. Polym. Sci. A Polym. Chem. 42(9), 2145–2154 (2004)CrossRef Luo, Y.W., Zhou, X.D.: Nanoencapsulation of a hydrophobic compound by a miniemulsion polymerization process. J. Polym. Sci. A Polym. Chem. 42(9), 2145–2154 (2004)CrossRef
24.
Zurück zum Zitat Ozonur, Y., Mazman, M., Paksoy, H.O., Evliya, H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 307, 41–749 (2006) Ozonur, Y., Mazman, M., Paksoy, H.O., Evliya, H.: Microencapsulation of coco fatty acid mixture for thermal energy storage with phase change material. Int. J. Energy Res. 307, 41–749 (2006)
25.
Zurück zum Zitat Sarier, N., Onder, E.: The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim. Acta 452, 149–160 (2007)CrossRef Sarier, N., Onder, E.: The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics. Thermochim. Acta 452, 149–160 (2007)CrossRef
26.
Zurück zum Zitat Fang, Y., Kuang, S., Gao, X., Zhang, Z.: Preparation of nanoencapsulated phase change material as latent functionally thermal fluid. J. Phys. D Appl. Phys. 42, 1–8 (2009) Fang, Y., Kuang, S., Gao, X., Zhang, Z.: Preparation of nanoencapsulated phase change material as latent functionally thermal fluid. J. Phys. D Appl. Phys. 42, 1–8 (2009)
27.
Zurück zum Zitat Inaba, H., Kim, M.J., Horibe, A.: Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microencapsules having different diameters. J Heat Transf. 126(4), 558–565 (2004)CrossRef Inaba, H., Kim, M.J., Horibe, A.: Melting heat transfer characteristics of microencapsulated phase change material slurries with plural microencapsules having different diameters. J Heat Transf. 126(4), 558–565 (2004)CrossRef
28.
Zurück zum Zitat Wang, X., Niu, J., Li, Y., Wang, X., Chen, B., Zeng, R., Song, Q., Zhang, Y.: Flow and heat transfer be behaviors of phase change material slurries in a horizontal circular tube. Int. J. Heat Mass Transf. 50, 2480–2491 (2007)CrossRef Wang, X., Niu, J., Li, Y., Wang, X., Chen, B., Zeng, R., Song, Q., Zhang, Y.: Flow and heat transfer be behaviors of phase change material slurries in a horizontal circular tube. Int. J. Heat Mass Transf. 50, 2480–2491 (2007)CrossRef
29.
Zurück zum Zitat Alvarado, J.L., Marsh, C., Sohn, C., Vilceus, M., Hock, V., Phetteplace, G., Newell, T.: Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int. J. Heat Mass Transf. 50, 1938–1952 (2007)CrossRef Alvarado, J.L., Marsh, C., Sohn, C., Vilceus, M., Hock, V., Phetteplace, G., Newell, T.: Thermal performance of microencapsulated phase change material slurry in turbulent flow under constant heat flux. Int. J. Heat Mass Transf. 50, 1938–1952 (2007)CrossRef
30.
Zurück zum Zitat Chen, B.J., Wang, X., Zeng, R.L., Zhang, Y.P., Wang, X.C., Niu, J.J., Li, Y., Di, H.F.: An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp. Therm. Fluid Sci. 32, 1638–1646 (2008)CrossRef Chen, B.J., Wang, X., Zeng, R.L., Zhang, Y.P., Wang, X.C., Niu, J.J., Li, Y., Di, H.F.: An experimental study of convective heat transfer with microencapsulated phase change material suspension: laminar flow in a circular tube under constant heat flux. Exp. Therm. Fluid Sci. 32, 1638–1646 (2008)CrossRef
31.
Zurück zum Zitat Royon, L., Guiffant, G.: Forced convection heat transfer with slurry of phase change material in circular ducts: a phenomenological approach. Energ. Convers. Manag. 49(5), 928–932 (2008)CrossRef Royon, L., Guiffant, G.: Forced convection heat transfer with slurry of phase change material in circular ducts: a phenomenological approach. Energ. Convers. Manag. 49(5), 928–932 (2008)CrossRef
32.
Zurück zum Zitat Wang, X., Niu, J., Li, Y., Zhang, Y., Wang, X., Chen, B., Zeng, R., Song, Q.: Heat transfer of microencapsulated PCM slurry flow in a circular tube. AIChE J 54, 1110–1120 (2008)CrossRef Wang, X., Niu, J., Li, Y., Zhang, Y., Wang, X., Chen, B., Zeng, R., Song, Q.: Heat transfer of microencapsulated PCM slurry flow in a circular tube. AIChE J 54, 1110–1120 (2008)CrossRef
33.
