Skip to main content
Erschienen in: Designs, Codes and Cryptography 12/2019

10.06.2019

New covering codes of radius R, codimension tR and \(tR+\frac{R}{2}\), and saturating sets in projective spaces

verfasst von: Alexander A. Davydov, Stefano Marcugini, Fernanda Pambianco

Erschienen in: Designs, Codes and Cryptography | Ausgabe 12/2019

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The length function \(\ell _q(r,R)\) is the smallest length of a q-ary linear code of codimension r and covering radius R. In this work we obtain new constructive upper bounds on \(\ell _q(r,R)\) for all \(R\ge 4\), \(r=tR\), \(t\ge 2\), and also for all even \(R\ge 2\), \(r=tR+\frac{R}{2}\), \(t\ge 1\). The new bounds are provided by infinite families of new covering codes with fixed R and increasing codimension. The new bounds improve upon the known ones. We propose a general regular construction (called “Line+Ovals”) of a minimal \(\rho \)-saturating \(((\rho +1)q+1)\)-set in the projective space \(\mathrm {PG}(2\rho +1,q)\) for all \(\rho \ge 0\). Such a set corresponds to an \([Rq+1,Rq+1-2R,3]_qR\) locally optimal code of covering radius \(R=\rho +1\). Basing on combinatorial properties of these codes regarding to spherical capsules, we give constructions for code codimension lifting and obtain infinite families of new surface-covering codes with codimension \(r=tR\), \(t\ge 2\). In addition, we obtain new 1-saturating sets in the projective plane \(\mathrm {PG}(2,q^2)\) and, basing on them, construct infinite code families with fixed even radius \(R\ge 2\) and codimension \(r=tR+\frac{R}{2}\), \(t\ge 1\).
Literatur
1.
Zurück zum Zitat Bacsó G., Héger T., Szőnyi T.: The 2-blocking number and the upper chromatic number of \(\text{ PG }(2, q)\). J. Comb. Des. 21(12), 585–602 (2013).MathSciNetMATH Bacsó G., Héger T., Szőnyi T.: The 2-blocking number and the upper chromatic number of \(\text{ PG }(2, q)\). J. Comb. Des. 21(12), 585–602 (2013).MathSciNetMATH
3.
Zurück zum Zitat Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois planes. Adv. Geom. 7(1), 39–53 (2007).MathSciNetCrossRef Blokhuis A., Lovász L., Storme L., Szőnyi T.: On multiple blocking sets in Galois planes. Adv. Geom. 7(1), 39–53 (2007).MathSciNetCrossRef
4.
Zurück zum Zitat Boros E., Szőnyi T., Tichler K.: On defining sets for projective planes. Discret. Math. 303(1–3), 17–31 (2005).MathSciNetCrossRef Boros E., Szőnyi T., Tichler K.: On defining sets for projective planes. Discret. Math. 303(1–3), 17–31 (2005).MathSciNetCrossRef
5.
Zurück zum Zitat Brualdi R.A., Pless V.S., Wilson R.M.: Short codes with a given covering radius. IEEE Trans. Inf. Theory 35(1), 99–109 (1989).MathSciNetCrossRef Brualdi R.A., Pless V.S., Wilson R.M.: Short codes with a given covering radius. IEEE Trans. Inf. Theory 35(1), 99–109 (1989).MathSciNetCrossRef
6.
Zurück zum Zitat Brualdi R.A., Litsyn S., Pless V.S.: Covering radius. In: Pless V.S., Huffman W.C., Brualdi R.A. (eds.) Handbook of Coding Theory, vol. 1, pp. 755–826. Elsevier, Amsterdam (1998). Brualdi R.A., Litsyn S., Pless V.S.: Covering radius. In: Pless V.S., Huffman W.C., Brualdi R.A. (eds.) Handbook of Coding Theory, vol. 1, pp. 755–826. Elsevier, Amsterdam (1998).
7.
Zurück zum Zitat Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes, vol. 54. Elsevier, Amsterdam (1997).MATH Cohen G., Honkala I., Litsyn S., Lobstein A.: Covering Codes, vol. 54. Elsevier, Amsterdam (1997).MATH
8.
Zurück zum Zitat Csajbók B., Héger T.: Double blocking sets of size \(3q-1\) in \(\text{ PG }(2, q)\). Eur. J. Comb. 78, 73–89 (2019).MathSciNetCrossRef Csajbók B., Héger T.: Double blocking sets of size \(3q-1\) in \(\text{ PG }(2, q)\). Eur. J. Comb. 78, 73–89 (2019).MathSciNetCrossRef
9.
Zurück zum Zitat Davydov A.A.: Construction of codes with covering radius 2. In: Cohen G., Litsyn S., Lobstein A., Zemor G. (eds.) Algebraic Coding. Lect. Notes Comput. Science, vol. 573, pp. 23–31. Springer, New–York (1992). Davydov A.A.: Construction of codes with covering radius 2. In: Cohen G., Litsyn S., Lobstein A., Zemor G. (eds.) Algebraic Coding. Lect. Notes Comput. Science, vol. 573, pp. 23–31. Springer, New–York (1992).
10.
Zurück zum Zitat Davydov A.A.: Construction of linear covering codes. Probl. Inf. Transm. 26(4), 317–331 (1990).MathSciNetMATH Davydov A.A.: Construction of linear covering codes. Probl. Inf. Transm. 26(4), 317–331 (1990).MathSciNetMATH
11.
Zurück zum Zitat Davydov A.A.: Constructions and families of covering codes and saturated sets of points in projective geometry. IEEE Trans. Inf. Theory 41(6), 2071–2080 (1995).MathSciNetCrossRef Davydov A.A.: Constructions and families of covering codes and saturated sets of points in projective geometry. IEEE Trans. Inf. Theory 41(6), 2071–2080 (1995).MathSciNetCrossRef
12.
Zurück zum Zitat Davydov A.A.: Constructions and families of nonbinary linear codes with covering radius 2. IEEE Trans. Inf. Theory 45(5), 1679–1686 (1999).MathSciNetCrossRef Davydov A.A.: Constructions and families of nonbinary linear codes with covering radius 2. IEEE Trans. Inf. Theory 45(5), 1679–1686 (1999).MathSciNetCrossRef
13.
Zurück zum Zitat Davydov A.A., Östergård P.R.J.: On saturating sets in small projective geometries. Eur. J. Comb. 21(5), 563–570 (2000).MathSciNetCrossRef Davydov A.A., Östergård P.R.J.: On saturating sets in small projective geometries. Eur. J. Comb. 21(5), 563–570 (2000).MathSciNetCrossRef
14.
Zurück zum Zitat Davydov A.A., Östergård P.R.J.: Linear codes with covering radius \(R=2,3\) and codimension \(tR\). IEEE Trans. Inf. Theory 47(1), 416–421 (2001).MathSciNetCrossRef Davydov A.A., Östergård P.R.J.: Linear codes with covering radius \(R=2,3\) and codimension \(tR\). IEEE Trans. Inf. Theory 47(1), 416–421 (2001).MathSciNetCrossRef
15.
Zurück zum Zitat Davydov A.A., Östergård P.R.J.: Linear codes with covering radius 3. Des. Codes Cryptogr. 54(3), 253–271 (2010).MathSciNetCrossRef Davydov A.A., Östergård P.R.J.: Linear codes with covering radius 3. Des. Codes Cryptogr. 54(3), 253–271 (2010).MathSciNetCrossRef
16.
Zurück zum Zitat Davydov A.A., Marcugini S., Pambianco F.: On saturating sets in projective spaces. J. Comb. Theory Ser. A 103(1), 1–15 (2003).MathSciNetCrossRef Davydov A.A., Marcugini S., Pambianco F.: On saturating sets in projective spaces. J. Comb. Theory Ser. A 103(1), 1–15 (2003).MathSciNetCrossRef
17.
Zurück zum Zitat Davydov A.A., Faina G., Marcugini S., Pambianco F.: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces. IEEE Trans. Inf. Theory 51(12), 4378–4387 (2005).MathSciNetCrossRef Davydov A.A., Faina G., Marcugini S., Pambianco F.: Locally optimal (nonshortening) linear covering codes and minimal saturating sets in projective spaces. IEEE Trans. Inf. Theory 51(12), 4378–4387 (2005).MathSciNetCrossRef
18.
19.
Zurück zum Zitat Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1), 119–147 (2011).MathSciNetCrossRef Davydov A.A., Giulietti M., Marcugini S., Pambianco F.: Linear nonbinary covering codes and saturating sets in projective spaces. Adv. Math. Commun. 5(1), 119–147 (2011).MathSciNetCrossRef
20.
Zurück zum Zitat De Beule J., Héger T., Szőnyi T., Van de Voorde G.: Blocking and double blocking sets in finite planes. Electron. J. Comb. 23(2), 6 (2016).MathSciNetMATH De Beule J., Héger T., Szőnyi T., Van de Voorde G.: Blocking and double blocking sets in finite planes. Electron. J. Comb. 23(2), 6 (2016).MathSciNetMATH
21.
22.
23.
Zurück zum Zitat Giulietti M.: The geometry of covering codes: small complete caps and saturating sets in Galois spaces. In: Blackburn S.R., Holloway R., Wildon M. (eds.) Surveys in Combinatorics 2013, London Math. Soc. Lect. Note Series, vol. 409, pp. 51–90. Cambridge Univ Press, Cambridge (2013). Giulietti M.: The geometry of covering codes: small complete caps and saturating sets in Galois spaces. In: Blackburn S.R., Holloway R., Wildon M. (eds.) Surveys in Combinatorics 2013, London Math. Soc. Lect. Note Series, vol. 409, pp. 51–90. Cambridge Univ Press, Cambridge (2013).