Zurück zum Zitat Zenga, R., Wanga, X., Chena, B., Zhanga, Y., Niub, J., Wang, X., Dia, H.: Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl. Energy 86, 2661–2670 (2009)CrossRef Zenga, R., Wanga, X., Chena, B., Zhanga, Y., Niub, J., Wang, X., Dia, H.: Heat transfer characteristics of microencapsulated phase change material slurry in laminar flow under constant heat flux. Appl. Energy 86, 2661–2670 (2009)CrossRef
34.
Zurück zum Zitat Koulich, V.V., Lage, J.L., Hsia, C.C.W., Johnson Jr., R.L.: A porous medium model of alveolar gas diffusion. J. Porous Media 2, 263–275 (1999) Koulich, V.V., Lage, J.L., Hsia, C.C.W., Johnson Jr., R.L.: A porous medium model of alveolar gas diffusion. J. Porous Media 2, 263–275 (1999)
35.
Zurück zum Zitat Kulish, V.V., Lage, J.L., Hsia, C.C.W., Johnson Jr., R.L.: Three-dimensional, unsteady simulation of alveolar respiration. ASME J. Biomech. Eng. 124, 609–616 (2002)CrossRef Kulish, V.V., Lage, J.L., Hsia, C.C.W., Johnson Jr., R.L.: Three-dimensional, unsteady simulation of alveolar respiration. ASME J. Biomech. Eng. 124, 609–616 (2002)CrossRef
36.
Zurück zum Zitat Kulish, V.V., Lage, J.L.: Fundamentals of alveolar diffusion: a new modeling approach. AUTOMEDICA Int. J. Bio-Med. Engg. Technol. 20, 225–268 (2002) Kulish, V.V., Lage, J.L.: Fundamentals of alveolar diffusion: a new modeling approach. AUTOMEDICA Int. J. Bio-Med. Engg. Technol. 20, 225–268 (2002)
37.
Zurück zum Zitat Kulish, V.V., Sourin, A.I., Lage, J.L.: Simulation and visualization of gas diffusion in human lungs. J Vis. (The Visualization Society of Japan) 5, 260–266 (2002) Kulish, V.V., Sourin, A.I., Lage, J.L.: Simulation and visualization of gas diffusion in human lungs. J Vis. (The Visualization Society of Japan) 5, 260–266 (2002)
38.
Zurück zum Zitat Kulish, V.V., Lage, J.L.: Impact of microscopic solid particles on the alveolar diffusion. In: Kulish, V. (ed.) Human respiration: anatomy and physiology, mathematical modeling, numerical simulation and applications – Advances in Bioengineering Series, vol. 3, pp. 13–22. WIT Press, Southampton (2006)CrossRef Kulish, V.V., Lage, J.L.: Impact of microscopic solid particles on the alveolar diffusion. In: Kulish, V. (ed.) Human respiration: anatomy and physiology, mathematical modeling, numerical simulation and applications – Advances in Bioengineering Series, vol. 3, pp. 13–22. WIT Press, Southampton (2006)CrossRef
39.
Zurück zum Zitat Lage, J.L., Merrikh, A.A., Kulish, V.V.: A porous medium model to investigate the red cell distribution effect on alveolar respiration: numerical simulations to CO diffusion in the alveolar region of the lungs. Emerging Technologies and Techniques in Porous Media, vol. 25, pp. 381–407. Kluwer, Dordrecht (2004) Lage, J.L., Merrikh, A.A., Kulish, V.V.: A porous medium model to investigate the red cell distribution effect on alveolar respiration: numerical simulations to CO diffusion in the alveolar region of the lungs. Emerging Technologies and Techniques in Porous Media, vol. 25, pp. 381–407. Kluwer, Dordrecht (2004)
40.
Zurück zum Zitat Hsia, C.C.W., Chuong, C.J.C., Johnson Jr., R.L.: Critique of conceptual basis of diffusion capacity estimates: a finite element analysis. J. Appl. Physiol. 79, 1039–1047 (1995) Hsia, C.C.W., Chuong, C.J.C., Johnson Jr., R.L.: Critique of conceptual basis of diffusion capacity estimates: a finite element analysis. J. Appl. Physiol. 79, 1039–1047 (1995)
41.
Zurück zum Zitat Merrikh, A.A., Lage, J.L.: Effect of blood flow on gas transport in a pulmonary capillary. ASME J. Biomech. Eng. 127, 432–439 (2005)CrossRef Merrikh, A.A., Lage, J.L.: Effect of blood flow on gas transport in a pulmonary capillary. ASME J. Biomech. Eng. 127, 432–439 (2005)CrossRef
42.