24.
Zurück zum Zitat Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs, 2nd edn. Clarendon Press, Oxford (1998). Hirschfeld J.W.P.: Projective Geometries Over Finite Fields. Oxford Mathematical Monographs, 2nd edn. Clarendon Press, Oxford (1998).
25.
Zurück zum Zitat Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Plan. Infer. 72(1), 355–380 (1998).MathSciNetCrossRef Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite projective spaces. J. Stat. Plan. Infer. 72(1), 355–380 (1998).MathSciNetCrossRef
26.
Zurück zum Zitat Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis A., Hirschfeld J.W.P. et al. (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston (2001). Hirschfeld J.W.P., Storme L.: The packing problem in statistics, coding theory and finite geometry: update 2001. In: Blokhuis A., Hirschfeld J.W.P. et al. (eds.) Finite Geometries, Developments of Mathematics, vol. 3, Proc. of the Fourth Isle of Thorns Conf., Chelwood Gate, 2000, pp. 201–246. Kluwer Academic Publisher, Boston (2001).
27.
Zurück zum Zitat Janwa H.: Some optimal codes from algebraic geometry and their covering radii. Eur. J. Comb. 11(3), 249–266 (1990).MathSciNetCrossRef Janwa H.: Some optimal codes from algebraic geometry and their covering radii. Eur. J. Comb. 11(3), 249–266 (1990).MathSciNetCrossRef
28.
Zurück zum Zitat Kiss G., Kóvacs I., Kutnar K., Ruff J., Šparl P.: A note on a geometric construction of large Cayley graphs of given degree and diameter. Stud. Univ. Babes-Bolyai Math. 54(3), 77–84 (2009).MathSciNetMATH Kiss G., Kóvacs I., Kutnar K., Ruff J., Šparl P.: A note on a geometric construction of large Cayley graphs of given degree and diameter. Stud. Univ. Babes-Bolyai Math. 54(3), 77–84 (2009).MathSciNetMATH
29.
Zurück zum Zitat Klein A., Storme L.: Applications of Finite Geometry in Coding Theory and Cryptography. In: Crnković D., Tonchev V. (eds.) NATO Science for Peace and Security, Ser. - D: Information and Communication Security, vol. 29, Information Security, Coding Theory and Related Combinatorics, pp. 38–58 (2011). Klein A., Storme L.: Applications of Finite Geometry in Coding Theory and Cryptography. In: Crnković D., Tonchev V. (eds.) NATO Science for Peace and Security, Ser. - D: Information and Communication Security, vol. 29, Information Security, Coding Theory and Related Combinatorics, pp. 38–58 (2011).
30.
Zurück zum Zitat Landjev I., Storme L.: Galois geometry and coding theory. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry, Chapter 8, pp. 187–214, NOVA Academic Publisher, New York (2012). Landjev I., Storme L.: Galois geometry and coding theory. In: De Beule J., Storme L. (eds.) Current Research Topics in Galois Geometry, Chapter 8, pp. 187–214, NOVA Academic Publisher, New York (2012).
32.
Zurück zum Zitat MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 3rd edn. Elsevier, Amsterdam (1981).MATH MacWilliams F.J., Sloane N.J.A.: The Theory of Error-Correcting Codes, 3rd edn. Elsevier, Amsterdam (1981).MATH
33.
Zurück zum Zitat Ughi E.: Saturated configurations of points in projective Galois spaces. Eur. J. Comb. 8(3), 325–334 (1987).MathSciNetCrossRef Ughi E.: Saturated configurations of points in projective Galois spaces. Eur. J. Comb. 8(3), 325–334 (1987).MathSciNetCrossRef
Metadaten
Titel
New covering codes of radius R, codimension tR and , and saturating sets in projective spaces
verfasst von
Alexander A. Davydov
Stefano Marcugini
Fernanda Pambianco
Publikationsdatum
10.06.2019
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 12/2019
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-019-00649-2

Weitere Artikel der Ausgabe 12/2019

Designs, Codes and Cryptography 12/2019 Zur Ausgabe