Zurück zum Zitat Merrikh, A.A., Lage, J.L.: The role of red cell movement on alveolar gas diffusion. Mater. Sci. Eng. Techn. 36, 497–504 (2005) Merrikh, A.A., Lage, J.L.: The role of red cell movement on alveolar gas diffusion. Mater. Sci. Eng. Techn. 36, 497–504 (2005)
43.
Zurück zum Zitat Merrikh, A.A., Lage, J.L.: Plasma microcirculation in alveolar capillaries: effect of parachute shaped red cells on gas exchange. Int. J. Heat Mass Transf. 51, 5712–5720 (2008)CrossRef Merrikh, A.A., Lage, J.L.: Plasma microcirculation in alveolar capillaries: effect of parachute shaped red cells on gas exchange. Int. J. Heat Mass Transf. 51, 5712–5720 (2008)CrossRef
44.
Zurück zum Zitat Merrikh, A.A.: Convection-diffusion analysis of gas transport in a pulmonary capillary. PhD Dissertation, SMU (2004) Merrikh, A.A.: Convection-diffusion analysis of gas transport in a pulmonary capillary. PhD Dissertation, SMU (2004)
45.
Zurück zum Zitat Hassanipour, F., Lage, J.L.: Numerical simulation of capillary convection with encapsulated phase-change particles. Num. Heat Transf. A 55, 893–905 (2009)CrossRef Hassanipour, F., Lage, J.L.: Numerical simulation of capillary convection with encapsulated phase-change particles. Num. Heat Transf. A 55, 893–905 (2009)CrossRef
46.
Zurück zum Zitat Hassanipour, F., Lage, J.L.: Preliminary experimental study of a bio-inspired, phased-change particle capillary heat exchanger. Int. J. Heat Mass Transf. 53, 3300–3307 (2010)CrossRef Hassanipour, F., Lage, J.L.: Preliminary experimental study of a bio-inspired, phased-change particle capillary heat exchanger. Int. J. Heat Mass Transf. 53, 3300–3307 (2010)CrossRef
47.
Zurück zum Zitat Hassanipour, F., Lage, J.L.: New bio-inspired, multi-phase forced convection cooling by ABS plastic or encapsulated paraffin beads. ASME J. Heat Transf. 132, 149–152 (2010)CrossRef Hassanipour, F., Lage, J.L.: New bio-inspired, multi-phase forced convection cooling by ABS plastic or encapsulated paraffin beads. ASME J. Heat Transf. 132, 149–152 (2010)CrossRef
48.
Zurück zum Zitat Hassanipour, F.: A particulate flow heat exchanger inspired by gas diffusion in lung capillaries. PhD Dissertation, SMU (2009) Hassanipour, F.: A particulate flow heat exchanger inspired by gas diffusion in lung capillaries. PhD Dissertation, SMU (2009)
49.
Zurück zum Zitat Ulusarslan, D., Teke, I.: An experimental investigation of the capsule velocity, concentration rate and the spacing between the capsules for spherical capsule train flow in a horizontal circular pipe. Powder Technol. 159, 27–34 (2005)CrossRef Ulusarslan, D., Teke, I.: An experimental investigation of the capsule velocity, concentration rate and the spacing between the capsules for spherical capsule train flow in a horizontal circular pipe. Powder Technol. 159, 27–34 (2005)CrossRef
50.
Zurück zum Zitat Ulusarslan, D., Teke, I.: An experimental determination of pressure drops in the flow of low density spherical capsule train inside horizontal pipes. Exp. Therm. Fluid Sci. 30, 233–241 (2006)CrossRef Ulusarslan, D., Teke, I.: An experimental determination of pressure drops in the flow of low density spherical capsule train inside horizontal pipes. Exp. Therm. Fluid Sci. 30, 233–241 (2006)CrossRef
51.
Zurück zum Zitat Teke, I., Ulusarslan, D.: Mathematical expression of pressure gradient in the flow of spherical capsules less dense than water. Int. J. Multiph. Flow 33, 658–674 (2007)CrossRef Teke, I., Ulusarslan, D.: Mathematical expression of pressure gradient in the flow of spherical capsules less dense than water. Int. J. Multiph. Flow 33, 658–674 (2007)CrossRef
Metadaten
Titel
New Bio-Inspired Multiphase Thermal Functional Fluid
verfasst von
José L. Lage
Copyright-Jahr
2011
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8611_2011_53

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.